Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Spin-Labeled Dexamethasone (DxPCA)
2.3. Preparation of DxPCA Nanocrystals
2.4. Preparation of 0.05% (w/W) DxPCA in Base Cream (Cremor Basalis)
2.5. EPR Spectroscopy
2.5.1. Spin Quantification of the Vehicles Loaded with DxPCA
2.5.2. Penetration Study of DxPCA into Intact and Barrier-Disrupted Skin
2.6. Numerical Modeling
2.7. Permeability Coefficients
2.8. Statistics
3. Results
3.1. Investigation of the Mobility of DxPCA in the Vehicles by EPR
3.2. Penetration of DxPCA into Healthy and Barrier-Disrupted Excised Porcine Skin, as Analyzed by EPR Spectroscopy
3.3. Release of DxPCA from the Vehicle into Healthy and Barrier-Disrupted Excised Porcine Skin, as Shown by EPR
3.4. Data-Based Modeling of the Penetration Kinetics of DxPCA into Healthy and Barrier-Disrupted Skin
3.5. Permeability Coefficients for Intact and Barrier-Disrupted Skin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schurer, N.Y.; Plewig, G.; Elias, P.M. Stratum corneum lipid function. Dermatologica 1991, 183, 77–94. [Google Scholar] [CrossRef]
- Plewig, G.; Jansen, T.; Schurer, N.Y. Stratum corneum. Hautarzt 1997, 48, 510–521. [Google Scholar]
- Walling, H.W.; Swick, B.L. Update on the management of chronic eczema: New approaches and emerging treatment options. Clin. Cosmet. Investig. Dermatol. 2010, 3, 99–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagami, H.; Yoshikuni, K. Interrelationship between Water-Barrier and Reservoir Functions of Pathologic Stratum-Corneum. Arch. Dermatol. 1985, 121, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Boguniewicz, M.; Leung, D.Y. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol. Rev. 2011, 242, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Wolde-Kidan, A.; Pham, Q.D.; Schlaich, A.; Loche, P.; Sparr, E.; Netz, R.R.; Schneck, E. Influence of polar co-solutes and salt on the hydration of lipid membranes. Phys. Chem. Chem. Phys. 2019, 21, 16989–17000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy, R.H. Current status and future prospects of transdermal drug delivery. Pharm. Res. 1996, 13, 1765–1769. [Google Scholar] [CrossRef]
- Mukherjee, B. Nanosize drug delivery system. Curr. Pharm. Biotechnol. 2013, 14, 1221. [Google Scholar] [CrossRef]
- Korting, H.C.; Schafer-Korting, M. Carriers in the topical treatment of skin disease. Handb. Exp. Pharmacol. 2010, 197, 435–468. [Google Scholar]
- Kuchler, S.; Abdel-Mottaleb, M.; Lamprecht, A.; Radowski, M.R.; Haag, R.; Schafer-Korting, M. Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int. J. Pharm. 2009, 377, 169–172. [Google Scholar] [CrossRef]
- Radbruch, M.; Pischon, H.; Ostrowski, A.; Volz, P.; Brodwolf, R.; Neumann, F.; Unbehauen, M.; Kleuser, B.; Haag, R.; Ma, N.; et al. Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin. Nanoscale Res. Lett. 2017, 12, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owenius, R.; Engstrom, M.; Lindgren, M.; Huber, M. Influence of solvent polarity and hydrogen bonding on the EPR parameters of a nitroxide spin label studied by 9-GHz and 95-GHz EPR spectroscopy and DFT calculations. J Phys. Chem. A 2001, 105, 10967–10977. [Google Scholar] [CrossRef]
- Klug, C.S.; Feix, J.B. Methods and applications of site-directed spin labeling EPR spectroscopy. Methods Cell Biol. 2008, 84, 617–658. [Google Scholar] [PubMed]
- Bordignon, E.; Brutlach, H.; Urban, L.; Hideg, K.; Savitsky, A.; Schnegg, A.; Gast, P.; Engelhard, M.; Groenen, E.J.J.; Mobius, K.; et al. Heterogeneity in the nitroxide micro-environment: Polarity and proticity effects in spin-labeled proteins studied by multi-frequency EPR. Appl. Magn. Reson. 2010, 37, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Haag, S.F.; Lademann, J.; Meinke, M.C. Application of EPR-Spin Probes to Evaluate Penetration Efficiency, Storage Capacity of Nanotransporters, and Drug Release, Book; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Law, E.H.; Leung, M. Corticosteroids in Stevens-Johnson Syndrome/toxic epidermal necrolysis: Current evidence and implications for future research. Ann. Pharm. 2015, 49, 335–342. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Lohan, S.B.; Saeidpour, S.; Solik, A.; Schanzer, S.; Richter, H.; Dong, P.; Darvin, M.E.; Bodmeier, R.; Patzelt, A.; Zoubari, G.; et al. Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy. Eur. J. Pharm. Biopharm. 2017, 116, 102–110. [Google Scholar] [CrossRef]
