Optimization of Hemoglobin Encapsulation within PLGA Nanoparticles and Their Investigation as Potential Oxygen Carriers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hb Extraction from Bovine Blood
2.3. NP Formulations
2.4. NP Characterization
2.4.1. Particle Size and Charge
2.4.2. LC and EE
amount of Hb) × 100.
2.4.3. Hb Functionality
2.5. Hb Stabilization with TRE
2.6. Characterization of the Optimized Formulation
2.6.1. Differential Interference Contrast (DIC) Microscopy
2.6.2. Scanning Electron Microscopy (SEM)
2.6.3. Fourier-Transform Infrared (FTIR) Spectroscopy
2.6.4. Circular Dichroism (CD) Studies
2.6.5. Hb Functionality
3. Results and Discussion
3.1. Effect of Hb Concentration
3.2. Hb Stabilization with TRE
3.3. Effect of the PLGA Concentration
3.4. Effect of PVA Concentration
3.5. Effect of the Organic Solvent
3.6. Characterization of the Optimized HbNPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coll-Satue, C.; Bishnoi, S.; Chen, J.; Hosta-Rigau, L. Stepping stones to the future of haemoglobin-based blood products: Clinical, preclinical and innovative examples. Biomater. Sci. 2021, 9, 1135–1152. [Google Scholar] [CrossRef] [PubMed]
- Jansman, M.M.T.; Hosta-Rigau, L. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv. Colloid Interface Sci. 2018, 260, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Jahanian-Najafabadi, A.; Roudkenar, M.H. Artificial blood substitutes: First steps on the long route to clinical utility. Clin. Med. Insights Blood Disord. 2016, 9, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhao, C.; Wang, Q.; You, G.; Wang, Y.; Deng, H.; Chen, G.; Xia, S.; Zhao, J.; Wang, B.; et al. Preparation, characterization and in vivo investigation of blood-compatible hemoglobin-loaded nanoparticles as oxygen carriers. Colloids Surf. B Biointerfaces 2016, 139, 171–179. [Google Scholar] [CrossRef]
- Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin. A novel mechanism of human disease. JAMA 2005, 293, 1653–1662. [Google Scholar] [CrossRef]
- Sen Gupta, A. Bio-inspired nanomedicine strategies for artificial blood components. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1464. [Google Scholar] [CrossRef]
- Rameez, S.; Alosta, H.; Palmer, A.F. Biocompatible and biodegradable polymersome encapsulated hemoglobin: A potential oxygen carrier. Bioconjug. Chem. 2008, 19, 1025–1032. [Google Scholar] [CrossRef]
- Sakai, H.; Sou, K.; Horinouchi, H.; Kobayashi, K.; Tsuchida, E. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif. Organs 2009, 33, 139–145. [Google Scholar] [CrossRef]
- Liu, X.; Jansman, M.M.T.; Hosta-Rigau, L. Haemoglobin-loaded metal organic framework-based nanoparticles camouflaged with a red blood cell membrane as potential oxygen delivery systems. Biomater. Sci. 2020, 8, 5859–5873. [Google Scholar] [CrossRef]
- Jansman, M.M.T.; Liu, X.; Kempen, P.; Clergeaud, G.; Andresen, T.L.; Thulstrup, P.W.; Hosta-Rigau, L. Hemoglobin-based oxygen carriers incorporating nanozymes for the depletion of reactive oxygen species. ACS Appl. Mater. Interfaces 2020, 12, 50275–50286. [Google Scholar] [CrossRef]
- Zijlstra, W.G.; Buursma, A. Spectrophotometry of hemoglobin: Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1997, 118, 743–749. [Google Scholar] [CrossRef]
- Pittman, R.N. Oxygen Transport. In Regulation of Tissue Oxygenation; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2011; Chapter 4; Volume 3, ISBN 1615041788. [Google Scholar]
