Forms and Methods for Interferon’s Encapsulation
Abstract
:1. Introduction
2. IFN Delivery Systems
3. PEGylation of IFNs
4. Liposomes
5. Polymeric Micelles
6. Recent Encapsulation Forms of IFNs
6.1. Microencapsulation
6.1.1. IFN-α
6.1.2. IFN-β
6.1.3. IFN-γ
6.2. Nanoencapsulation
6.2.1. IFN-α
6.2.2. IFN-β
6.2.3. IFN-γ
IFN Type | Encapsulating Matrix | Route of Administration | Encapsulation Method | Physical Properties | Formulation Objective | Advantages/Disadvantages | Ref. |
---|---|---|---|---|---|---|---|
IFN-α | Microspheres of LEAVE | In vitro | Double emulsion/solvent evaporation | Size = 186 µm | Stabilization of IFN-α on PELA particles with sustained release and retention of antiviral activity for up to 11 days in in vitro studies. | A: stabilization of IFN in the matrix D: initial burst release | [119] |
PLGA microspheres | In vitro | Double emulsion/solvent evaporation | Size = 1.8 µm | Sustained in vitro release of methoxy-PEG-IFN-α for up to 3 weeks, although they exhibited high release peaks. | A: solubility maintained D: initial burst release | [120] | |
PLGA/ poloxamer | In vitro | Oil-in-oil solvent extraction | Size = 40 µm | Evaluation of microparticles and nanoparticles as an in vitro controlled release system. The MPs released IFN for up to 96 days. | A: integrity and activity of the molecule D: initial burst release | [54] | |
Multivesicular liposomes | In vitro | Double emulsion/solvent evaporation | Size = ~20 µm | Development of a system for controlled and sustained release of PEG-IFN-α for up to 6 days in vitro. | A: high stability and encapsulation efficiency D: initial burst release | [101] | |
Uni- and multivesicular liposomes | Intramuscular | Film hydration-dilution | Size = 101 nm | Prolonged retention of IFN-α-2b for up to 24 h at the application site after intramuscular administration in Kungming mice. | A: high retention at the application site D: loss of activity | [102] | |
Lysine-coated gold nanoparticles | In vitro | Chloroauric acid and borohydride reduction | Size without IFN = 10 nm | in vitro transport of IFN-α on gold nanoparticles coupled to lysine found on the particle surface. | A: stable conjugation in water D: modification of the carboxyl groups of the molecule | [145] | |
Poly(ether-ester) microspheres (Poly-Active) | Subcutaneous | Double emulsion/solvent evaporation | Size = ~30 µm | Phase IIB clinical study of Locteron®, a 14-day dose–response sustained-release formulation, well tolerated by patients at a dose of 80 µg. | A: significant decrease in adverse events D: scarce report of its physicochemical characterization | [121] | |
PLGA microspheres | In vitro | Double emulsion/solvent evaporation | Size = 28.1 µm | Encapsulation of IFN-α in PLGA microparticles in vitro. No changes were detected in the physicochemical and biological characteristics of the molecule released by diffusion for 24 h at 37 °C. | A: uniform size distribution D: IFN instability | [127] | |
PLGA microspheres | Intramuscular | Double emulsion/solvent evaporation | Size = 81.23 µm | Increased residence time of IFN-α in serum up to 18 days, and sustained release with activity up to 12 days in studies in rhesus monkeys. | A: increase in circulation time in vivo D: loss of biological activity | [128] | |
Alginate microspheres chitosan | Intramuscular | Coacervation | Size = 2.18 µm | Evaluation of pharmacokinetics in ICR mice, revealing a 4-fold increase in the half-life of IFN-α, with no increased peak concentration, and reduced bioavailability | A: increase in maximum serum concentration D: low encapsulation efficiency | [129] | |
PLA and PLGA microspheres | In vitro | Double emulsion/solvent evaporation with magnetite nanoparticles inclusion | Average size = 2.5 µm Size distribution = 0.5–3.5 µm | Particle loading with magnetite for site-specific delivery. In vitro antiviral assays in Vero cells against vesicular stomatitis virus indicated a slight reduction in the antiviral activity of the particles. | A: particle direction using magnetic field D: low encapsulation efficiency | [130] | |
PLGA microspheres | In vitro | Double emulsion/solvent evaporation | Size distribution = 40.54–115.62 µm | Sustained release maintains the molecule’s biological activity for up to 7 days in in vitro studies in Wish cells against vesicular stomatitis virus. | A: high encapsulation efficiency D: in vivo performance was not evaluated. | [131] | |
IFN-α | PLGA-PEGT/PBT microspheres | Subcutaneous | Double emulsion/solvent evaporation | Size = 28.94 µm | Extended cumulative release for up to 23 days in vitro, conforming to zero-order kinetics. Plasma levels were stable for 13 days in Sprague–Dawley rats, starting with a rapid release on day 1. | A: high encapsulation efficiency D: initial burst release | [132] |
PLGA nanoparticles with adsorbed HBV antigens | Intravenous | Double emulsion | Size = 174 nm PZ = +30 mV | System aimed at treating hepatitis B. Studies in BALB/c mice indicated that nanoparticles transport IFN to hepatocytes, with good systemic circulation. | A: site-specific transport D: low encapsulation efficiency | [148] | |
Liposomes | Intramuscular | Film hydration | Size = 82–172 nm PDI < 0.35 | Increased half-life, peak time, and bioavailability of encapsulated IFN-α-2b in Wistar rats. | A: accumulation in the liver D: non-uniform size | [103] | |
Gold nanoparticles plus hyaluronic acid (HA) | Intravenous | Chloroauric acid reduction with citrate and reductive amination of HA | Size = 52.23 nm PDI = 0.089 | Selective transport to the liver for HCV treatment. Biological activity of IFN-α is similar to PEG-Intron in vitro (Daudi), in vivo (BALB/c mice). | A: serum stability D: slow initial release | [146] | |
Protamine sulfate-impregnated gelatin microspheres | In vitro | Emulsion polymerization with glutaraldehyde as a crosslinker | Size = 28.94 µm | Protamine sulfate impregnation to increase the release time of IFN-α to 336 h and prolong the cytotoxic effect in vitro in ovarian cancer Skov3 cells | A: almost complete release D: no correlation with cytotoxicity | [133] | |
Chondroitin sulfate and PVP | Intradermal | Two-solution system in polydimethylsiloxane molds | Arrangements of 12 × 12 microneedles. Dimensions: 680 × 380 μm | Transport of IFN-α in microneedles. In vivo studies (SD rats), the needles have good stability for two months and do not cause skin damage. | A: no injections required D: limited stability over time | [134] | |
PLGA and PEG-PLGA nanoparticles | In vitro | Double emulsion/solvent evaporation | Size = 104–129 nm | Evaluation of sustained release of IFN-α under in vitro conditions: phosphate-buffered saline and blood plasma. | A: sustained and stable release D: in vivo pharmacokinetics not evaluated. | [149] | |
