Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets—Application of the Decision Tree Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Powder Blends
2.2.2. Characterization of Powder Blends
Particle Size Distribution
Powder Flow Properties
2.2.3. Preparation of Tablets
Selective Laser Sintering 3D Printing
2.2.4. Decision Tree Modelling
2.2.5. Characterization of the Tablets
Determination of the Physical and Mechanical Properties
Mercury Intrusion Porosimetry (MIP) Measurements of Irbesartan Tablets
Scanning Electron Microscopy (SEM)
Fourier Transform Infrared Spectroscopy (FT-IR)
Differential Scanning Calorimetry (DSC)
2.2.6. Disintegration
2.2.7. Drug Content
2.2.8. Dissolution and Drug Release Analysis
3. Results
3.1. Characterization of Powder Blends
3.2. Preparation of Tablets
3.3. Decision Tree
3.4. Effect of Formulation Factors on Printability
3.5. Characterization of the Tablets
3.5.1. Physical and Mechanical Properties of Irbesartan Tablets
3.5.2. MIP Measurements of Irbesartan Tablets
Run | 1 Vtot (cm3 g−1) | 2 SHg (m2 g−1) | 3 Dav (μm) | 4 BD (g cm−3) | 5 P (%) | |
---|---|---|---|---|---|---|
FH8 P1 | I | 0.17 | 28.00 | 8.00 | 1.07 | 18.40 |
II | 0.06 | 7.60 | 10.00 | 1.07 | 6.50 | |
FH8 P2 | I | 0.13 | 13.40 | 8.00 | 1.14 | 15.00 |
II | 0.05 | 10.10 | 8.00 | 1.14 | 5.50 | |
FH8 P3 | I | 0.15 | 17.80 | 0.01 | 1.14 | 16.50 |
II | 0.04 | 5.60 | 0.01 | 1.14 | 4.70 |
3.5.3. SEM
3.5.4. FT-IR
3.5.5. DSC
3.5.6. Disintegration Time
3.5.7. Drug Content
3.5.8. Dissolution and Drug Release Kinetics
3.5.9. Effect of Crospovidone on Drug Release
3.5.10. Tailoring Drug Release in SLS Printing
3.5.11. Drug Release Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D printing in pharmaceutical and medical applications. Pharm. Res. 2018, 35, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okafor-Muo, O.L.; Hassanin, H.; Kayyali, R.; ElShaer, A. 3D Printing of Solid Oral Dosage Forms: Numerous Challenges with Unique Opportunities. J. Pharm. Sci. 2020, 109, 3535–3550. [Google Scholar] [CrossRef] [PubMed]
- Parulski, C.; Jennotte, O.; Lechanteur, A.; Evrard, B. Challenges of Fused Deposition Modeling 3D Printing in Pharmaceutical Applications: Where Are We Now? Elsevier B.V.: Amsterdam, The Netherlands, 2021; ISBN 3243664306. [Google Scholar]
- Beg, S.; Almalki, W.H.; Malik, A.; Farhan, M.; Aatif, M.; Rahman, Z.; Alruwaili, N.K.; Alrobaian, M.; Tarique, M.; Rahman, M. 3D printing for drug delivery and biomedical applications. Drug Discov. Today 2020, 25, 1668–1681. [Google Scholar] [CrossRef] [PubMed]
- Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Selective laser sintering (SLS) 3D printing of medicines. Int. J. Pharm. 2017, 529, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Basit, A.W.; Gaisford, S. 3D Printing of Pharmaceuticals; University College London: London, UK, 2017; Volume 2, ISBN 9783319671321. [Google Scholar]
- Mohamed, E.M.; Barakh Ali, S.F.; Rahman, Z.; Dharani, S.; Ozkan, T.; Kuttolamadom, M.A.; Khan, M.A. Formulation Optimization of Selective Laser Sintering 3D-Printed Tablets of Clindamycin Palmitate Hydrochloride by Response Surface Methodology. AAPS Pharmscitech 2020, 21, 13–15. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Trenfield, S.J.; Patel, P.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printed pellets (Miniprintlets): A novel, multi-drug, controlled release platform technology. Pharmaceutics 2019, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Hamed, R.; Mohamed, E.M.; Rahman, Z.; Khan, M.A. 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models. Int. J. Pharm. 2021, 592, 120059. [Google Scholar] [CrossRef]
- Barakh Ali, S.F.; Mohamed, E.M.; Ozkan, T.; Kuttolamadom, M.A.; Khan, M.A.; Asadi, A.; Rahman, Z. Understanding the effects of formulation and process variables on the printlets quality manufactured by selective laser sintering 3D printing. Int. J. Pharm. 2019, 570, 118651. [Google Scholar] [CrossRef]
- Martinez-Marcos, L.; Lamprou, D.A.; McBurney, R.T.; Halbert, G.W. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int. J. Pharm. 2016, 499, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Fina, F.; Madla, C.M.; Goyanes, A.; Zhang, J.; Gaisford, S.; Basit, A.W. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int. J. Pharm. 2018, 541, 101–107. [Google Scholar] [CrossRef]