- Bäumler, H.; Xiong, Y.; Liu, Z.Z.; Patzak, A.; Georgieva, R. Novel hemoglobin particles-promising new-generation hemoglobin-based oxygen carriers. Artif. Organs 2014, 38, 708–714. [Google Scholar] [CrossRef]
- Cabrales, P.; Sun, G.; Zhou, Y.; Harris, D.R.; Tsai, A.G.; Intaglietta, M.; Palmer, A.F. Effects of the molecular mass of tense-state polymerized bovine hemoglobin on blood pressure and vasoconstriction. J. Appl. Physiol. 2009, 107, 1548–1558. [Google Scholar] [CrossRef]
- Sakai, H.; Hara, H.; Yuasa, M.; Tsai, A.G.; Takeoka, S.; Tsuchida, E.; Intaglietta, M. Molecular dimensions of Hb-based O2 carriers determine constriction of resistance arteries and hypertension. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H908–H915. [Google Scholar] [CrossRef]
- Rudt, S.; Müller, R.H. In vitro phagocytosis assay of nano- and microparticles by chemiluminescence. III. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur. J. Pharm. Sci. 1993, 1, 31–39. [Google Scholar] [CrossRef]
- Champion, J.A.; Walker, A.; Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 2008, 25, 1815–1821. [Google Scholar] [CrossRef]
- Feczkó, T.; Tóth, J.; Dósa, G.; Gyenis, J. Optimization of protein encapsulation in PLGA nanoparticles. Chem. Eng. Process. Process Intensif. 2011, 50, 757–765. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Chung, T.-S.; Ping Ng, N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001, 22, 231–241. [Google Scholar] [CrossRef]
- Mohammadi-Samani, S.; Taghipour, B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm. Dev. Technol. 2015, 20, 385–393. [Google Scholar] [CrossRef]
- Dybas, J.; Bokamper, M.J.; Marzec, K.M.; Mak, P.J. Probing the structure-function relationship of hemoglobin in living human red blood cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118530. [Google Scholar] [CrossRef]
- Dessy, A.; Piras, A.M.; Schirò, G.; Levantino, M.; Cupane, A.; Chiellini, F. Hemoglobin loaded polymeric nanoparticles: Preparation and characterizations. Eur. J. Pharm. Sci. 2011, 43, 57–64. [Google Scholar] [CrossRef]
- Van de Weert, M.; Hennink, W.E.; Jiskoot, W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 2000, 17, 1159–1167. [Google Scholar] [CrossRef]
- Cleland, J.L.; Jones, A.J. Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable mircospheres. Pharm. Res. 1996, 13, 1464–1475. [Google Scholar] [CrossRef]
- Ragoonanan, V.; Aksan, A. Protein Stabilization. Transfus. Med. Hemother. 2007, 34, 246–252. [Google Scholar] [CrossRef]
- Schwendeman, S.P.; Cardamone, M.; Klibanov, A.; Langer, R.; Brandon, M.R. Stability of proteins and their delivery from biodegradable polymer microspheres. In Microparticulate Systems for the Delivery of Proteins and Vaccines; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–49. [Google Scholar]
- Deller, M.C.; Kong, L.; Rupp, B. Protein stability: A crystallographer’s perspective. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2016, 72, 72–95. [Google Scholar] [CrossRef]
- Chen, S.; Manabe, Y.; Minamoto, N.; Saiki, N.; Fukase, K. Development of a simple assay system for protein-stabilizing efficiency based on hemoglobin protection against denaturation and measurement of the cooperative effect of mixing protein stabilizers. Biosci. Biotechnol. Biochem. 2016, 80, 1874–1878. [Google Scholar] [CrossRef]
- Kaushik, J.K.; Bhat, R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J. Biol. Chem. 2003, 278, 26458–26465. [Google Scholar] [CrossRef]
- Balcão, V.M.; Vila, M.M.D.C. Structural and functional stabilization of protein entities: State-of-the-art. Adv. Drug Deliv. Rev. 2015, 93, 25–41. [Google Scholar] [CrossRef]