Chitosan nanoparticles | Evaluation of the oral route | Ionotropic gelation | Size = 36 nm PZ = +30 mV | Nanoparticles for oral administration, with in vitro antiviral activity (MDBK) comparable to commercial IFN-α. IFN levels in plasma 1h after in vivo inoculation (in CF-1 mice). | A: high encapsulation efficiency D: non-specific release in the stomach | [150] | |
PEGylated Liposomes | Franz Cell Diffusion System | Film hydration | Size = 181 nm PZ = −13 mV | Formulation for treatment of human papillomavirus. No in vitro release. Ex vivo studies in goat vaginal tissue with high penetration of the molecule into the tissue. | A: crosses mucosa D: in vitro and ex vivo release was not correlated | [105] | |
POEGMA-PHPMA copolymer micelles | Intravenous | Self-assembly of copolymer blocks | Size = 64.9 nm | Formation of micelles by self-assembled copolymer blocks that encapsulated IFN-α, with increased half-life up to 83.8 h, and antitumor activity in mice with ovarian tumors | A: effective tumor suppression D: decrease in biological activity | [57] | |
Chitosan nanoparticles | Oral | Ionotropic gelation | Size = 36 nm PDI = 0.47 Potential Z = +30 mV | Evaluation of oral administration of nanoparticles. In vitro (Caco-2:HT29-MTX (9:1)) and in vivo (BALB/c mice) studies confirmed improved pharmacokinetics and bioavailability. | A: crosses intestinal epithelium D: no analysis in disease models | [151] | |
Core-shell nanoparticles; core: HSA-IFN-α, shell: PSS-CS-PSS | Subcutaneous | Core: aqueous precipitation; shell: layer-by-layer assembly | Size = 100 nm PZ = −50 mV | Sustained-release after ten days in Pannon rabbits, with biological activity similar to lyophilized HSA-IFN-α. | A: bioactivity maintained D: PSS is not biocompatible | [152] | |
Elastin-like copolypeptide micelles | Intravenous | Self-assembly of two copolypeptide building blocks | Size = 48 nm | Formation of micelles by blocks of two self-assembled polypeptides that encapsulated IFN-α, with an increase in its half-life up to 54.7 h, and antitumor activity in mice with ovarian tumors. | A: efficient accumulation in tumors D: encapsulation efficiency is not reported. | [58] | |
IFN-β | Poly(methacrylic acid-ethylene glycol) microparticles | Direct intestinal | UV polymerization using TEGDMA as crosslinker | Size < 53 µm | Encapsulation for intestinal delivery of IFN-ß. In vitro and in vivo results in Sprague–Dawley rats showed sustained release and improved pharmacokinetics. | A: pH-sensitive behavior D: incomplete release | [135] |
TMC-PEGDMA-MAA microparticles | Oral | Suspension polymerization by free radicals | Size = 1–3.5 µm at intestinal pH (6.8) | pH-sensitive oral transport system for the treatment of multiple sclerosis. Most of the IFN-ß was released in vitro at intestinal pH. Release profile in New Zealand White rabbits exceeded 24 h. | A: pH-sensitive D: in vitro and in vivo release was not correlated | [136] | |
PLGA and PEG-PLGA nanoparticles | Subcutaneous | Double emulsion/solvent evaporation | Size = 145 nm and 163 nm PZ = 17.7 and 18.8 mV | Treatment of Multiple Sclerosis. No toxicity in vitro, in vivo studies in Wistar rats showed mild toxic effects such as pale kidney and pyelectasis. | A: high encapsulation efficiency D: mild toxicity | [153] | |
Chitosan nanoparticles/cyclodextrin | Intranasal | Gelation | Size = 206 nm PZ = 20 mV PDI = 0.13 | Nasal administration of the formulation for treating multiple sclerosis, with greater effectiveness, than free IFN-β in C57BL/6 mice with sclerosis. | A: reduction in encephalomyelitis D: no CD4+ lymphocyte downregulation | [154] | |
IFN-γ | PLGA microspheres | In vitro | Double emulsion/solvent evaporation | Size = 30–50 µm | Stabilization of IFN-γ in microparticles, maintaining the native conformation and biological activity of the protein. | A: bioactivity maintained D: encapsulation destabilizes the protein | [137] |
PLA microspheres | Oral | Double emulsion/solvent evaporation | Size = 1.27 µm | Sustained release in vitro for 400 h and increased absorption when administered orally in Wistar rats. | A: increase in porosity D: delayed release | [138] | |
Liposomes | Inhalation | Freezing, thawing | Size = 170–180 nm | It demonstrated that encapsulation of IFN-γ and liposomal muramyl tripeptide with chitosan activated alveolar macrophages and increased survival in the treated group. In vivo study in a murine model. | A: increase in the activation of alveolar macrophages. D: loss of biological activity | [97] | |
BSA nanoparticles | Intraperitoneal | Coacervation and chemical crosslinking | Size = ~340 nm PZ = −19.6 mV | Evaluation of macrophage activation for Brucella abortus. It increased the bactericidal effect of IFN-γ-activated macrophages in vitro and in vivo (BALB/c mice). | A: increased biological activity D: extended-release only for 20 h | [155] | |
Liposomes with cyclic peptides | Intravenous | Film hydration | Size = 83.5 nm PDI = 0.067 | Selective liposome transport to hepatic stellate cells increased half-life and antifibrotic activity of IFN-γ with fewer adverse effects in Sprague–Dawley rats. | A: selective transport to hepatic cells D: low encapsulation efficiency | [104] | |
PLGA core–shell nanoparticles containing IFN-γ and doxorubicin. | Intravenous | Nanoprecipitation | Size = ~100 nm | Melanoma immunotherapy. Female C57BL/6 murine model, free IFN at 8 h, encapsulated cleared after 48 h inoculated in mice. There was no toxicity in vital organs. | A: temperature-sensitive behavior D: conditional encapsulation efficiency | [156] | |
PEGylated Liposomes | Intravenous | Thin-film hydration and extrusion | Size = 135 nm PDI = 0.05 | Preparation of IFN-γ-containing liposomes for colon cancer treatment. Sustained release in vitro for 144 h with an abrupt onset and increased cytokine-activated antitumor immune response in BALB/c mice with C-26 tumor cells. | A: significant induction of the antitumor response D: low encapsulation efficiency | [106] |
7. Discussion
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Negishi, H.; Taniguchi, T.; Yanai, H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb. Perspect. Biol. 2018, 10, a028423. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhao, P.; Ma, B.; Guo, G.; Sun, Y.; Xing, M. Cloning, expression and antiviral bioactivity of Red-crowned Crane interferon-α. Gene 2014, 544, 49–55. [Google Scholar] [CrossRef]
- Wang, B.X.; Fish, E.N. Global virus outbreaks: Interferons as 1st responders. Semin. Immunol. 2019, 43, 101300. [Google Scholar] [CrossRef]