- Saeidpour, S.; Lohan, S.B.; Anske, M.; Unbehauen, M.; Fleige, E.; Haag, R.; Meinke, M.C.; Bittl, R.; Teutloff, C. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy. Eur. J. Pharm. Biopharm. 2017, 116, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Jager, J.; Obst, K.; Lohan, S.B.; Viktorov, J.; Staufenbiel, S.; Renz, H.; Unbehauen, M.; Haag, R.; Hedtrich, S.; Teutloff, C.; et al. Characterization of hyperbranched core-multishell nanocarriers as an innovative drug delivery system for the application at the oral mucosa. J. Periodontal Res. 2018, 53, 57–65. [Google Scholar] [CrossRef]
- Haag, S.F.; Fleige, E.; Chen, M.; Fahr, A.; Teutloff, C.; Bittl, R.; Lademann, J.; Schafer-Korting, M.; Haag, R.; Meinke, M.C. Skin penetration enhancement of core-multishell nanotransporters and invasomes measured by electron paramagnetic resonance spectroscopy. Int. J. Pharm. 2011, 416, 223–228. [Google Scholar] [CrossRef]
- Colombo, M.; Staufenbiel, S.; Ruhl, E.; Bodmeier, R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int. J. Pharm. 2017, 521, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Junghanns, J.U.; Muller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008, 3, 295–309. [Google Scholar]
- Vidiarova, L.; Romero, G.B.; Hanus, J.; Stepanek, F.; Muller, R.H. Nanocrystals for dermal penetration enhancement—Effect of concentration and underlying mechanisms using curcumin as model. Eur. J. Pharm. Biopharm. 2016, 104, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Unbehauen, M.L.; Lohan, S.B.; Saeidpour, S.; Meinke, M.C.; Zimmer, R.; Haag, R. Spin-labeling of Dexamethasone: Radical Stability vs. Temporal Resolution of EPR-Spectroscopy on Biological Samples. Z. Fur Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 2018, 232, 883–891. [Google Scholar] [CrossRef]
- Herrling, T.; Fuchs, J.; Rehberg, J.; Groth, N. UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides. Free Radic. Bio. Med. 2003, 35, 59–67. [Google Scholar] [CrossRef]
- Simon, G.A.; Maibach, H.I. The pig as an experimental animal model of percutaneous permeation in man: Qualitative and quantitative observations—An overview. Skin Pharmacol. Appl. Skin Physiol. 2000, 13, 229–234. [Google Scholar] [CrossRef]
- Lohan, S.B.; Icken, N.; Teutloff, C.; Saeidpour, S.; Bittl, R.; Lademann, J.; Fleige, E.; Haag, R.; Haag, S.F.; Meinke, M.C. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers. Int. J. Pharm. 2016, 501, 271–277. [Google Scholar] [CrossRef]
- Weigmann, H.J.; Lademann, J.; Meffert, H.; Schaefer, H.; Sterry, W. Determination of the horny layer profile by tape stripping in combination with optical spectroscopy in the visible range as a prerequisite to quantify percutaneous absorption. Skin Pharmacol. Appl. 1999, 12, 34–45. [Google Scholar] [CrossRef]
- Lademann, J.; Jacobi, U.; Surber, C.; Weigmann, H.J.; Fluhr, J.W. The tape stripping procedure—Evaluation of some critical parameters. Eur. J. Pharm. Biopharm. 2009, 72, 317–323. [Google Scholar] [CrossRef]
- Dong, P.; Nikolaev, V.; Kroger, M.; Zoschke, C.; Darvin, M.E.; Witzel, C.; Lademann, J.; Patzelt, A.; Schafer-Korting, M.; Meinke, M.C. Barrier-disrupted skin: Quantitative analysis of tape and cyanoacrylate stripping efficiency by multiphoton tomography. Int. J. Pharm. 2020, 574, 118843. [Google Scholar] [CrossRef]
