Long-Acting Paliperidone Parenteral Formulations Based on Polycaprolactone Nanoparticles; the Influence of Stabilizer and Chitosan on In Vitro Release, Protein Adsorption, and Cytotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PP Loaded PCL Nanoparticles
2.3. Particle size and Zeta Potential
2.4. Production Yield and pH
2.5. PP Encapsulation Efficiency (EE)
2.6. In Vitro Release of PP from PN
2.7. Stability
2.8. Thermal Study
2.9. Fourier Transform-Infrared Spectroscopy
2.10. Morphology
2.11. Protein Adsorption
2.12. Cytotoxic Effects
2.12.1. Cell Viability
2.12.2. Cytokine Secretions
2.12.3. Oxidative Stress
2.13. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Formulations
3.2. Particle Size
3.3. Zeta Potential
3.4. Yield%, pH, and EE%
3.5. In Vitro PP Release Studies
3.6. Stability
3.7. Thermal Analysis
3.8. FT-IR Analysis
3.9. Surface Morphology
3.10. BSA Adsorption
3.11. Cell Viability
3.12. Cytokine Secretions
3.13. Oxidative Stress
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sweetman, S.C. Martindale 35: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2007. [Google Scholar]
- Darville, N.; Van Heerden, M.; Vynckier, A.; De Meulder, M.; Sterkens, P.; Annaert, P.; Van den Mooter, G. Intramuscular administration of paliperidone palmitate extended-release injectable microsuspension induces a subclinical inflammatory reaction modulating the pharmacokinetics in rats. J. Pharm. Sci. 2014, 103, 2072–2087. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A.; Zhao, X.; Liu, X.; Wang, D.; Sun, F.; Li, Y. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism. Int. J. Pharm. 2012, 427, 284–292. [Google Scholar] [CrossRef]
- Nanaki, S.; Tseklima, M.; Terzopoulou, Z.; Nerantzaki, M.; Giliopoulos, D.J.; Triantafyllidis, K.; Bikiaris, D.N. Use of mesoporous cellular foam (MCF) in preparation of polymeric microspheres for long acting injectable release formulations of paliperidone antipsychotic drug. Eur. J. Pharm. Biopharm. 2017, 117, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Z.; Zha, L.S.; Zhang, Y.; Jiang, W.M.; Lu, W.; Shi, Z.Q.; Fu, S.K. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J. Drug Target. 2006, 14, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Maitra, A.; Feldmann, G.; Bisht, S. Water-Dispersible Oral, Parenteral, and Topical Formulations for Poorly Water Soluble Drugs Using Smart Polymeric Nanoparticles. U.S. Patent 8,715,741, 6 May 2014. [Google Scholar]
- Gajra, B.; Dalwadi, C.; Patel, R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. DARU J. Pharm. Sci. 2015, 23, 3. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- Tavares, M.R.; De Menezes, L.R.; Do Nascimento, D.F.; Souza, D.H.S.; Reynaud, F.; Marques, M.F.V.; Tavares, M.I.B. Polymeric nanoparticles assembled with microfluidics for drug delivery across the blood-brain barrier. Eur. Phys. J. Spec. Top. 2016, 225, 779–795. [Google Scholar] [CrossRef]