- Li, S.-F.; Zhao, F.-R.; Shao, J.-J.; Xie, Y.-L.; Chang, H.-Y.; Zhang, Y.-G. Interferon-omega: Current status in clinical applications. Int. Immunopharmacol. 2017, 52, 253–260. [Google Scholar] [CrossRef]
- Blank, T.; Prinz, M. Type I interferon pathway in CNS homeostasis and neurological disorders. Glia 2017, 65, 1397–1406. [Google Scholar] [CrossRef]
- Schreiber, G. The molecular basis for differential type I interferon signaling. J. Biol. Chem. 2017, 292, 7285–7294. [Google Scholar] [CrossRef] [Green Version]
- Schoggins, J.W. Interferon-Stimulated Genes: What Do They All Do? Annu. Rev. Virol. 2019, 6, 567–584. [Google Scholar] [CrossRef]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Fish, E.N. The yin and yang of viruses and interferons. Trends Immunol. 2012, 33, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Dickow, J.; Francois, S.; Kaiserling, R.-L.; Malyshkina, A.; Drexler, I.; Westendorf, A.M.; Lang, K.S.; Santiago, M.L.; Dittmer, U.; Sutter, K. Diverse Immunomodulatory Effects of Individual IFN-α Subtypes on Virus-Specific CD8+ T Cell Responses. Front. Immunol. 2019, 10, 2255. [Google Scholar] [CrossRef] [PubMed]
- Benedicenti, O.; Wang, T.; Morel, E.; Secombes, C.J.; Soleto, I.; Díaz-Rosales, P.; Tafalla, C. Type I Interferon Regulates the Survival and Functionality of B Cells in Rainbow Trout. Front. Immunol. 2020, 11, 1494. [Google Scholar] [CrossRef] [PubMed]
- Alspach, E.; Lussier, D.M.; Schreiber, R.D. Interferon gamma and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb. Perspect. Biol. 2019, 11, a028480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.J.; Ashkar, A.A. The Dual Nature of Type I and Type II Interferons. Front. Immunol. 2018, 9, 2061. [Google Scholar] [CrossRef] [Green Version]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Goldszmid, R.S.; Caspar, P.; Rivollier, A.; White, S.; Dzutsev, A.; Hieny, S.; Kelsall, B.; Trinchieri, G.; Sher, A. NK Cell-Derived Interferon-γ Orchestrates Cellular Dynamics and the Differentiation of Monocytes into Dendritic Cells at the Site of Infection. Immunity 2012, 36, 1047–1059. [Google Scholar] [CrossRef] [Green Version]
- Malone, R.M.; Cox, B.C.; Frogget, B.C.; Kaufman, M.I.; Tibbitts, A.; Tunnell, T.W.; Evans, S.C.; Herrmann, H.W.; Kim, Y.H.; Mack, J.M. Overview of the gamma reaction history diagnostic for the National Ignition Facility (NIF). In Proceedings of the International Optical Design Conference, Jackson Hole, WY, USA, 13–17 June 2010; p. ITuC3. [Google Scholar]
- Kaskow, B.J.; Baecher-Allan, C. Effector T Cells in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a029025. [Google Scholar] [CrossRef]
- Green, D.S.; Young, H.A.; Valencia, J.C. Current prospects of type II interferon γ signaling and autoimmunity. J. Biol. Chem. 2017, 292, 13925–13933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stifter, S.A.; Bhattacharyya, N.; Pillay, R.; Flórido, M.; Triccas, J.A.; Britton, W.J.; Feng, C.G. Functional Interplay between Type I and II InterferonsIs Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog. 2016, 12, e1005378. [Google Scholar] [CrossRef] [Green Version]
- Fenimore, J.; Young, H.A. Regulation of IFN-γ expression. In Regulation of Cytokine Gene Expression in Immunity and Diseases; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–19. [Google Scholar] [CrossRef]
- Borst, K.; Flindt, S.; Blank, P.; Larsen, P.-K.; Chhatbar, C.; Skerra, J.; Spanier, J.; Hirche, C.; König, M.; Alanentalo, T. Selective reconstitution of IFN-γ gene function in Ncr1+ NK cells is sufficient to control systemic vaccinia virus infection. PLOS Pathog. 2020, 16, e1008279. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Gallagher, G.; Baurin, V.V.; Lewis-Antes, A.; Shen, M.; Shah, N.K.; Langer, J.A.; Sheikh, F.; Dickensheets, H.; Donnelly, R.P. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003, 4, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, P.; Kindsvogel, W.; Xu, W.; Henderson, K.; Schlutsmeyer, S.; Whitmore, T.E.; Kuestner, R.; Garrigues, U.; Birks, C.; Roraback, J. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003, 4, 63–68. [Google Scholar] [CrossRef]
- Park, A.; Iwasaki, A. Type I and Type III Interferons—Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe 2020, 27, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Wang, L.; Song, L. The primitive interferon-like system and its antiviral function in molluscs. Dev. Comp. Immunol. 2021, 118, 103997. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, N.; Zdebik, A.; Bogusławska, J. Interferon Alpha 2a and 2b in Ophthalmology: A Review. J. Interf. Cytokine Res. 2019, 39, 259–272. [Google Scholar] [CrossRef]
- Lebbe, C.; Garbe, C.; Stratigos, A.J.; Harwood, C.; Peris, K.; del Marmol, V.; Malvehy, J.; Zalaudek, I.; Hoeller, C.; Dummer, R. Diagnosis and treatment of Kaposi’s sarcoma: European consensus-based interdisciplinary guideline (EDF/EADO/EORTC). Eur. J. Cancer 2019, 114, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Lampertico, P.A.K.; Berg, T.; Buti, M.; Janssen, H.L.A.; Papatheodoridis, G.; Zoulim, F.; Tacke, F. Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [Green Version]
- Maughan, A.; Ogbuagu, O. Pegylated interferon alpha 2a for the treatment of hepatitis C virus infection. Expert Opin. Drug Metab. Toxicol. 2018, 14, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.N.; Westfechtel, L.; Dressler, C.; Nast, A. Anogenital warts and other HPV-associated anogenital lesions in the HIV-positive patient: A systematic review and meta-analysis of the efficacy and safety of interventions assessed in controlled clinical trials. Sex. Transm. Infect. 2017, 93, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Figliozzi, R.W.; Hsia, S.V. Pilot Analyses of Interferon Subtype Expression Profiles in Patients with Herpes Zoster or Postherpetic Neuralgia. Viral Immunol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.A.; Ravandi, F. How I manage patients with hairy cell leukaemia. Br. J. Haematol. 2017, 177, 543–556. [Google Scholar] [CrossRef]
- Jakimovski, D.; Kolb, C.; Ramanathan, M.; Zivadinov, R.; Weinstock-Guttman, B. Interferon β for Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a032003. [Google Scholar] [CrossRef] [PubMed]
- Abdolvahab, M.H.; Mofrad, M.; Schellekens, H. Interferon Beta: From Molecular Level to Therapeutic Effects. Int. Rev. Cell Mol. Biol. 2016, 326, 343–372. [Google Scholar] [CrossRef]