- Fina, F.; Goyanes, A.; Madla, C.M.; Awad, A.; Trenfield, S.J.; Kuek, J.M.; Patel, P.; Gaisford, S.; Basit, A.W. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int. J. Pharm. 2018, 547, 44–52. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv. Drug Deliv. Rev. 2021, 174, 406–424. [Google Scholar] [CrossRef]
- Gueche, Y.A.; Sanchez-ballester, N.M.; Cailleaux, S.; Bataille, B.; Soulairol, I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics 2021, 13, 1212. [Google Scholar] [CrossRef]
- Thakkar, R.; Zhang, Y.; Zhang, J.; Maniruzzaman, M. Synergistic application of twin-screw granulation and selective laser sintering 3D printing for the development of pharmaceutical dosage forms with enhanced dissolution rates and physical properties. Eur. J. Pharm. Biopharm. 2021, 163, 141–156. [Google Scholar] [CrossRef]
- Cheah, C.M.; Leong, K.F.; Chua, C.K.; Low, K.H.; Quek, H.S. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2002, 216, 369–383. [Google Scholar] [CrossRef]
- Leong, K.F.; Wiria, F.E.; Chua, C.K.; Li, S.H. Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed. Mater. Eng. 2007, 17, 147–157. [Google Scholar]
- Salmoria, G.V.; Klauss, P.; Zepon, K.; Kanis, L.A.; Roesler, C.R.M.; Vieira, L.F. Development of functionally-graded reservoir of PCL/PG by selective laser sintering for drug delivery devices: This paper presents a selective laser sintering-fabricated drug delivery system that contains graded progesterone content. Virtual Phys. Prototyp. 2012, 7, 107–115. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Klauss, P.; Zepon, K.M.; Kanis, L.A. The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: Morphology and drug release. Int. J. Adv. Manuf. Technol. 2013, 66, 1113–1118. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Cardenuto, M.R.; Roesler, C.R.M.; Zepon, K.M.; Kanis, L.A. PCL/Ibuprofen Implants Fabricated by Selective Laser Sintering for Orbital Repair. Procedia CIRP 2016, 49, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Allahham, N.; Fina, F.; Marcuta, C.; Kraschew, L.; Mohr, W.; Gaisford, S.; Basit, A.W.; Goyanes, A. Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics 2020, 12, 110. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.; Yao, A.; Trenfield, S.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printed tablets (Printlets) with braille and moon patterns for visually impaired patients. Pharmaceutics 2020, 12, 172. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.A.; Thakkar, R.; Su, Y.; Williams, R.O.; Maniruzzaman, M. Selective Laser Sintering 3-Dimensional Printing as a Single Step Process to Prepare Amorphous Solid Dispersion Dosage Forms for Improved Solubility and Dissolution Rate. J. Pharm. Sci. 2021, 110, 1432–1443. [Google Scholar] [CrossRef]
- Kulinowski, P.; Malczewski, P.; Pesta, E.; Łaszcz, M.; Mendyk, A.; Polak, S.; Dorożyński, P. Selective laser sintering (SLS) technique for pharmaceutical applications—Development of high dose controlled release printlets. Addit. Manuf. 2021, 38, 101761. [Google Scholar] [CrossRef]
- Akilesh, M.; Elango, P.R.; Devanand, A.A.; Soundararajan, R.; Varthanan, P.A. Optimization of Selective Laser Sintering Process Parameters on Surface Quality. 3D Print. Addit. Manuf. Technol. 2018, 1–311. [Google Scholar] [CrossRef]
- Ho, H.C.H.; Gibson, I.; Cheung, W.L. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J. Mater. Process. Technol. 1999, 89–90, 204–210. [Google Scholar] [CrossRef]
- Xu, X.; Robles-Martinez, P.; Madla, C.M.; Joubert, F.; Goyanes, A.; Basit, A.W.; Gaisford, S. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction. Addit. Manuf. 2020, 33, 101071. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Wei, S.; Shan, W. Oral preparations with tunable dissolution behavior based on selective laser sintering technique. Int. J. Pharm. 2021, 593, 120127. [Google Scholar] [CrossRef]
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision trees: An overview and their use in medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef]
- Schöning, V.; Hammann, F. How far have decision tree models come for data mining in drug discovery? Expert Opin. Drug Discov. 2018, 13, 1067–1069. [Google Scholar] [CrossRef] [Green Version]
- REDC/ADF Dissolution Testing and Acceptance Criteria for Immediate-Release Solid Oral Dosage Form Drug Products Containing High Solubility Drug Substances Guidance for Industry; FDA: Washington, DC, USA, 2018.