- Ohtake, S.; Wang, Y.J. Trehalose: Current use and future applications. J. Pharm. Sci. 2011, 100, 2020–2053. [Google Scholar] [CrossRef]
- Kristinsson, H.G. Acid-induced unfolding of flounder hemoglobin: Evidence for a molten globular state with enhanced pro-oxidative activity. J. Agric. Food Chem. 2002, 50, 7669–7676. [Google Scholar] [CrossRef] [PubMed]
- Feczkó, T.; Tóth, J.; Dósa, G.; Gyenis, J. Influence of process conditions on the mean size of PLGA nanoparticles. Chem. Eng. Process. Process Intensif. 2011, 50, 846–853. [Google Scholar] [CrossRef]
- Hernández-Giottonini, K.Y.; Rodríguez-Córdova, R.J.; Gutiérrez-Valenzuela, C.A.; Peñuñuri-Miranda, O.; Zavala-Rivera, P.; Guerrero-Germán, P.; Lucero-Acuña, A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Adv. 2020, 10, 4218–4231. [Google Scholar] [CrossRef]
- Song, X.; Zhao, Y.; Hou, S.; Xu, F.; Zhao, R.; He, J.; Cai, Z.; Li, Y.; Chen, Q. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur. J. Pharm. Biopharm. 2008, 69, 445–453. [Google Scholar] [CrossRef]
- Feng, S.-S.; Huang, G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J. Control. Release 2001, 71, 53–69. [Google Scholar] [CrossRef]
- Shubhra, Q.T.H.; Feczkó, T.; Kardos, A.F.; Tóth, J.; Mackova, H.; Horak, D.; Dósa, G.; Gyenis, J. Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part II. Effect of process variables on protein model drug encapsulation efficiency. J. Microencapsul. 2014, 31, 156–165. [Google Scholar] [CrossRef]
- Meng, F.T.; Ma, G.H.; Qiu, W.; Su, Z.G. W/O/W double emulsion technique using ethyl acetate as organic solvent: Effects of its diffusion rate on the characteristics of microparticles. J. Control. Release 2003, 91, 407–416. [Google Scholar] [CrossRef]
- Muhaimin; Bodmeier, R. Effect of solvent type on preparation of ethyl cellulose microparticles by solvent evaporation method with double emulsion system using focused beam reflectance measurement. Polym. Int. 2017, 66, 1448–1455. [Google Scholar] [CrossRef]
- Matsuo, K.; Sakurada, Y.; Yonehara, R.; Kataoka, M.; Gekko, K. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Biophys. J. 2007, 92, 4088–4096. [Google Scholar] [CrossRef]
Sample ID | Hb (mg mL−1) | Size (nm) | PDI | LC (%) | EE (%) | Functional |
---|---|---|---|---|---|---|
PLGA-NPs | 0 | 269.1 | 0.074 | - | - | - |
HbNPs-1 | 5 | 262.5 | 0.064 | - | - | - |
HbNPs-2 | 10 | 273.8 | 0.093 | - | - | No |
HbNPs-3 | 25 | 255.1 | 0.060 | 1.8 | 42.8 | No |
HbNPs-4 | 50 | 277.7 | 0.082 | 9.0 | 30.1 | No |
HbNPs-5 | 75 | 313.9 | 0.156 | 14.9 | 32.6 | No |
HbNPs-6 | 100 | 346.7 | 0.144 | 20.6 | 33.8 | Semi |
Sample ID | Hb (mg mL−1) | Hb:TRE Ratio | Size (nm) | PDI | LC (%) | EE (%) | Functional |
---|---|---|---|---|---|---|---|
HbNPs-4 | 50 | 1:0 | 277.7 | 0.082 | 9.0 | 30.1 | No |
HbNPs-4 TRE1 | 50 | 50:1 | 291.6 | 0.110 | 8.4 | 21.0 | No |
HbNPs-4 TRE2 | 50 | 20:1 | 267.6 | 0.070 | 5.4 | 18.7 | No |
HbNPs-4 TRE3 | 50 | 10:1 | 285.8 | 0.087 | 5.7 | 19.3 | Semi |
HbNPs-4 TRE4 | 50 | 5:1 | 335.2 | 0.224 | 4.5 | 17.1 | Yes |
HbNPs-4 TRE5 | 50 | 2:1 | 337.0 | 0.230 | 2.5 | 11.1 | Yes |
HbNPs-4 TRE6 | 50 | 1:1 | 330.6 | 0.136 | 2.2 | 8.7 | Yes |
HbNPs-5 | 75 | 1:0 | 313.9 | 0.156 | 14.9 | 32.6 | No |
HbNPs-5 TRE1 | 75 | 50:1 | 286.1 | 0.109 | 11.5 | 26.7 | No |
HbNPs-5 TRE2 | 75 | 20:1 | 281.8 | 0.102 | 7.8 | 17.9 | Semi |
HbNPs-5 TRE3 | 75 | 10:1 | 296.2 | 0.101 | 5.0 | 15.2 | Semi |
HbNPs-5 TRE4 | 75 | 5:1 | 284.6 | 0.191 | 2.9 | 8.0 | Semi |