- Castro, F.; Cardoso, A.P.; Goncalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Baldridge, M.T. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections. Front. Immunol. 2017, 8, 749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodriguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlowski, A.; Harris, J.M. Improvements in protein PEGylation: Pegylated interferons for treatment of hepatitis C. J. Control. Release 2001, 72, 217–224. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Tian, H.; Chen, X. Production and clinical development of nanoparticles for gene delivery. Mol. Ther. Methods Clin. Dev. 2016, 3, 16023. [Google Scholar] [CrossRef]
- Cocco, E.; Marrosu, M.G. Profile of PEGylated interferon beta in the treatment of relapsing-remitting multiple sclerosis. Ther. Clin. Risk Manag. 2015, 11, 759–766. [Google Scholar] [CrossRef] [Green Version]
- Beilharz, M.W.; Cummins, M.J.; Bennett, A.L.; Cummins, J.M. Oromucosal Administration of Interferon to Humans. Pharmaceuticals 2010, 3, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Conlon, K.C.; Miljković, M.D.; Waldmann, T.A. Cytokines in the Treatment of Cancer. J. Interf. Cytokine Res. 2019, 39, 6–21. [Google Scholar] [CrossRef]
- Fagundes, R.N.; Ferreira, L.; Pace, F.H.L. Health-related quality of life and fatigue in patients with chronic hepatitis C with therapy with direct-acting antivirals agents interferon-free. PLoS ONE 2020, 15, e0237005. [Google Scholar] [CrossRef]
- Platis, D.; Foster, G.R. Interferon Proteins: Structure, Production and Purification. In The Interferons; Wiley: Hoboken, NJ, USA, 2006; pp. 73–83. [Google Scholar]
- Castro, L.S.; Lobo, G.S.; Pereira, P.; Freire, M.G.; Neves, M.C.; Pedro, A.Q. Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation. Vaccines 2021, 9, 328. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garcia, L.; Martín, L.; Mangues, R.; Ferrer-Miralles, N.; Vázquez, E.; Villaverde, A. Recombinant pharmaceuticals from microbial cells: A 2015 update. Microb. Cell Fact. 2016, 15, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, M.R. The Role of Structure in the Biology of Interferon Signaling. Front. Immunol. 2020, 11, 606489. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Lee, M.W.; Wolf, A.J.; Limon, J.J.; Becker, C.A.; Ding, M.; Murali, R.; Lee, E.Y.; Liu, G.Y.; Wong, G.C.L.; et al. Direct Antimicrobial Activity of IFN-β. J. Immunol. 2017, 198, 4036–4045. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-J.; Xu, S.; Wang, H.-M.; Ling, Y.; Dong, J.; Xia, R.-D.; Sun, X.-H. Nanoparticles: Oral Delivery for Protein and Peptide Drugs. AAPS PharmSciTech 2019, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lembo, D.; Cavalli, R. Nanoparticulate Delivery Systems for Antiviral Drugs. Antivir. Chem. Chemother. 2010, 21, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L. Recent progress in drug delivery. Acta Pharm. Sin. B 2019, 9, 1145–1162. [Google Scholar] [CrossRef]
- Pandey, A. Solid lipid nanoparticles: A multidimensional drug delivery system. In Nanoscience in Medicine Vol. 1; Springer: Berlin/Heidelberg, Germany, 2020; pp. 249–295. [Google Scholar]
- Ye, C.; Chi, H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Mater. Sci. Eng. C 2018, 83, 233–246. [Google Scholar] [CrossRef]
- Sánchez, A.; Tobío, M.; González, L.; Fabra, A.; Alonso, M.J. Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur. J. Pharm. Sci. 2003, 18, 221–229. [Google Scholar] [CrossRef]
- Dai, J.; Long, W.; Liang, Z.; Wen, L.; Yang, F.; Chen, G. A novel vehicle for local protein delivery to the inner ear: Injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev. Ind. Pharm. 2018, 44, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Majumder, N.; Das, N.G.; Das, S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 2020, 11, 613–635. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, M.; Sun, J.; Hu, J.; Wang, Z.; Guo, J.; Gao, W. Polymerization Induced Self-Assembly of a Site-Specific Interferon α-Block Copolymer Conjugate into Micelles with Remarkably Enhanced Pharmacology. J. Am. Chem. Soc. 2018, 140, 10435–10438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, J.; Liu, X.; Sun, J.; Gao, W. Temperature-triggered micellization of interferon alpha-diblock copolypeptide conjugate with enhanced stability and pharmacology. J. Control. Release 2020, 328, 444–453. [Google Scholar] [CrossRef]
- Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release 2016, 224, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Kang, P.M. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials 2020, 10, 656. [Google Scholar] [CrossRef] [Green Version]
- Lembo, D.; Donalisio, M.; Civra, A.; Argenziano, M.; Cavalli, R. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections. Expert Opin. Drug Deliv. 2018, 15, 93–114. [Google Scholar] [CrossRef]
- Thitinan, S.; McConville, J.T. Interferon alpha delivery systems for the treatment of hepatitis C. Int. J. Pharm. 2009, 369, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. J. Pharm. Sci. 2016, 105, 460–475. [Google Scholar] [CrossRef] [Green Version]
- Delgado, C.; Francis, G.E.; Fisher, D. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carr. Syst. 1992, 9, 249–304. [Google Scholar]
- Nucci, M.L.; Shorr, R.; Abuchowski, A. The therapeutic value of poly(ethylene glycol)-modified proteins. Adv. Drug Deliv. Rev. 1991, 6, 133–151. [Google Scholar] [CrossRef]
- Foster, G.R. Pegylated Interferons for the Treatment of Chronic Hepatitis C. Drugs 2010, 70, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Veronese, F.M.; Mero, A. The Impact of PEGylation on Biological Therapies. BioDrugs 2008, 22, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Ramon, J.; Saez, V.; Báez, R.; Aldana, R.; Hardy, E. PEGylated Interferon-α2b: A Branched 40K Polyethylene Glycol Derivative. Pharm. Res. 2005, 22, 1375–1387. [Google Scholar] [CrossRef]
- Basu, A.; Yang, K.; Wang, M.; Liu, S.; Chintala, R.; Palm, T.; Zhao, H.; Peng, P.; Wu, D.; Zhang, Z.; et al. Structure−Function Engineering of Interferon-β-1b for Improving Stability, Solubility, Potency, Immunogenicity, and Pharmacokinetic Properties by Site-Selective Mono-PEGylation. Bioconj. Chem. 2006, 17, 618–630. [Google Scholar] [CrossRef]
- Fee, C.J. Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules. Biotechnol. Bioeng. 2007, 98, 725–731. [Google Scholar] [CrossRef]
- Asselah, T.; Lada, O.; Moucari, R.; Martinot, M.; Boyer, N.; Marcellin, P. Interferon Therapy for Chronic Hepatitis B. Clin. Liver Dis. 2007, 11, 839–849. [Google Scholar] [CrossRef]
- Trinh, V.A.; Zobniw, C.; Hwu, W.-J. The efficacy and safety of adjuvant interferon-alfa therapy in the evolving treatment landscape for resected high-risk melanoma. Expert Opin. Drug Saf. 2017, 16, 933–940. [Google Scholar] [CrossRef]
- Jansen, P.L.; De Bruijne, J. Controlled-release interferon alpha 2b, a new member of the interferon family for the treatment of chronic hepatitis C. Expert Opin. Investig. Drugs 2012, 21, 111–118. [Google Scholar] [CrossRef]