- Marinov, M.; Mosa, A.S.M.; Yoo, I.; Boren, S.A. Data-mining technologies for diabetes: A systematic review. J. Diabetes Sci. Technol. 2011, 5, 1549–1556. [Google Scholar] [CrossRef]
- Su, C.T.; Yang, C.H.; Hsu, K.H.; Chiu, W.K. Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data. Comput. Math. Appl. 2006, 51, 1075–1092. [Google Scholar] [CrossRef]
- Gams, M.; Horvat, M.; Ožek, M.; Luštrek, M.; Gradišek, A. Integrating Artificial and Human Intelligence into Tablet Production Process. AAPS PharmSciTech 2014, 15, 1447–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Đuranović, M.; Obeid, S.; Madžarević, M.; Cvijić, S.; Ibrić, S. Paracetamol extended release FDM 3D printlets: Evaluation of formulation variables on printability and drug release. Int. J. Pharm. 2021, 592. [Google Scholar] [CrossRef] [PubMed]
- Emeruwa, E.; Jarrige, J.; Mexmain, J.; Bernardin, M. Application of mercury porosimetry to powder (UO2) analysis. J. Nucl. Mater. 1991, 184, 53–58. [Google Scholar] [CrossRef]
- Skotnicki, M.; Jadach, B.; Skotnicka, A.; Milanowski, B.; Tajber, L.; Pyda, M.; Kujawski, J. Physicochemical characterization of a co-amorphous atorvastatin-irbesartan system with a potential application in fixed-dose combination therapy. Pharmaceutics 2021, 13, 118. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, Y.; Ji, M.; Wang, Z.; Yan, T. Preparation of irbesartan composite microparticles by supercritical aerosol solvent extraction system for dissolution enhancement. J. Supercrit. Fluids 2019, 153, 104594. [Google Scholar] [CrossRef]
- Franca, C.A.; Etcheverry, S.B.; Diez, R.P.; Williams, P.A.M. Irbesartan: FTIR and Raman spectra. Density functional study on vibrational and NMR spectra. J. Raman Spectrosc. 2009, 40, 1296–1300. [Google Scholar] [CrossRef]
- Akinosho, H.; Hawkins, S.; Wicker, L. Hydroxypropyl methylcellulose substituent analysis and rheological properties. Carbohydr. Polym. 2013, 98, 276–281. [Google Scholar] [CrossRef]
- Bashir, S.; Zafar, N.; Lebaz, N.; Mahmood, A.; Elaissari, A. Hydroxypropyl methylcellulose-based hydrogel copolymeric for controlled delivery of galantamine hydrobromide in Dementia. Processes 2020, 8, 1350. [Google Scholar] [CrossRef]
- Jana, S.; Ali, S.A.; Nayak, A.K.; Sen, K.K.; Basu, S.K. Development of topical gel containing aceclofenac-crospovidone solid dispersion by “Quality by Design (QbD)” approach. Chem. Eng. Res. Des. 2014, 92, 2095–2105. [Google Scholar] [CrossRef]
- Suvarna, V.; Singh, V.; Sharma, D.; Murahari, M. Experimental and computational insight of the supramolecular complexes of Irbesartan with β-cyclodextrin based nanosponges. J. Drug Deliv. Sci. Technol. 2021, 63, 102494. [Google Scholar] [CrossRef]