- Li, Y.; Wong, H.L.; Shuhendler, A.J.; Rauth, A.M.; Wu, X.Y. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer–lipid hybrid nanoparticles. J. Control. Release 2008, 128, 60–70. [Google Scholar] [CrossRef]
- Bhavsar, M.D.; Amiji, M.M. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. Aaps Pharmscitech 2008, 9, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Marcano, R.G.d.J.V.; Tominaga, T.T.; Khalil, N.M.; Pedroso, L.S.; Mainardes, R.M. Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydr. Polym. 2018, 202, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Bragta, P.; Sidhu, R.K.; Jyoti, K.; Baldi, A.; Jain, U.K.; Chandra, R.; Madan, J. Intratumoral administration of carboplatin bearing poly (ε-caprolactone) nanoparticles amalgamated with in situ gel tendered augmented drug delivery, cytotoxicity, and apoptosis in melanoma tumor. Colloids Surf. B Biointerfaces 2018, 166, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Abriata, J.P.; Eloy, J.O.; Riul, T.B.; Campos, P.M.; Baruffi, M.D.; Marchetti, J.M. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. Mater. Sci. Eng. C 2017, 77, 1196–1203. [Google Scholar] [CrossRef]
- Tavares, M.I.B. Development of Polycaprolactone/Poly (Vinyl Alcohol)/Clay Microparticles by Spray Drying. Mater. Sci. Appl. 2016, 7, 575–592. [Google Scholar]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Kim, C.-E.; Lim, S.-K.; Kim, J.-S. In vivo antitumor effect of cromolyn in PEGylated liposomes for pancreatic cancer. J. Control. Release 2012, 157, 190–195. [Google Scholar] [CrossRef]
- Elmowafy, M.; Viitala, T.; Ibrahim, H.M.; Abu-Elyazid, S.K.; Samy, A.; Kassem, A.; Yliperttula, M. Silymarin loaded liposomes for hepatic targeting: In vitro evaluation and HepG2 drug uptake. Eur. J. Pharm. Sci. 2013, 50, 161–171. [Google Scholar] [CrossRef]
- Karanam, V.; Marslin, G.; Krishnamoorthy, B.; Chellan, V.; Siram, K.; Natarajan, T.; Franklin, G. Poly (ɛ-caprolactone) nanoparticles of carboplatin: Preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines. Colloids Surf. B Biointerfaces 2015, 130, 48–52. [Google Scholar] [CrossRef]
- Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004, 282, 1–18. [Google Scholar] [CrossRef]
- Mainardes, R.M.; Evangelista, R.C. PLGA nanoparticles containing praziquantel: Effect of formulation variables on size distribution. Int. J. Pharm. 2005, 290, 137–144. [Google Scholar] [CrossRef]
- Snehalatha, M.; Venugopal, K.; Saha, R.N. Etoposide-loaded PLGA and PCL nanoparticles I: Preparation and effect of formulation variables. Drug Deliv. 2008, 15, 267–275. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385, 113–142. [Google Scholar] [CrossRef] [PubMed]
- Gratieri, T.; Gelfuso, G.M.; de Freitas, O.; Rocha, E.M.; Lopez, R.F.V. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur. J. Pharm. Biopharm. 2011, 79, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Pepić, I.; Filipović-Grčić, J.; Jalšenjak, I. Bulk properties of nonionic surfactant and chitosan mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2009, 336, 135–141. [Google Scholar] [CrossRef]