- Woo, A.S.J.; Kwok, R.; Ahmed, T. Alpha-interferon treatment in hepatitis B. Ann. Transl. Med. 2017, 5, 159. [Google Scholar] [CrossRef] [Green Version]
- Fam, C.M.; Eisenberg, S.P.; Carlson, S.J.; Chlipala, E.A.; Cox, G.N.; Rosendahl, M.S. PEGylation Improves the Pharmacokinetic Properties and Ability of Interferon Gamma to Inhibit Growth of a Human Tumor Xenograft in Athymic Mice. J. Interferon Cytokine Res. 2014, 34, 759–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulestin, A.; Kamar, N.; Sandres-Saune, K.; Alric, L.; Vinel, J.-P.; Rostaing, L.; Izopet, J. Pegylation of IFN-α and Antiviral Activity. J. Interf. Cytokine Res. 2006, 26, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Meller, S.; Gerber, P.; Kislat, A.; Hevezi, P.; Göbel, T.; Wiesner, U.; Kellermann, S.; Bünemann, E.; Zlotnik, A.; Häussinger, D. Allergic sensitization to pegylated interferon-α results in drug eruptions. Allergy 2015, 70, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Hu, J.; Gao, W. Tuning the molecular size of site-specific interferon-polymer conjugate for optimized antitumor efficacy. Sci. China Mater. 2017, 60, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Bewersdorf, J.P.; Giri, S.; Wang, R.; Podoltsev, N.; Williams, R.T.; Rampal, R.K.; Tallman, M.S.; Zeidan, A.M.; Stahl, M. Interferon Therapy in Myelofibrosis: Systematic Review and Meta-analysis. Clin. Lymphoma Myeloma Leuk. 2020, 20, e712–e723. [Google Scholar] [CrossRef]
- Schlapschy, M.; Binder, U.; Börger, C.; Theobald, I.; Wachinger, K.; Kisling, S.; Haller, D.; Skerra, A. PASylation: A biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. 2013, 26, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Binder, U.; Skerra, A. PASylation®: A versatile technology to extend drug delivery. Curr. Opin. Colloid Interface Sci. 2017, 31, 10–17. [Google Scholar] [CrossRef]
- Shamloo, A.; Rostami, P.; Mahmoudi, A. PASylation Enhances the Stability, Potency, and Plasma Half-Life of Interferon α-2a: A Molecular Dynamics Simulation. Biotechnol. J. 2020, 15, 1900385. [Google Scholar] [CrossRef]
- Zvonova, E.A.; Ershov, A.V.; Ershova, O.A.; Sudomoina, M.A.; Degterev, M.B.; Poroshin, G.N.; Eremeev, A.V.; Karpov, A.P.; Vishnevsky, A.Y.; Goldenkova-Pavlova, I.V.; et al. PASylation technology improves recombinant interferon-β1b solubility, stability, and biological activity. Appl. Microbiol. Biotechnol. 2017, 101, 1975–1987. [Google Scholar] [CrossRef]
- Xia, Y.; Schlapschy, M.; Morath, V.; Roeder, N.; Vogt, E.I.; Stadler, D.; Cheng, X.; Dittmer, U.; Sutter, K.; Heikenwalder, M.; et al. PASylated interferon α efficiently suppresses hepatitis B virus and induces anti-HBs seroconversion in HBV-transgenic mice. Antivir. Res. 2019, 161, 134–143. [Google Scholar] [CrossRef]
- Abbina, S.; Parambath, A. PEGylation and its alternatives: A summary. In Engineering of Biomaterials for Drug Delivery Systems; Parambath, A., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 363–376. [Google Scholar]
- Vahed, S.Z.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C 2017, 71, 1327–1341. [Google Scholar] [CrossRef] [PubMed]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Zahednezhad, F.; Saadat, M.; Valizadeh, H.; Zakeri-Milani, P.; Baradaran, B. Liposome and immune system interplay: Challenges and potentials. J. Control. Release 2019, 305, 194–209. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Gurari-Rotman, D.; Lelkes, P.I. Encapsulation of human fibroblast interferon activity in liposomes. Biochem. Biophys. Res. Commun. 1982, 107, 136–143. [Google Scholar] [CrossRef]
- Eppstein, D.A.; Marsh, Y.V.; van der Pas, M.; Felgner, P.L.; Schreiber, A.B. Biological activity of liposome-encapsulated murine interferon gamma is mediated by a cell membrane receptor. Proc. Natl. Acad. Sci. USA 1985, 82, 3688–3692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sone, S.; Tandon, P.; Utsugi, T.; Ogawara, M.; Shimizu, E.; Nii, A.; Ogura, T. Synergism of recombinant human interferon gamma with liposome-encapsulated muramyl tripeptide in activation of the tumoricidal properties of human monocytes. Int. J. Cancer 1986, 38, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Hume, D.A.; Nayar, R. Encapsulation is not involved in the activities of recombinant gamma interferon associated with multilamellar phospholipid liposomes on murine bone marrow-derived macrophages. Lymphokine Res. 1989, 8, 415–425. [Google Scholar]
- Coradini, D.; Pellizzaro, C.; Biffi, A.; Lombardi, L.; Pirronello, E.; Riva, L.; Di Fronzo, G. Effect of liposome-encapsulated alpha- or beta-interferon on breast cancer cell lines. Anticancer Res. 1998, 18, 177–182. [Google Scholar]
- Killion, J.J.; Fan, D.; Bucana, C.D.; Frangos, D.N.; Price, J.E.; Fidler, I.J. Augmentation of Antiproliferative Activity of Interferon Alfa Against Human Bladder Tumor Cell Lines by Encapsulation of Interferon Alfa Within Liposomes. J. Natl. Cancer Inst. 1989, 81, 1387–1392. [Google Scholar] [CrossRef]
- Mellors, J.W.; Debs, R.J.; Ryan, J.L. Incorporation of recombinant gamma interferon into liposomes enhances its ability to induce peritoneal macrophage antitoxoplasma activity. Infect. Immun. 1989, 57, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Goldbach, P.; Dumont, S.; Kessler, R.; Poindron, P.; Stamm, A. In situ activation of mouse alveolar macrophages by aerosolized liposomal IFN-gamma and muramyl tripeptide. Am. J. Physiol. Cell. Mol. Physiol. 1996, 270, L429–L434. [Google Scholar] [CrossRef] [PubMed]
- Rutenfranz, I.; Bauer, A.; Kirchner, H. Interferon gamma encapsulated into liposomes enhances the activity of monocytes and natural killer cells and has antiproliferative effects on tumor cells in vitro. Blut 1990, 61, 30–37. [Google Scholar] [CrossRef]
- Rutenfranz, I.; Bauer, A.; Kirchner, H. Pharmacokinetic Study of Liposome-Encapsulated Human Interferon-γ after Intravenous and Intramuscular Injection in Mice. J. Interf. Res. 1990, 10, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Saravolac, E.; Kournikakis, B.; Gorton, L.; Wong, J. Effect of liposome-encapsulation on immunomodulating and antiviral activities of interferon-γ. Antivir. Res. 1996, 29, 199–207. [Google Scholar] [CrossRef]
- Vyas, S.; Rawat, M.; Rawat, A.; Mahor, S.; Gupta, P. Pegylated Protein Encapsulated Multivesicular Liposomes: A Novel Approach for Sustained Release of Interferon α. Drug Dev. Ind. Pharm. 2006, 32, 699–707. [Google Scholar] [CrossRef]
- Yang, L.; Yang, W.; Bi, D.; Zeng, Q. A novel method to prepare highly encapsulated interferon-alpha-2b containing liposomes for intramuscular sustained release. Eur. J. Pharm. Biopharm. 2006, 64, 9–15. [Google Scholar] [CrossRef]