- Meruva, S.; Thool, P.; Shah, S.; Karki, S.; Bowen, W. Formulation and performance of Irbesartan nanocrystalline suspension and granulated or bead-layered dried powders—Part I. Int. J. Pharm. 2019, 568, 118189. [Google Scholar] [CrossRef]
- Koester, L.S.; Mayorga, P.; Pereira, V.P.; Petzhold, C.L.; Bassani, V.L. Carbamazepine/βCD/HPMC solid dispersions. II. Physical characterization. Drug Dev. Ind. Pharm. 2003, 29, 145–154. [Google Scholar] [CrossRef]
- Allan, M.C.; Grush, E.; Mauer, L.J. RH-temperature stability diagram of α- and β-anhydrous and monohydrate lactose crystalline forms. Food Res. Int. 2020, 127, 108717. [Google Scholar] [CrossRef]
- Karagianni, A.; Kachrimanis, K.; Nikolakakis, I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics 2018, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Kanaujia, P.; Poovizhi, P.; Ng, W.K.; Tan, R.B.H. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technol. 2015, 285, 2–15. [Google Scholar] [CrossRef]
- Chawla, G.; Bansal, A.K. A comparative assessment of solubility advantage from glassy and crystalline forms of a water-insoluble drug. Eur. J. Pharm. Sci. 2007, 32, 45–57. [Google Scholar] [CrossRef]
- Chawla, G.; Bansal, A.K. Improved dissolution of a poorly water soluble drug in solid dispersions with polymeric and non-polymeric hydrophilic additives. Acta Pharm. 2008, 58, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Understanding Disintegrant Action by Visualization. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef]
- Sakure, K.; Kumari, L.; Badwaik, H. Development and evaluation of solid dispersion based rapid disintegrating tablets of poorly water-soluble anti-diabetic drug. J. Drug Deliv. Sci. Technol. 2020, 60, 101942. [Google Scholar] [CrossRef]
- Gonnissen, Y.; Remon, J.P.; Vervaet, C. Effect of maltodextrin and superdisintegrant in directly compressible powder mixtures prepared via co-spray drying. Eur. J. Pharm. Biopharm. 2008, 68, 277–282. [Google Scholar] [CrossRef]
- Berardi, A.; Bisharat, L.; Quodbach, J.; Abdel Rahim, S.; Perinelli, D.R.; Cespi, M. Advancing the understanding of the tablet disintegration phenomenon—An update on recent studies. Int. J. Pharm. 2021, 598, 120390. [Google Scholar] [CrossRef]
- Quodbach, J.; Kleinebudde, P. Performance of tablet disintegrants: Impact of storage conditions and relative tablet density. Pharm. Dev. Technol. 2015, 20, 762–768. [Google Scholar] [CrossRef]
- Amayreh, R.; Bisharat, L.; Cespi, M.; Palimieri, G.F.; Berardi, A. Evaluation of the Disintegration Action of Soy Polysaccharide by Image Analysis. AAPS PharmSciTech 2019, 20, 1–11. [Google Scholar] [CrossRef]
- Mhlanga, N.; Ray, S.S. Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide/metal oxide-based hybrids. Int. J. Biol. Macromol. 2015, 72, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Caccavo, D. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems. Int. J. Pharm. 2019, 560, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