- Nanaki, S.; Tseklima, M.; Christodoulou, E.; Triantafyllidis, K.; Kostoglou, M.; Bikiaris, D.N. Thiolated chitosan masked polymeric microspheres with incorporated mesocellular silica foam (MCF) for intranasal delivery of paliperidone. Polymers 2017, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Chen, L.; Gu, J.; Ren, X.; Luo, J.; Chen, Y.; Fang, X. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly (ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Int. J. Pharm. 2010, 402, 238–247. [Google Scholar] [CrossRef]
- Tavares, M.R.; de Menezes, L.R.; Dutra Filho, J.C.; Cabral, L.M.; Tavares, M.I.B. Surface-coated polycaprolactone nanoparticles with pharmaceutical application: Structural and molecular mobility evaluation by TD-NMR. Polym. Test. 2017, 60, 39–48. [Google Scholar] [CrossRef]
- Sherje, A.P.; Londhe, V. Ternary inclusion complex of paliperidone with β-cyclodextrin and hydrophilic polymer for solubility and dissolution enhancement. J. Pharm. Innov. 2015, 10, 324–334. [Google Scholar] [CrossRef]
- Elzubair, A.; Elias, C.N.; Suarez, J.C.M.; Lopes, H.P.; Vieira, M.V.B. The physical characterization of a thermoplastic polymer for endodontic obturation. J. Dent. 2006, 34, 784–789. [Google Scholar] [CrossRef]
- Vu-Quang, H.; Vinding, M.S.; Xia, D.; Nielsen, T.; Ullisch, M.G.; Dong, M.; Kjems, J. Chitosan-coated poly (lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles for cell labeling in 19F magnetic resonance imaging. Carbohydr. Polym. 2016, 136, 936–944. [Google Scholar] [CrossRef]
- Misra, R.; Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Sustained antibacterial activity of doxycycline-loaded poly (d,l-lactide-co-glycolide) and poly (ε-caprolactone) nanoparticles. Nanomedicine 2009, 4, 519–530. [Google Scholar] [CrossRef]
- Ding, H.; Ma, Y. Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials 2014, 35, 8703–8710. [Google Scholar] [CrossRef] [PubMed]
- Hoven, V.P.; Tangpasuthadol, V.; Angkitpaiboon, Y.; Vallapa, N.; Kiatkamjornwong, S. Surface-charged chitosan: Preparation and protein adsorption. Carbohydr. Polym. 2007, 68, 44–53. [Google Scholar] [CrossRef]
- Müller, L.; Müller, F.A. Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006, 2, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Deligianni, D.D.; Katsala, N.; Ladas, S.; Sotiropoulou, D.; Amedee, J.; Missirlis, Y.F. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials 2001, 22, 1241–1251. [Google Scholar] [CrossRef]
- Milani, S.; Baldelli Bombelli, F.; Pitek, A.S.; Dawson, K.A.; Radler, J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: Soft and hard corona. ACS Nano 2012, 6, 2532–2541. [Google Scholar] [CrossRef]
- Xiao, W.; Xiong, J.; Zhang, S.; Xiong, Y.; Zhang, H.; Gao, H. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int. J. Pharm. 2018, 538, 105–111. [Google Scholar] [CrossRef]