- Jacobi, U.; Kaiser, M.; Richter, H.; Audring, H.; Sterry, W.; Lademann, J. The number of stratum corneum cell layers correlates with the pseudo-absorption of the corneocytes. Skin Pharmacol. Physiol. 2005, 18, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Doge, N.; Avetisyan, A.; Hadam, S.; Pfannes, E.K.B.; Rancan, F.; Blume-Peytavi, U.; Vogt, A. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption. Eur. J. Pharm. Biopharm. 2017, 116, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Schulz, R.; Yamamoto, K.; Klossek, A.; Flesch, R.; Honzke, S.; Rancan, F.; Vogt, A.; Blume-Peytavi, U.; Hedtrich, S.; Schafer-Korting, M.; et al. Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles. Proc. Natl. Acad. Sci. USA 2017, 114, 3631–3636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, R.; Yamamoto, K.; Klossek, A.; Rancan, F.; Vogt, A.; Schutte, C.; Ruhl, E.; Netz, R.R. Modeling of drug diffusion based on concentration profiles in healthy and damaged human skin. Biophys. J. 2019, 117, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Branch, M.A.; Coleman, T.F.; Li, Y.Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. Siam. J. Sci. Comput. 1999, 21, 1–23. [Google Scholar] [CrossRef]
- Zoubari, G.; Staufenbiel, S.; Volz, P.; Alexiev, U.; Bodmeier, R. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur. J. Pharm. Biopharm. 2017, 110, 39–46. [Google Scholar] [CrossRef]
- Bos, J.D.; Meinardi, M.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 2000, 9, 165–169. [Google Scholar] [CrossRef]
- Desai, P.; Patlolla, R.R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol. 2010, 27, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Abd, E.; Yousef, S.A.; Pastore, M.N.; Telaprolu, K.; Mohammed, Y.H.; Namjoshi, S.; Grice, J.E.; Roberts, M.S. Skin models for the testing of transdermal drugs. Clin. Pharmacol. 2016, 8, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Jacquet, E.; Chambert, J.; Pauchot, J.; Sandoz, P. Intra- and inter-individual variability in the mechanical properties of the human skin from in vivo measurements on 20 volunteers. Skin Res. Technol. 2017, 23, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Woodfolk, J.A. Skin barrier defects in atopic dermatitis. Curr. Allergy Asthma Rep. 2014, 14, 433. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine ear skin: An in vitro model for human skin. Skin Res. Technol. 2007, 13, 19–24. [Google Scholar] [CrossRef]
- Schmook, F.P.; Meingassner, J.G.; Billich, A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm. 2001, 215, 51–56. [Google Scholar] [CrossRef]
- Simonsen, L.; Fullerton, A. Development of an in vitro skin permeation model simulating atopic dermatitis skin for the evaluation of dermatological products. Skin Pharmacol. Physiol. 2007, 20, 230–236. [Google Scholar] [CrossRef]
- Dong, P.; Sahle, F.F.; Lohan, S.B.; Saeidpour, S.; Albrecht, S.; Teutloff, C.; Bodmeier, R.; Unbehauen, M.; Wolff, C.; Haag, R.; et al. pH-sensitive Eudragit(R) L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J. Control Release 2019, 295, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Saeidpour, S.; Lohan, S.B.; Solik, A.; Paul, V.; Bodmeier, R.; Zoubari, G.; Unbehauen, M.; Haag, R.; Bittl, R.; Meinke, M.C.; et al. Drug distribution in nanostructured lipid particles. Eur. J. Pharm. Biopharm. 2017, 110, 19–23. [Google Scholar] [CrossRef]
- Choe, C.; Lademann, J.; Darvin, M.E. A depth-dependent profile of the lipid conformation and lateral packing order of the stratum corneum in vivo measured using Raman microscopy. Analyst 2016, 141, 1981–1987. [Google Scholar] [CrossRef]
- Schaefer, H.; Stuttgen, G.; Zesch, A.; Schalla, W.; Gazith, J. Quantitative determination of percutaneous absorption of radiolabeled drugs in vitro and in vivo by human skin. Curr. Probl. Dermatol. 1978, 7, 80–94. [Google Scholar]
- Van Smeden, J.; Bouwstra, J.A. Stratum corneum lipids: Their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 2016, 49, 8–26. [Google Scholar]