HbNPs-6 | 100 | 1:0 | 346.7 | 0.144 | 20.6 | 33.8 | Semi |
HbNPs-6 TRE1 | 100 | 50:1 | 301.1 | 0.120 | 17.6 | 22.4 | Yes |
HbNPs-6 TRE2 | 100 | 20:1 | 320.8 | 0.137 | 13.7 | 17.3 | Yes |
HbNPs-6 TRE3 | 100 | 10:1 | 346.0 | 0.213 | 14.3 | 21.2 | Yes |
HbNPs-6 TRE4 | 100 | 5:1 | 372.2 | 0.140 | 15.0 | 23.2 | Yes |
Sample ID | Hb (mg mL−1) | PLGA (mg mL−1) | Size (nm) | PDI | LC (%) | EE (%) | Functional |
---|---|---|---|---|---|---|---|
HbNPs-7 | 50 | 1 | 466.7 | 0.391 | 16.6 | 23.9 | Yes |
HbNPs-8 | 50 | 3 | 421.8 | 0.320 | 21.3 | 31.6 | Yes |
HbNPs-9 | 50 | 5 | 312.0 | 0.155 | 18.7 | 42.9 | Yes |
HbNPs-4 | 50 | 12.5 | 277.7 | 0.082 | 9.0 | 30.1 | No |
HbNPs-10 | 50 | 20 | 306.9 | 0.147 | 11.0 | 50.3 | No |
HbNPs-11 | 50 | 40 | 350.2 | 0.121 | 9.9 | 69.7 | No |
HbNPs-12 | 75 | 1 | 476.8 | 0.397 | 24.3 | 27.6 | Yes |
HbNPs-13 | 75 | 3 | 369.7 | 0.241 | 29.0 | 41.5 | Yes |
HbNPs-14 | 75 | 5 | 331.4 | 0.174 | 21.7 | 38.0 | Yes |
HbNPs-5 | 75 | 12.5 | 313.9 | 0.156 | 14.9 | 32.6 | No |
HbNPs-15 | 75 | 20 | 297.9 | 0.093 | 19.3 | 58.4 | No |
HbNPs-16 | 75 | 40 | 336.6 | 0.099 | 15.3 | 73.3 | No |
HbNPs-17 | 100 | 1 | 488.9 | 0.284 | 36.4 | 23.0 | Yes |
HbNPs-18 | 100 | 3 | 404.0 | 0.285 | 27.4 | 25.8 | Yes |
HbNPs-19 | 100 | 5 | 365.0 | 0.192 | 21.8 | 28.7 | Yes |
HbNPs-6 | 100 | 12.5 | 346.7 | 0.144 | 20.6 | 33.8 | Semi |
HbNPs-20 | 100 | 20 | 325.3 | 0.154 | 20.4 | 57.4 | No |
HbNPs-21 | 100 | 40 | 362.0 | 0.155 | 20.8 | 78.6 | No |
Sample ID | Hb (mg mL−1) | PLGA (mg mL−1) | PVA (%) | Size (nm) | PDI | LC (%) | EE (%) | Functional |
---|---|---|---|---|---|---|---|---|
HbNPs-22 | 50 | 5 | 0.2 | 470.0 | 0.199 | 15.2 | 37.7 | Yes |
HbNPs-23 | 50 | 5 | 0.5 | 379.0 | 0.175 | 13.9 | 39.8 | Yes |
HbNPs-9 | 50 | 5 | 1.0 | 312.0 | 0.155 | 18.7 | 42.9 | Yes |
HbNPs-24 | 50 | 5 | 2.0 | 253.7 | 0.160 | 9.7 | 20.5 | Yes |
HbNPs-25 | 75 | 3 | 0.2 | 357.5 | 0.317 | 25.2 | 31.6 | Yes |
HbNPs-26 | 75 | 3 | 0.5 | 344.5 | 0.172 | 26.9 | 40.7 | Yes |
HbNPs-13 | 75 | 3 | 1.0 | 369.7 | 0.241 | 29.0 | 41.5 | Yes |
HbNPs-27 | 75 | 3 | 2.0 | 349.6 | 0.258 | 20.8 | 27.3 | Yes |
HbNPs-28 | 75 | 5 | 0.2 | 484.4 | 0.427 | 26.7 | 39.4 | Yes |
HbNPs-29 | 75 | 5 | 0.5 | 352.1 | 0.165 | 24.9 | 41.9 | Yes |
HbNPs-14 | 75 | 5 | 1.0 | 331.4 | 0.174 | 21.7 | 38.0 | Yes |
HbNPs-30 | 75 | 5 | 2.0 | 307.4 | 0.249 | 18.3 | 19.7 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coll-Satue, C.; Jansman, M.M.T.; Thulstrup, P.W.; Hosta-Rigau, L. Optimization of Hemoglobin Encapsulation within PLGA Nanoparticles and Their Investigation as Potential Oxygen Carriers. Pharmaceutics 2021, 13, 1958. https://doi.org/10.3390/pharmaceutics13111958
Coll-Satue C, Jansman MMT, Thulstrup PW, Hosta-Rigau L. Optimization of Hemoglobin Encapsulation within PLGA Nanoparticles and Their Investigation as Potential Oxygen Carriers. Pharmaceutics. 2021; 13(11):1958. https://doi.org/10.3390/pharmaceutics13111958
Chicago/Turabian StyleColl-Satue, Clara, Michelle Maria Theresia Jansman, Peter Waaben Thulstrup, and Leticia Hosta-Rigau. 2021. "Optimization of Hemoglobin Encapsulation within PLGA Nanoparticles and Their Investigation as Potential Oxygen Carriers" Pharmaceutics 13, no. 11: 1958. https://doi.org/10.3390/pharmaceutics13111958
APA StyleColl-Satue, C., Jansman, M. M. T., Thulstrup, P. W., & Hosta-Rigau, L. (2021). Optimization of Hemoglobin Encapsulation within PLGA Nanoparticles and Their Investigation as Potential Oxygen Carriers. Pharmaceutics, 13(11), 1958. https://doi.org/10.3390/pharmaceutics13111958