- Tilley, A.J.; Drummond, C.J.; Boyd, B.J. Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nanostructured particle dispersions. J. Colloid Interface Sci. 2013, 392, 288–296. [Google Scholar] [CrossRef]
- Kuo, J.S. Effect of Pluronic-block copolymers on the reduction of serum-mediated inhibition of gene transfer of polyethyleneimine–DNA complexes. Biotechnol. Appl. Biochem. 2003, 37, 267–271. [Google Scholar] [CrossRef]
- Prata, A.S.; Grosso, C.R.F. Production of microparticles with gelatin and chitosan. Carbohydr. Polym. 2015, 116, 292–299. [Google Scholar] [CrossRef]
- Kim, U.-J.; Kuga, S. Ion-exchange separation of proteins by polyallylamine-grafted cellulose gel. J. Chromatogr. A 2002, 955, 191–196. [Google Scholar] [CrossRef]
- Sukanya, V.S.; Mohanan, P.V. Degradation of Poly (ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells. Colloids Surf. B Biointerfaces 2018, 163, 107–118. [Google Scholar]
- Grabowski, N.; Hillaireau, H.; Vergnaud, J.; Tsapis, N.; Pallardy, M.; Kerdine-Römer, S.; Fattal, E. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int. J. Pharm. 2015, 482, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.W.; Kolbe, H.J.; Duncan, R. Potential of low molecular mass chitosan as a DNA delivery system: Biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 1999, 178, 231–243. [Google Scholar] [CrossRef]
- Nafee, N.; Schneider, M.; Schaefer, U.F.; Lehr, C.-M. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int. J. Pharm. 2009, 381, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Schöler, N.; Hahn, H.; Müller, R.H.; Liesenfeld, O. Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int. J. Pharm. 2002, 231, 167–176. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
Code | Surfactant (0.5%) | Drug/Polymer Ratio | Chitosan Coating |
---|---|---|---|
F1 | Tween 80 | 1/2 | Uncoated |
F2 | Tween 80 | 1/2 | Coated |
F3 | Pluronic F127 | 1/2 | Uncoated |
F4 | Pluronic F127 | 1/2 | Coated |
F5 | Pluronic F68 | 1/2 | Uncoated |
F6 | Pluronic F68 | 1/2 | Coated |
F7 | PVA | 1/2 | Uncoated |
F8 | PVA | 1/2 | Coated |
F9 | Tween 80 | 1/4 | Uncoated |
F10 | Tween 80 | 1/4 | Coated |
F11 | Pluronic F127 | 1/4 | Uncoated |
F12 | Pluronic F127 | 1/4 | Coated |
F13 | Pluronic F68 | 1/4 | Uncoated |
F14 | Pluronic F68 | 1/4 | Coated |
F15 | PVA | 1/4 | Uncoated |
F16 | PVA | 1/4 | Coated |
Code | Particle Size (nm) | PDI | Zeta Potential (mV) | Yield% | pH | EE% |
---|---|---|---|---|---|---|
F1 | 169.1 ± 5.4 | 0.116 ± 0.051 | −9.48 ± 0.56 | 68.2 ± 3.1 | 6.4 ± 0.41 | 58.6 ± 3.4 |
F2 | 246.9 ± 3.5 | 0.181 ± 0.084 | 31.73 ± 0.48 | 62.3 ± 2.4 | 5.6 ± 0.73 | 58.3 ± 2.6 |
F3 | 160.8 ± 3.7 | 0.073 ± 0.058 | −6.67 ± 1.04 | 79.4 ± 5.8 | 6.2 ± 0.39 | 64.8 ± 5.8 |
F4 | 388.6 ± 10.6 | 0.351 ± 0.122 | 36.71 ± 1.26 | 76.9 ± 1.8 | 5.7 ± 0.52 | 62.3 ± 7.6 |
F5 | 152.4 ± 4.7 | 0.076 ± 0.058 | −12.9 ± 2.83 | 72.6 ± 7.3 | 6.4 ± 0.40 | 63.6 ± 5.8 |
F6 | 451.2 ± 36.3 | 0.461 ± 0.073 | 32.53 ± 1.20 | 70.4 ± 8.1 | 5.3 ± 0.17 | 59.7 ± 1.5 |
F7 | 360.3 ± 28.5 | 0.654 ± 0.156 | −4.57 ± 0.63 | 38.6 ± 3.7 | 6.1 ± 0.92 | 51.6 ± 3.3 |