- Li, H.; Yang, L.; Cheng, G.; Wei, H.-Y.; Zeng, Q. Encapsulation, pharmacokinetics and tissue distribution of interferon α-2b liposomes after intramuscular injection to rats. Arch. Pharmacal Res. 2011, 34, 941–948. [Google Scholar] [CrossRef]
- Li, F.; Li, Q.H.; Wang, J.Y.; Zhan, C.Y.; Xie, C.; Lu, W.Y. Effects of interferon-gamma liposomes targeted to platelet-derived growth factor receptor–beta on hepatic fibrosis in rats. J. Control. Release 2012, 159, 261–270. [Google Scholar] [CrossRef]
- Jøraholmen, M.W.; Basnet, P.; Acharya, G.; Škalko-Basnet, N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur. J. Pharm. Biopharm. 2017, 113, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Shamshiri, M.K.; Jaafari, M.R.; Badiee, A. Preparation of liposomes containing IFN-gamma and their potentials in cancer immunotherapy: In vitro and in vivo studies in a colon cancer mouse model. Life Sci. 2021, 264, 118605. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.C.I.M.; Butt, A.M.; Amjad, M.W.; Kesharwani, P. Chapter 5—Polymeric Micelles for Drug Targeting and Delivery. In Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes; Mishra, V., Kesharwani, P., Mohd Amin, M.C.I., Iyer, A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 167–202. [Google Scholar]
- Bastakoti, B.P.; Liu, Z. Chapter 10—Multifunctional polymeric micelles as therapeutic nanostructures: Targeting, imaging, and triggered release. In Nanostructures for Cancer Therapy; Ficai, A., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 261–283. [Google Scholar]
- Liu, J.; Ai, X.; Zhang, H.; Zhuo, W.; Mi, P. Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery. J. Biomed. Nanotechnol. 2019, 15, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Movassaghian, S.; Merkel, O.M.; Torchilin, V.P. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.K.; Meireles, M.A.A. Encapsulation of Food Compounds Using Supercritical Technologies: Applications of Supercritical Carbon Dioxide as an Antisolvent. Food Public Health 2014, 4, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Joye, I.J.; McClements, D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 2014, 19, 417–427. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Design of experiments for microencapsulation applications: A review. Mater. Sci. Eng. C 2017, 77, 1327–1340. [Google Scholar] [CrossRef]
- Andrade, C. Sustained-Release, Extended-Release, and Other Time-Release Formulations in Neuropsychiatry. J. Clin. Psychiatry 2015, 76, e995–e999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 2010, 27, 187–197. [Google Scholar] [CrossRef]
- Yasukawa, T.; Ogura, Y.; Tabata, Y.; Kimura, H.; Wiedemann, P.; Honda, Y. Drug delivery systems for vitreoretinal diseases. Prog. Retin. Eye Res. 2004, 23, 253–281. [Google Scholar] [CrossRef]
- Saez, V.; Ramon, J.; Peniche, C.; Hardy, E. Microencapsulation of Alpha Interferons in Biodegradable Microspheres. J. Interf. Cytokine Res. 2012, 32, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Deng, X.; He, S.; Li, X.; Jia, W.; Wei, D.; Zhang, Z.; Ma, J. Study on biodegradable microspheres containing recombinant interferon-α-2a. J. Pharm. Pharmacol. 2002, 54, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Diwan, M.; Park, T.G. Stabilization of recombinant interferon-α by pegylation for encapsulation in PLGA microspheres. Int. J. Pharm. 2003, 252, 111–122. [Google Scholar] [CrossRef]
- De Leede, L.G.; Humphries, J.E.; Bechet, A.C.; Van Hoogdalem, E.J.; Verrijk, R.; Spencer, D.G. Novel Controlled-Release Lemna-Derived IFN-α2b (Locteron): Pharmacokinetics, Pharmacodynamics, and Tolerability in a Phase I Clinical Trial. J. Interf. Cytokine Res. 2008, 28, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, J.S.; Parveen, S.; Saif, R.U. New Horizons and Perspectives in the Management of Chronic Hepatitis C. JMS Ski. 2010, 13, 41–47. [Google Scholar] [CrossRef]
- Di Bisceglie, A.; Ghalib, R.; Hamzeh, F.; Rustgi, V. Early virologic response after peginterferon alpha-2a plus ribavirin or peginterferon alpha-2b plus ribavirin treatment in patients with chronic hepatitis C. J. Viral Hepat. 2007, 14, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.J.; Teh, A.Y.; Twyman, R.M.; Ma, J.K. Target Product Selection—Where Can Molecular Pharming Make the Difference? Curr. Pharm. Des. 2013, 19, 5478–5485. [Google Scholar] [CrossRef] [Green Version]
- Pawlotsky, J.M. New Hepatitis C Virus (HCV) Drugs and the Hope for a Cure: Concepts in Anti-HCV Drug Development. Semin. Liver Dis. 2014, 34, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Vermehren, J.; Sarrazin, C. New hepatitis C therapies in clinical development. Eur. J. Med. Res. 2011, 16, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saez, V.; Ramón, J.; Aldana, R.; Pérez, D.; Hardy, E. Microencapsulation of recombinant interferon α-2b into poly (D, L-lactide-co-glycolide) microspheres. Biotecnol. Apl. 2008, 25, 31–41. [Google Scholar]
- Zhang, Y.-M.; Yang, F.; Yang, Y.-Q.; Song, F.-L.; Xu, A.-L. Recombinant interferon-alpha2b poly(lactic-co-glycolic acid) microspheres: Pharmacokinetics-pharmacodynamics study in rhesus monkeys following intramuscular administration. Acta Pharmacol. Sin. 2008, 29, 1370–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.H.; Yu, H.Y.; Gao, J.Q.; Sun, X.Y.; Liang, W.Q. Hydrophilic biodegradable microspheres of interferon-alpha and its pharmacokinetics in mice. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2008, 85, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Sun, J.; Sun, L.; Dai, Y.; Liu, L.; Li, X.; Wang, J.; Weng, J.; Jia, W.; Zhang, Z. Preparation and characterization of interferon-loaded magnetic biodegradable microspheres. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2008, 87B, 189–196. [Google Scholar] [CrossRef]
- Yang, F.; Song, F.-L.; Pan, Y.-F.; Wang, Z.-Y.; Yang, Y.-Q.; Zhao, Y.-M.; Liang, S.-Z.; Zhang, Y.-M. Preparation and characteristics of interferon-alpha poly(lactic-co-glycolic acid) microspheres. J. Microencapsul. 2010, 27, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, L.; Liu, Y.; Zhang, H.; Li, X.; Luo, F.; Mei, X. Development of interferon alpha-2b microspheres with constant release. Int. J. Pharm. 2011, 410, 48–53. [Google Scholar] [CrossRef]