FM1 | FM2 | FH1 | FH2 | FH3 | FH4 | FH5 | FH6 | FH7 | FH8 | |
---|---|---|---|---|---|---|---|---|---|---|
Irbesartan | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Candurin Gold Sheen | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Silicon dioxide | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Mannitol | 81.0 | 81.0 | - | - | - | - | - | - | - | - |
HPMC | - | - | 91.0 | 90.0 | 89.0 | 86.0 | 71.0 | 46.0 | 71.0 | 69.0 |
Crospovidon | - | - | - | 1.0 | 2.0 | 5.0 | - | - | - | 2.0 |
Kollidon VA 64 Fine | - | 10.0 | - | - | - | - | 20.0 | - | - | - |
Lactose monohydrate | 10.0 | - | - | - | - | - | - | 45.0 | 20.0 | 20.0 |
Formulation | Printing Parameters | ||||
---|---|---|---|---|---|
Chamber Temperature (°C) | Surface Temperature (°C) | Laser Speed (mm/s) | Layer Height (µm) | Energy Density (J/mm3) | |
FM1 | 150.00 | 160.00 | 60.00 | 200.00 | 0.77 |
FM2 | 125.00 | 140.00 | 50.00 | 200.00 | 0.92 |
FH1 P1 | 140.00 | 155.00 | 100.00 | 100.00 | 0.92 |
FH1 P2 | 140.00 | 155.00 | 120.00 | 100.00 | 0.77 |
FH1 P3 | 140.00 | 155.00 | 140.00 | 100.00 | 0.66 |
FH1 P4 | 140.00 | 155.00 | 160.00 | 100.00 | 0.57 |
FH2 P1 | 140.00 | 155.00 | 100.00 | 100.00 | 0.92 |
FH2 P2 | 140.00 | 155.00 | 120.00 | 100.00 | 0.77 |
FH2 P3 | 140.00 | 155.00 | 140.00 | 100.00 | 0.66 |
FH3 P1 | 140.00 | 155.00 | 100.00 | 100.00 | 0.92 |
FH3 P2 | 140.00 | 155.00 | 120.00 | 100.00 | 0.77 |
FH3 P3 | 140.00 | 155.00 | 140.00 | 100.00 | 0.66 |
FH3 P4 | 140.00 | 155.00 | 160.00 | 100.00 | 0.57 |
FH4 P1 | 140.00 | 155.00 | 100.00 | 100.00 | 0.92 |
FH4 P2 | 140.00 | 155.00 | 120.00 | 100.00 | 0.77 |
FH4 P3 | 140.00 | 155.00 | 140.00 | 100.00 | 0.66 |
FH4 P4 | 140.00 | 155.00 | 160.00 | 100.00 | 0.57 |
FH4 P5 | 140.00 | 155.00 | 180.00 | 100.00 | 0.51 |
FH4 P6 | 140.00 | 155.00 | 220.00 | 100.00 | 0.42 |
FH5 P1 | 115.00 | 120.00 | 100.00 | 100.00 | 0.92 |
FH5 P2 | 115.00 | 120.00 | 120.00 | 100.00 | 0.77 |
FH6 | 130.00 | 140.00 | 100.00 | 200.00 | 0.46 |
FH7 P1 | 140.00 | 155.00 | 100.00 | 100.00 | 0.92 |
FH7 P2 | 140.00 | 155.00 | 120.00 | 100.00 | 0.77 |
FH8 P1 | 140.00 | 155.00 | 100.00 | 100.00 | 0.92 |
FH8 P2 | 140.00 | 155.00 | 120.00 | 100.00 | 0.77 |
FH8 P3 | 140.00 | 155.00 | 140.00 | 100.00 | 0.66 |
Formulation | Weight ± SD (mg) | Diameter ± SD (mm) | Height ± SD (mm) | Disintegration Time (s) | Hardness ± SD (N) | Hausner Ratio | Compressibility Index (%) | Drug Content |
---|---|---|---|---|---|---|---|---|
FM1 | n.d. | n.d. | n.d. | n.d. | n.d. | 1.24 | 19.35 | n.d. |
FM2 | n.d. | n.d. | n.d. | n.d. | n.d | 1.14 | 12.5 | n.d. |
FH1 P1 | 35.1 ± 6.3 | 5.4 ± 0.1 | 2.6 ± 0.3 | 1510.0 | 56.0 ± 11.3 | 1.28 | 22.38 | 99.0 ± 0.9 |
FH1 P2 | 42.3 ± 8.1 | 5.15 ± 0.1 | 3.4 ± 0.3 | 1140.0 | 35.0 ± 31.1 | 100.5 ± 1.4 | ||