- Yamamoto, K.; Klossek, A.; Flesch, R.; Rancan, F.; Weigand, M.; Bykova, I.; Bechtel, M.; Ahlberg, S.; Vogt, A.; Blume-Peytavi, U.; et al. Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy. Eur. J. Pharm. Biopharm. 2017, 118, 30–37. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Benfeldt, E.; Holmgaard, R. Penetration through the Skin Barrier. Curr. Probl. Dermatol. 2016, 49, 103–111. [Google Scholar] [PubMed]
- Schafer-Korting, M.; Kleuser, B.; Ahmed, M.; Holtje, H.D.; Korting, H.C. Glucocorticoids for human skin: New aspects of the mechanism of action. Skin Pharmacol. Physiol. 2005, 18, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Flesch, R.; Ohigashi, T.; Hedtrich, S.; Klossek, A.; Patoka, P.; Ulrich, G.; Ahlberg, S.; Rancan, F.; Vogt, A.; et al. Selective probing of the penetration of dexamethasone into human skin by soft X-ray spectromicroscopy. Anal. Chem. 2015, 87, 6173–6179. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, W.I.; Rohr, U.D.; Burton, S.A.; Liu, P.; Fox, J.L.; Ghanem, A.H.; Mahmoud, H.; Borsadia, S.; Good, W.R. Effects of Ethanol on the Transport of Beta-Estradiol in Hairless Mouse Skin—Comparison of Experimental-Data with A New Theoretical-Model; ACS Symposium Series; ACS Publications: Washington, DC, USA, 1987; Volume 348, pp. 232–240. [Google Scholar]
- Smoak, K.A.; Cidlowski, J.A. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech. Ageing Dev. 2004, 125, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Bigas, J.; Sevilla, L.M.; Carceller, E.; Boix, J.; Perez, P. Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis. 2018, 9, 588. [Google Scholar] [CrossRef]
- Desmet, S.J.; Bougarne, N.; van Moortel, L.; de Cauwer, L.; Thommis, J.; Vuylsteke, M.; Ratman, D.; Houtman, R.; Tavernier, J.; de Bosscher, K. Compound A influences gene regulation of the Dexamethasone-activated glucocorticoid receptor by alternative cofactor recruitment. Sci. Rep. 2017, 7, 8063. [Google Scholar] [CrossRef] [Green Version]
(1) Cremor Basalis DAC (German Pharmaceutics Codex) | |
Component | Concentration (% Weight/Weight) |
glycerol monostearate 60 | 4.0 |
cetyl alcohol | 6.0 |
medium-chain triglycerides (Miglyol 812) | 7.5 |
white soft paraffin | 25.5 |
Macrogol-20-glycerol-monostearate (Tagat S2) | 7.0 |
propylene glycol | 10.0 |
ultrapurified Milli-Q- water | 40.0 |
(2) Final Drug-Containing Formulation | |
Component | Concentration (% Weight/Weight) |
DxPCA | 0.05 |
Cremor basalis DAC | 99.95 |
Incubation Time | ||||
---|---|---|---|---|
Applied Formulation | Skin Condition | 0.5 h | 1 h | 4 h |
Base cream | intact skin | 10 ± 2 | 12 ± 2 | 18 ± 3 |
barrier-disrupted skin | 11 ± 1 | 10 ± 2 | 13 ± 1 | |
Nanocrystals | intact skin | 53 ± 9 | 61 ± 11 | 69 ± 6 |
barrier-disrupted skin | 85 ± 3 | 90 ± 1 | 84 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohan, S.B.; Saeidpour, S.; Colombo, M.; Staufenbiel, S.; Unbehauen, M.; Wolde-Kidan, A.; Netz, R.R.; Bodmeier, R.; Haag, R.; Teutloff, C.; et al. Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy. Pharmaceutics 2020, 12, 400. https://doi.org/10.3390/pharmaceutics12050400
Lohan SB, Saeidpour S, Colombo M, Staufenbiel S, Unbehauen M, Wolde-Kidan A, Netz RR, Bodmeier R, Haag R, Teutloff C, et al. Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy. Pharmaceutics. 2020; 12(5):400. https://doi.org/10.3390/pharmaceutics12050400
Chicago/Turabian StyleLohan, Silke B., Siavash Saeidpour, Miriam Colombo, Sven Staufenbiel, Michael Unbehauen, Amanuel Wolde-Kidan, Roland R. Netz, Roland Bodmeier, Rainer Haag, Christian Teutloff, and et al. 2020. "Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy" Pharmaceutics 12, no. 5: 400. https://doi.org/10.3390/pharmaceutics12050400
APA StyleLohan, S. B., Saeidpour, S., Colombo, M., Staufenbiel, S., Unbehauen, M., Wolde-Kidan, A., Netz, R. R., Bodmeier, R., Haag, R., Teutloff, C., Bittl, R., & Meinke, M. C. (2020). Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy. Pharmaceutics, 12(5), 400. https://doi.org/10.3390/pharmaceutics12050400