- Gulia, M.; Rai, S.; Jain, U.K.; Katare, O.P.; Katyal, A.; Madan, J. Sustained-release protamine sulphate-impregnated microspheres may reduce the frequent administration of recombinant interferon alpha-2b in ovarian cancer: In-vitro characterization. AntiCancer Drugs 2014, 25, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qiu, Y.; Zhang, S.; Gao, Y. Dissolving microneedle-based intradermal delivery of interferon-α-2b. Drug Dev. Ind. Pharm. 2016, 42, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Kamei, N.; Morishita, M.; Chiba, H.; Kavimandan, N.J.; Peppas, N.A.; Takayama, K. Complexation hydrogels for intestinal delivery of interferon β and calcitonin. J. Control. Release 2009, 134, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Kondiah, P.P.; Tomar, L.K.; Tyagi, C.; Choonara, Y.E.; Modi, G.; du Toit, L.C.; Kumar, P.; Pillay, V. A novel pH-sensitive interferon-β (INF-β) oral delivery system for application in multiple sclerosis. Int. J. Pharm. 2013, 456, 459–472. [Google Scholar] [CrossRef]
- Cleland, J.L.; Jones, A.J. Stable Formulations of Recombinant Human Growth Hormone and Interferon-gamma for Microencapsulation in Biodegradable Mircospheres. Pharm. Res. 1996, 13, 1464–1475. [Google Scholar] [CrossRef]
- Conway, B.R.; Alpar, H. Single and Coencapsulation of lnterferon-γ in Biodegradable PLA Microspheres for Optimization of Multicomponent Vaccine Delivery Vehicles. Drug Deliv. 1997, 4, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Eyles, J.; Alpar, H.; Conway, B.R.; Keswick, M. Oral Delivery and Fate of Poly(lactic acid) Microsphere-encapsulated Interferon in Rats. J. Pharm. Pharmacol. 1997, 49, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cleland, J.L. Factors Affecting the in Vitro Release of Recombinant Human Interferon-γ (rhIFN-γ) from PLGA Microspheres. J. Pharm. Sci. 1997, 86, 908–914. [Google Scholar] [CrossRef]
- Liang, J.; Li, F.; Fang, Y.; Yang, W.; An, X.; Zhao, L.; Xin, Z.; Cao, L.; Hu, Q. Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloids Surf. B Biointerfaces 2011, 82, 297–301. [Google Scholar] [CrossRef]
- Saez, V.; Ramon, J.A.; Caballero, L.; Aldana, R.; Cruz, E.; Peniche, C.; Paez, R. Extraction of PLGA-Microencapsulated Proteins Using a Two-Immiscible Liquid Phases System Containing Surfactants. Pharm. Res. 2013, 30, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.; Furusyo, N.; Kajiwara, E.; Takahashi, K.; Nomura, H.; Tanabe, Y.; Satoh, T.; Maruyama, T.; Nakamuta, M.; Kotoh, K.; et al. Evaluation of the adverse effect of premature discontinuation of pegylated interferon α-2b and ribavirin treatment for chronic hepatitis C virus infection: Results from Kyushu University Liver Disease Study. J. Gastroenterol. Hepatol. 2012, 27, 1233–1240. [Google Scholar] [CrossRef]
- Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol. 2019, 47, 524–539. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, A.G.; Vossoughi, M.; Almzadeh, I.; Zeinali, M. Bioconjugation of Interferon-alpha Molecules to Lysine-Capped Gold Nanoparticles for Further Drug Delivery Applications. J. Dispers. Sci. Technol. 2008, 29, 1062–1065. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Yang, J.-A.; Jung, H.S.; Beack, S.; Choi, J.E.; Hur, W.; Koo, H.; Kim, K.; Yoon, S.K.; Hahn, S.K. Hyaluronic Acid–Gold Nanoparticle/Interferon α Complex for Targeted Treatment of Hepatitis C Virus Infection. ACS Nano 2012, 6, 9522–9531. [Google Scholar] [CrossRef]
- Zaman, R.; Islam, R.A.; Ibnat, N.; Othman, I.; Zaini, A.; Lee, C.Y.; Chowdhury, E.H. Current strategies in extending half-lives of therapeutic proteins. J. Control. Release 2019, 301, 176–189. [Google Scholar] [CrossRef]
- Giri, N.; Tomar, P.; Karwasara, V.S.; Pandey, R.S.; Dixit, V. Targeted novel surface-modified nanoparticles for interferon delivery for the treatment of hepatitis B. Acta Biochim. Biophys. Sin. 2011, 43, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feczkó, T.; Fodor-Kardos, A.; Sivakumaran, M.; Haque Shubhra, Q.T. In vitro IFN-α release from IFN-α- and pegylated IFN-α-loaded poly(lactic-co-glycolic acid) and pegylated poly(lactic-co-glycolic acid) nanoparticles. Nanomedicine 2016, 11, 2029–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cánepa, C.; Imperiale, J.C.; Berini, C.A.; Lewicki, M.; Sosnik, A.; Biglione, M.M. Development of a Drug Delivery System Based on Chitosan Nanoparticles for Oral Administration of Interferon-α. Biomacromolecules 2017, 18, 3302–3309. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, J.C.; Schlachet, I.; Lewicki, M.; Sosnik, A.; Biglione, M.M. Oral Pharmacokinetics of a Chitosan-Based Nano- Drug Delivery System of Interferon Alpha. Polymers 2019, 11, 1862. [Google Scholar] [CrossRef] [Green Version]
- Kristó, K.; Szekeres, M.; Makai, Z.; Márki, Á.; Kelemen, A.; Bali, L.; Pallai, Z.; Dékány, I.; Csóka, I. Preparation and investigation of core-shell nanoparticles containing human interferon-α. Int. J. Pharm. 2020, 573, 118825. [Google Scholar] [CrossRef] [PubMed]
- Fodor-Kardos, A.; Kiss, Á.F.; Monostory, K.; Feczkó, T. Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Adv. 2020, 10, 15893–15900. [Google Scholar] [CrossRef] [Green Version]
- González, L.F.; Acuña, E.; Arellano, G.; Morales, P.; Sotomayor, P.; Oyarzun-Ampuero, F.; Naves, R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J. Control. Release 2021, 331, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Segura, S.; Gamazo, C.; Irache, J.M.; Espuelas, S. Gamma Interferon Loaded onto Albumin Nanoparticles: In Vitro and In Vivo Activities against Brucella abortus. Antimicrob. Agents Chemother. 2007, 51, 1310–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Hu, Q.; Xu, C.; Qiao, Q.; Qin, X.; Song, Q.; Peng, Y.; Zhao, Y.; Zhang, Z. Co-delivery of Doxorubicin and Interferon-γ by Thermosensitive Nanoparticles for Cancer Immunochemotherapy. Mol. Pharm. 2018, 15, 4161–4172. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Saifullah, M.; Shishir, M.R.I.; Ferdowsi, R.; Tanver Rahman, M.R.; Van Vuong, Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol. 2019, 86, 230–251. [Google Scholar] [CrossRef]
- Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019, 23, 20. [Google Scholar] [CrossRef]
- Elsharkasy, O.M.; Nordin, J.Z.; Hagey, D.W.; De Jong, O.G.; Schiffelers, R.M.; Andaloussi, S.E.; Vader, P. Extracellular vesicles as drug delivery systems: Why and how? Adv. Drug Deliv. Rev. 2020, 159, 332–343. [Google Scholar] [CrossRef]
- Walsh, G. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 2018, 36, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019, 11, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.C.; Sousa Lobo, J.M. Cytokines and growth factors. Adv. Biochem. Eng. Biotechnol. 2019, 171, 87–113. [Google Scholar] [CrossRef]
- ClinicalTrials.gov-Database. Search of: Interferon|Active, not Recruiting Studies—List Results. Available online: https://clinicaltrials.gov/ct2/results?term=interferon&Search=Apply&recrs=d&age_v=&gndr=&type=&rslt= (accessed on 23 June 2021).