F8 | 415.3 ± 20.8 | 0.439 ± 0.100 | 31.83 ± 2.51 | 32.1 ± 6.9 | 5.4 ± 0.58 | 51.8 ± 6.2 |
F9 | 166.4 ± 1.3 | 0.100 ± 0.031 | −12.91 ± 0.59 | 64.7 ± 5.3 | 6.6 ± 0.28 | 64.2 ± 1.7 |
F10 | 361.2 ± 17.1 | 0.345 ± 0.029 | 27.37 ± 0.64 | 61.9 ± 1.9 | 5.7 ± 0.36 | 65.1 ± 2.3 |
F11 | 180.5 ± 4.9 | 0.405 ± 0.030 | −8.03 ± 0.587 | 75.2 ± 6.3 | 6.3 ± 0.12 | 70.6 ± 6.8 |
F12 | 257.4 ± 8.3 | 0.313 ± 0.069 | 34.13 ± 0.25 | 72.6 ± 5.9 | 5.7 ± 0.73 | 69.5 ± 2.9 |
F13 | 164.8 ± 0.5 | 0.094 ± 0.040 | −15.53 ± 0.28 | 66.3 ± 4.8 | 6.6 ± 0.18 | 66.3 ± 3.6 |
F14 | 453.5 ± 17.4 | 0.464 ± 0.005 | 37.83 ± 0.46 | 61.4 ± 3.9 | 5.2 ± 0.24 | 65.1 ± 2.8 |
F15 | 368.5 ± 18.5 | 0.397 ± 0.058 | −5.41 ± 0.82 | 34.5 ± 7.4 | 6.3 ± 0.46 | 56.4 ± 9.2 |
F16 | 616.4 ± 30.6 | 0.468 ± 0.019 | 31.37 ± 0.89 | 32.8 ± 2.6 | 5.5 ± 0.25 | 52.3 ± 8.4 |
Code | 1st Month | 2nd Month | 3rd Month | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Particle Size (nm) | PDI | Zeta Potential (mV) | EE% | Particle Size (nm) | PDI | Zeta Potential (mV) | EE% | Particle Size (nm) | PDI | Zeta Potential (mV) | EE% | |
F1 | 179.3 ± 2.4 | 0.12 ± 0.043 | −7.6 ± 0.41 | 59.2 ± 7.3 | 203.3 ± 8.3 | 0.140 ± 0.090 | −8.37 ± 0.22 | 57.1 ± 1.6 | 213.1 ± 11.2 | 0.151 ± 0.076 | −8.87 ± 0.59 | 58.3 ± 3.6 |
F2 | 256.7 ± 6.1 | 0.192 ± 0.057 | 35.39 ± 1.8 | 57.1 ± 3.4 | 277.7 ± 9.7 | 0.163 ± 0.031 | 39.60 ± 2.17 | 58.1 ± 6.1 | 284.3 ± 9.5 | 0.176 ± 0.043 | 39.63 ± 1.84 | 57.6 ± 3.4 |
F3 | 170.4 ± 5.6 | 0.09 ± 0.017 | −6.12 ± 0.63 | 63.5 ± 2.6 | 180.4 ± 1.8 | 0.155 ± 0.026 | −5.27 ± 1.63 | 61.4 ± 4.3 | 182.9 ± 1.6 | 0.111 ± 0.016 | −5.91 ± 0.38 | 62.2 ± 1.5 |
F4 | 358.5 ± 9.7 | 0.376 ± 0.094 | 38.43 ± 4.9 | 63.8 ± 4.9 | 369.5 ± 7.8 | 0.303 ± 0.081 | 42.37 ± 2.91 | 63.1 ± 8.3 | 385.7 ± 6.4 | 0.344 ± 0.086 | 38.74 ± 1.69 | 64.2 ± 1.9 |
F5 | 165.3 ± 4.8 | 0.093 ± 0.036 | −13.1 ± 3.4 | 61.4 ± 1.9 | 168.1 ± 3.2 | 0.167 ± 0.055 | −14.3 ± 1.07 | 62.8 ± 4.6 | 175.9 ± 3.5 | 0.135 ± 0.033 | −1122 ± 0.77 | 61.7 ± 8.2 |
F6 | 571.8 ± 11.6 | 0.458 ± 0.029 | 30.23 ± 6.2 | 57.1 ± 4.6 | 586.6 ± 29.7 | 0.428 ± 0.017 | 27.53 ± 1.34 | 56.5 ± 7.3 | 587.4 ± 28.4 | 0.430 ± 0.075 | 32.06 ± 2.47 | 54.9 ± 5.3 |
F7 | 369.2 ± 13.2 | 0.652 ± 0.240 | −5.12 ± 0.09 | 52.3 ± 1.9 | 373.4 ± 31.2 | 0.627 ± 0.093 | −6.45 ± 1.19 | 50.1 ± 3.1 | 429.7 ± 33.2 | 0.487 ± 0.078 | −5.81 ± 1.62 | 51.0 ± 2.8 |
F8 | 525.7 ± 9.8 | 0.452 ± 0.072 | 30.34 ± 6.5 | 51.8 ± 6.2 | 559.3 ± 26.3 | 0.499 ± 0.022 | 29.97 ± 1.70 | 52.7 ± 4.5 | 564.3 ± 24.3 | 0.596 ± 0.018 | 36.06 ± 3.72 | 50.9 ± 6.5 |
F9 | 179.3 ± 6.5 | 0.115 ± 0.028 | −15.22 ± 1.6 | 63.9 ± 4.1 | 193.9 ± 8.7 | 0.118 ± 0.032 | −17.1 ± 1.48 | 62.3 ± 9.3 | 197.4 ± 14.1 | 0.146 ± 0.063 | −14.43 ± 2.60 | 61.6 ± 2.4 |
F10 | 370.3 ± 8.3 | 0.367 ± 0.083 | 27.4 ± 2.4 | 62.1 ± 4.6 | 379.0 ± 17.3 | 0.388 ± 0.046 | 27.83 ± 1.64 | 61.6 ± 8.6 | 382.4 ± 15.3 | 0.391 ± 0.047 | 27.95 ± 1.35 | 61.0 ± 7.3 |
F11 | 230.1 ± 3.9 | 0.398 ± 0.047 | −7.3 ± 0.64 | 71.3 ± 2.9 | 250.1 ± 10.2 | 0.416 ± 0.027 | −6.75 ± 1.02 | 70.9 ± 6.8 | 255.2 ± 14.6 | 0.499 ± 0.0477 | 7.84 ± 0.07 | 70.8 ± 2.1 |