FH1 P3 | 44.7 ± 6.4 | 5.5 ± 0.1 | 3.4 ± 0.1 | 840.0 | 27.0 ± 10.5 | 101.9 ± 4.6 | ||
FH1 P4 | 44.0 ± 6.4 | 5.3 ± 0.3 | 3.5 ± 0.1 | 690.0 | 30.3 ± 11.1 | 99.6 ± 1.4 | ||
FH2 P1 | 32.2 ± 5.6 | 5.3 ± 0.2 | 2.8 ± 0.4 | 1000.0 | 51.0 ± 2.8 | 1.32 | 24.56 | 86.9 ± 0.7 |
FH2 P2 | 39.5 ± 8.3 | 5.2 ± 0.2 | 3.6 ± 0.4 | 720.0 | 48.3 ± 12.1 | 96.4 ± 1.0 | ||
FH2 P3 | 37.1 ± 8.5 | 5.3 ± 0.2 | 3.4 ± 0.3 | 460.0 | n.d. | 99.1 ± 2 | ||
FH3 P1 | 35.8 ± 4.1 | 5.5 ± 0.2 | 2.7 ± 0.4 | 660.0 | 45.3 ± 10.2 | 1.31 | 23.00 | 104.6 ± 0.5 |
FH3 P2 | 29.5 ± 6.5 | 5.4 ± 0.2 | 2.6 ± 0.2 | 500.0 | n.d. | 102.3 ± 3.1 | ||
FH3 P3 | 29.4 ± 6.7 | 5.4 ± 0.1 | 2.5 ± 0.3 | 380.0 | n.d. | 96.2 ± 2.3 | ||
FH3 P4 | 34.3 ± 4.4 | 5.3 ± 0.1 | 3.2 ± 0.2 | 420.0 | n.d. | 94.6 ± 3.2 | ||
FH4 P1 | 36.3 ± 6.5 | 5.4 ± 0.1 | 2.6 ± 0.5 | 1220.0 | 55.7 ± 15.3 | 1.31 | 23.7 | 89.2 ± 1.0 |
FH4 P2 | 26.7 ± 8.6 | 5.0 ± 0.2 | 2.0 ± 0.4 | 1040.0 | 27.7 ± 14.6 | 95.5 ± 3.3 | ||
FH4 P3 | 40.4 ± 9.1 | 5.3 ± 0.1 | 3.3 ± 0.3 | 960.0 | 51.0 ± 19.1 | 95.4 ± 2.9 | ||
FH4 P4 | 30.5 ± 7.2 | 5.3 ± 0.2 | 3.0 ± 0.3 | 600.0 | n.d. | 94.4 ± 0.1 | ||
FH4 P5 | 38.3 ± 5.7 | 5.1 ± 0.2 | 3.4 ± 0.2 | 540.0 | n.d. | 92.2 ± 0.9 | ||
FH4 P6 | 27.8 ± 10.2 | 5.0 ± 0.3 | 2.6 ± 0.5 | 480.0 | n.d. | 94.7 ± 0.5 | ||
FH5 P1 | 46.6 ± 12.3 | 5.4 ± 0.2 | 4.2 ± 0.4 | 1105.0 | 48.3 ± 14.1 | 1.29 | 22.49 | 107.2 ± 0.5 |
FH5 P2 | 43.8 ± 5.9 | 5.2 ± 0.5 | 4.2 ± 0.3 | 488.0 | 15.7 ± 2.1 | 113.0 ± 0.1 | ||
FH6 | 26.2 ± 7.1 | 5.3 ± 0.3 | 2.8 ± 0.2 | 240.0 | n.d. | 1.31 | 23.88 | 91.37 ± 0.5 |
FH7 P1 | 41.5 ± 6.7 | 5.5 ± 0.1 | 3.1 ± 0.0 | 780.0 | n.d. | 1.28 | 21.88 | 106.7 ± 6.5 |
FH7 P2 | 27.6 ± 7.2 | 5.0 ± 0.5 | 3.0 ± 0.6 | 220.0 | n.d. | 100.7 ± 2.9 | ||
FH8 P1 | 40.2 ± 7.2 | 5.6 ± 0.2 | 3.2 ± 0.3 | 260.0 | 12.5 ± 2.1 | 1.36 | 26.91 | 105.6 ± 7.9 |
FH8 P2 | 36.96 ± 6.3 | 5.5 ± 0.2 | 3.1 ± 0.2 | 180.0 | n.d. | 109.3 ± 0.6 | ||
FH8 P3 | 28.6 ± 3.9 | 5.4 ± 0.2 | 3.2 ± 0.2 | 90.0 | n.d. | 105.9 ± 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madžarević, M.; Medarević, Đ.; Pavlović, S.; Ivković, B.; Đuriš, J.; Ibrić, S. Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets—Application of the Decision Tree Model. Pharmaceutics 2021, 13, 1969. https://doi.org/10.3390/pharmaceutics13111969
Madžarević M, Medarević Đ, Pavlović S, Ivković B, Đuriš J, Ibrić S. Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets—Application of the Decision Tree Model. Pharmaceutics. 2021; 13(11):1969. https://doi.org/10.3390/pharmaceutics13111969
Chicago/Turabian StyleMadžarević, Marijana, Đorđe Medarević, Stefan Pavlović, Branka Ivković, Jelena Đuriš, and Svetlana Ibrić. 2021. "Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets—Application of the Decision Tree Model" Pharmaceutics 13, no. 11: 1969. https://doi.org/10.3390/pharmaceutics13111969