- Zheng, B.; He, M.L.; Wong, K.L.; Ching, T.L.; Poon, L.L.M.; Peng, Y.; Guan, Y.; Lin, M.C.M.; Kung, H.F. Potent Inhibition of SARS-Associated Coronavirus (SCoV) Infection and Replication by Type I Interferons (IFN-α/β) but Not by Type II Interferon (IFN-γ). J. Interf. Cytokine Res. 2004, 24, 388–390. [Google Scholar] [CrossRef] [Green Version]
- De Wilde, A.H.; Raj, V.S.; Oudshoorn, D.; Bestebroer, T.M.; Van Nieuwkoop, S.; Limpens, R.W.A.L.; Posthuma, C.C.; Van Der Meer, Y.; Barcena, M.; Haagmans, B.L.; et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J. Gen. Virol. 2013, 94, 1749–1760. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Moezzi, S.M.I.; Mosaddeghi, P.; Nadimi Parashkouhi, S.; Fazel Hoseini, S.M.; Badakhshan, F.; Negahdaripour, M. Interferon-inducer antivirals: Potential candidates to combat COVID-19. Int. Immunopharmacol. 2021, 91, 107245. [Google Scholar] [CrossRef]
- Lavigne, G.M.; Russell, H.; Sherry, B.; Ke, R. Autocrine and paracrine interferon signalling as ‘ring vaccination’ and ‘contact tracing’ strategies to suppress virus infection in a host. Proc. R. Soc. B 2021, 288, 20203002. [Google Scholar] [CrossRef]
- Jones, C.T.; Catanese, M.T.; Law, L.M.J.; Khetani, S.R.; Syder, A.J.; Ploss, A.; Oh, T.S.; Schoggins, J.W.; MacDonald, M.R.; Bhatia, S.N.; et al. Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat. Biotechnol. 2010, 28, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathi, M.; Donsi, F.; McClements, D.J. Protein-Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17, 920–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekisz, J.; Baron, S.; Balinsky, C.; Morrow, A.; Zoon, K.C. Antiproliferative Properties of Type I and Type II Interferon. Pharmaceuticals 2010, 3, 994–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocci, V. Evaluation of Routes of Administration of Interferon in Cancer: A Review and a Proposal. Cancer Drug Deliv. 1984, 1, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wang, Q.; Wang, H. New era of drug innovation in China. Acta Pharm. Sin. B 2019, 9, 1084. [Google Scholar] [CrossRef]
- De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010, 624, 25–37. [Google Scholar] [CrossRef]
- De Clercq, E.; Li, G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef] [Green Version]
- Scherzad, A.; Hagen, R.; Hackenberg, S. Current Understanding of Nasal Epithelial Cell Mis-Differentiation. J. Inflamm. Res. 2019, 12, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, X.; Lei, T.; Qin, L.; Zhou, Y.; Hu, C.; Liu, Q.; Gao, H. The construction of in vitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. Acta Pharm. Sin. B 2020, 10, 1094–1105. [Google Scholar] [CrossRef]
- Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and Mucociliary Clearance. Cold Spring Harb. Perspect. Biol. 2017, 9, a028241. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T. Axoneme Structure from Motile Cilia. Cold Spring Harb. Perspect. Biol. 2017, 9, a028076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, S.C.; Karp, D.A.; Kahwaji, C.I. Physiology, Nasal; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Schmidt, M.E.; Varga, S.M. The CD8 T Cell Response to Respiratory Virus Infections. Front. Immunol. 2018, 9, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, A. Exploiting Mucosal Immunity for Antiviral Vaccines. Annu. Rev. Immunol. 2016, 34, 575–608. [Google Scholar] [CrossRef]
- Iwasaki, A.; Foxman, E.F.; Molony, R.D. Early local immune defences in the respiratory tract. Nat. Rev. Immunol. 2017, 17, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, L.; McCloskey, A.P.; Higgins, G.; Ramsey, J.M.; Cryan, S.A.; MacLoughlin, R. Effective nebulization of interferon-γ using a novel vibrating mesh. Respir. Res. 2019, 20, 66. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Gadeval, A.; Asati, S.; Jain, P.; Jain, N.; Roy, R.K.; Tekade, M.; Soni, V.; Tekade, R.K. Formulation strategies for nose-to-brain delivery of therapeutic molecules. Drug Deliv. Syst. 2019, 291–332. [Google Scholar] [CrossRef]
- Tanwar, H.; Sachdeva, R. Transdermal drug delivery system: A review. Int. J. Pharm. Sci. Res. 2016, 7, 2274–2290. [Google Scholar] [CrossRef]
- Shen, K.-L.; Yang, Y.-H. Diagnosis and treatment of 2019 novel coronavirus infection in children: A pressing issue. World J. Pediatr. 2020, 16, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Scott, G. The Use of Interferons in Respiratory Viral Infections. In Viral and Other Infections of the Human Respiratory Tract; Springer: Berlin/Heidelberg, Germany, 1996; pp. 383–396. [Google Scholar]
- Kumaki, Y.; Day, C.W.; Bailey, K.W.; Wandersee, M.K.; Wong, M.-H.; Madsen, J.R.; Madsen, J.S.; Nelson, N.M.; Hoopes, J.D.; Woolcott, J.D. Induction of Interferon-γ-Inducible Protein 10 by SARS-CoV Infection, Interferon Alfacon 1 and Interferon Inducer in Human Bronchial Epithelial Calu-3 Cells and BALB/c Mice. Antivir. Chem. Chemother. 2010, 20, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Wang, T.; Li, C.; Chen, X.; Li, L.; Qin, X.; Li, H.; Luo, J. An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Q.; Ma, L.L.; Jiang, J.D.; Pang, R.; Chen, Y.J.; Li, Y.H. Recombinant human interferon alpha 2b broad-spectrum anti-respiratory viruses pharmacodynamics study in vitro. Yao Xue Xue Bao 2014, 49, 1547–1553. [Google Scholar]
- Jaffe, H.A.; Buhl, R.; Mastrangeli, A.; Holroyd, K.J.; Saltini, C.; Czerski, D.; Jaffe, H.; Kramer, S.; Sherwin, S.; Crystal, R. Organ specific cytokine therapy. Local activation of mononuclear phagocytes by delivery of an aerosol of recombinant interferon-gamma to the human lung. J. Clin. Investig. 1991, 88, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condos, R.; Hull, F.P.; Schluger, N.W.; Rom, W.N.; Smaldone, G.C. Regional Deposition of Aerosolized Interferon-γ in Pulmonary Tuberculosis. Chest 2004, 125, 2146–2155. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders. Molecules 2020, 25, 1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, T.I.; Villacis-Aguirre, C.A.; Santiago Vispo, N.; Santiago Padilla, L.; Pedroso Santana, S.; Parra, N.C.; Alonso, J.R.T. Forms and Methods for Interferon’s Encapsulation. Pharmaceutics 2021, 13, 1533. https://doi.org/10.3390/pharmaceutics13101533
Ramos TI, Villacis-Aguirre CA, Santiago Vispo N, Santiago Padilla L, Pedroso Santana S, Parra NC, Alonso JRT. Forms and Methods for Interferon’s Encapsulation. Pharmaceutics. 2021; 13(10):1533. https://doi.org/10.3390/pharmaceutics13101533
Chicago/Turabian StyleRamos, Thelvia I., Carlos A. Villacis-Aguirre, Nelson Santiago Vispo, Leandro Santiago Padilla, Seidy Pedroso Santana, Natalie C. Parra, and Jorge Roberto Toledo Alonso. 2021. "Forms and Methods for Interferon’s Encapsulation" Pharmaceutics 13, no. 10: 1533. https://doi.org/10.3390/pharmaceutics13101533
APA StyleRamos, T. I., Villacis-Aguirre, C. A., Santiago Vispo, N., Santiago Padilla, L., Pedroso Santana, S., Parra, N. C., & Alonso, J. R. T. (2021). Forms and Methods for Interferon’s Encapsulation. Pharmaceutics, 13(10), 1533. https://doi.org/10.3390/pharmaceutics13101533