F12 | 269.6 ± 1.9 | 0.288 ± 0.071 | 36.84 ± 2.1 | 68.3 ± 7.3 | 300.4 ± 5.7 | 0.238 ± 0.012 | 39.71 ± 6.60 | 67.4 ± 1.7 | 314.7 ± 6.7 | 0.251 ± 0.015 | 35.67 ± 1.86 | 66.7 ± 5.4 |
F13 | 181.9 ± 7.5 | 0.113 ± 0.085 | −14.6 ± 0.99 | 65.1 ± 5.6 | 219.3 ± 2.4 | 0.230 ± 0.0473 | −13.3 ± 1.39 | 66.2 ± 2.6 | 222.6 ± 6.2 | 0.205 ± 0.040 | −12.29 ± 2.04 | 64.3 ± 2.7 |
F14 | 493.1 ± 10.6 | 0.415 ± 0.032 | 37. 3 ± 4.6 | 62.9 ± 1.9 | 496.1 ± 13.6 | 0.409 ± 0.026 | 38.70 ± 1.75 | 60.1 ± 6.9 | 496.3 ± 22.9 | 0.422 ± 0.063 | 39.67 ± 1.34 | 61.3 ± 8.1 |
F15 | 273.8 ± 2.4 | 0.393 ± 0.022 | −5.37 ± 0.17 | 52.1 ± 7.3 | 286.3 ± 5.1 | 0.391 ± 0.024 | −5.53 ± 1.78 | 53.1 ± 4.4 | 297.3 ± 4.8 | 0.298 ± 0.086 | −4.71 ± 0.89 | 52.6 ± 6.2 |
F16 | 626.4 ± 13.1 | 0.455 ± 0.056 | 33.46 ± 3.5 | 53.5 ± 1.6 | 673.3 ± 38.2 | 0.454 ± 0.044 | 38.37 ± 5.41 | 52.2 ± 5.8 | 683.7 ± 36.3 | 0.395 ± 0.026 | 34.92 ± 2.40 | 51.8 ± 3.3 |
Code | IC50 (μg ± SD) | Code | IC50 (μg ± SD) |
---|---|---|---|
F1 | 20.65 ± 0.7 | F9 | 20 ± 1.4 |
F2 | 22.5 ± 2.8 | F10 | 18.66 ± 0.7 |
F3 | 13.27 ± 0.4 | F11 | 12.94 ± 0.7 |
F4 | 18.37 ± 1.4 | F12 | 20.48 ± 1.3 |
F5 | 13.91 ± 0.5 | F13 | 11.99 ± 0.07 |
F6 | 16.23 ± 0.9 | F14 | 16.68 ± 0.8 |
F7 | 11.56 ± 0.08 | F15 | 11.27 ± 0.09 |
F8 | 14.49 ± 1.1 | F16 | 13.65 ± 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmowafy, M.; Alruwaili, N.K.; Shalaby, K.; Alharbi, K.S.; Altowayan, W.M.; Ahmad, N.; Zafar, A.; Elkomy, M. Long-Acting Paliperidone Parenteral Formulations Based on Polycaprolactone Nanoparticles; the Influence of Stabilizer and Chitosan on In Vitro Release, Protein Adsorption, and Cytotoxicity. Pharmaceutics 2020, 12, 160. https://doi.org/10.3390/pharmaceutics12020160
Elmowafy M, Alruwaili NK, Shalaby K, Alharbi KS, Altowayan WM, Ahmad N, Zafar A, Elkomy M. Long-Acting Paliperidone Parenteral Formulations Based on Polycaprolactone Nanoparticles; the Influence of Stabilizer and Chitosan on In Vitro Release, Protein Adsorption, and Cytotoxicity. Pharmaceutics. 2020; 12(2):160. https://doi.org/10.3390/pharmaceutics12020160
Chicago/Turabian StyleElmowafy, Mohammed, Nabil K. Alruwaili, Khaled Shalaby, Khalid S. Alharbi, Waleed M. Altowayan, Naveed Ahmad, Ameeduzzafar Zafar, and Mohammed Elkomy. 2020. "Long-Acting Paliperidone Parenteral Formulations Based on Polycaprolactone Nanoparticles; the Influence of Stabilizer and Chitosan on In Vitro Release, Protein Adsorption, and Cytotoxicity" Pharmaceutics 12, no. 2: 160. https://doi.org/10.3390/pharmaceutics12020160
APA StyleElmowafy, M., Alruwaili, N. K., Shalaby, K., Alharbi, K. S., Altowayan, W. M., Ahmad, N., Zafar, A., & Elkomy, M. (2020). Long-Acting Paliperidone Parenteral Formulations Based on Polycaprolactone Nanoparticles; the Influence of Stabilizer and Chitosan on In Vitro Release, Protein Adsorption, and Cytotoxicity. Pharmaceutics, 12(2), 160. https://doi.org/10.3390/pharmaceutics12020160