Characterization of Simultaneous Evolution of Size and Composition Distributions Using Generalized Aggregation Population Balance Equation
Abstract
:1. Introduction
2. Numerical Methods and System Analysis
2.1. Cell Average Technique (CAT)
2.2. Finite Volume Scheme (FVS)
2.3. Kernel Selection
2.3.1. Size-Independent Kernel
2.3.2. Size-Dependent Kernel
2.4. Model Initialization and Post-Processing
2.5. Average Size Particles
2.6. Quantification of Mixing
3. Results and Discussion
3.1. Size-Independent Kernel
3.1.1. Comparison of Moments and Number Density Prediction
3.1.2. Comparison of Average Particle Size and Mixing State Prediction
3.2. Size-Dependent Kernel
3.2.1. Comparison of Moments and Number Density Prediction
3.2.2. Comparison of Average Particle Size and Mixing State Prediction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
n | Particle property (size) distribution |
Particle property vector (size) | |
t | time |
Number of particles in the cell i | |
ith order moment | |
Total number of cells | |
Degree of aggregation | |
Index of the cell where falls | |
Weight function | |
a | Aggregation kernel |
Measure of sectional error | |
Sum function | |
Average size of particles along u axis | |
Average size of particles along v axis | |
Mixing of components |
Abbreviations
PBE | Population balance equation |
FVS | Finite volume scheme |
CAT | Cell average technique |
References
- Singh, M.; Ismail, H.Y.; Matsoukas, T.; Albadarin, A.B.; Walker, G. Mass-based finite volume scheme for aggregation, growth and nucleation population balance equation. Proc. R. Soc. 2019, 475, 20190552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramkrishna, D. Population Balances: Theory and Applications to Particulate Systems in Engineering; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Ahamed, F.; Singh, M.; Song, H.-S.; Doshi, P.; Ooi, C.W.; Ho, Y.K. On the use of sectional techniques for the solution of depolymerization population balances: Results on a discrete-continuous mesh. Adv. Powder Technol. 2020, 31, 2669–2679. [Google Scholar] [CrossRef]
- Ho, Y.K.; Kirse, C.; Briesen, H.; Singh, M.; Chan, C.-H.; Kow, K.-W. Towards improved predictions for the enzymatic chain-end scission of natural polymers by population balances: The need for a non-classical rate kernel. Chem. Eng. Sci. 2018, 176, 329–342. [Google Scholar] [CrossRef]
- Selomulya, C.; Bushell, G.; Amal, R.; Waite, T.D. Understanding the role of restructuring in flocculation: The application of a population balance model. Chem. Eng. Sci. 2003, 58, 327–338. [Google Scholar] [CrossRef]
- Shen, X.; Hibiki, T. Bubble coalescence and breakup model evaluation and development for two-phase bubbly flows. Int. J. Multiph. Flow 2018, 109, 131–149. [Google Scholar] [CrossRef]
- Matveev, S.; Stadnichuk, V.; Tyrtyshnikov, E.; Smirnov, A.; Ampilogova, N.; Brilliantov, N. Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation–fragmentation models. Comput. Phys. Commun. 2017, 224, 154–163. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Shirazian, S.; Singh, M.; Whitaker, D.; Albadarin, A.B.; Walker, G.M. Compartmental approach for modelling twin-screw granulation using population balances. Int. J. Pharm. 2020, 576, 118737. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Singh, M.; Albadarin, A.B.; Walker, G.M. Complete two dimensional population balance modelling of wet granulation in twin screw. Int. J. Pharm. 2020, 591, 120018. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Singh, M.; Shirazian, S.; Albadarin, A.B.; Walker, G.M. Development of high-performance hybrid ann-finite volume scheme (ann-fvs) for simulation of pharmaceutical continuous granulation. Chem. Eng. Res. Des. 2020, 163, 320–326. [Google Scholar] [CrossRef]
- Kumar, A.; Vercruysse, J.; Mortier, S.T.; Vervaet, C.; Remon, J.P.; Gernaey, K.V.; De Beer, T.; Nopens, I. Model-based analysis of a twin-screw wet granulation system for continuous solid dosage manufacturing. Comput. Chem. Eng. 2016, 89, 62–70. [Google Scholar] [CrossRef]
- Shirazian, S.; Ismail, H.Y.; Singh, M.; Shaikh, R.; Croker, D.M.; Walker, G.M. Multi-dimensional population balance modelling of pharmaceutical formulations for continuous twin-screw wet granulation: Determination of liquid distribution. Int. J. Pharm. 2019, 566, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gernaey, K.V.; De Beer, T.; Nopens, I. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production–a critical review. Eur. J. Pharm. Biopharm. 2013, 85, 814–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhury, A.; Armenante, M.E.; Ramachandran, R. Compartment based population balance modeling of a high shear wet granulation process using data analytics. Chem. Eng. Res. Des. 2015, 95, 211–228. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, M.; Matsoukas, T.; Kumar, J.; De Beer, T.; Nopens, I. Two-compartment modeling and dynamics of top-sprayed fluidized bed granulator. Appl. Math. Model. 2019, 68, 267–280. [Google Scholar] [CrossRef]
- Iveson, S.M. Limitations of one-dimensional population balance models of wet granulation processes. Powder Technol. 2002, 124, 219–229. [Google Scholar] [CrossRef]
- Matsoukas, T.; Lee, K.; Kim, T. Mixing of components in two-component aggregation. AIChE J. 2006, 52, 3088–3099. [Google Scholar] [CrossRef]
- Singh, M.; Chakraborty, J.; Kumar, J.; Ramakanth, R. Accurate and efficient solution of bivariate population balance equations using unstructured grids. Chem. Eng. Sci. 2013, 93, 1–10. [Google Scholar] [CrossRef]
- Matsoukas, T.; Marshall, C., Jr. Bicomponent aggregation in finite systems. EPL (Europhys. Lett.) 2010, 92, 46007. [Google Scholar] [CrossRef]
- Bhutani, G.; Brito-Parada, P.R. Analytical solution for a three-dimensional non-homogeneous bivariate population balance equation—A special case. Int. J. Flow 2017, 89, 413–416. [Google Scholar] [CrossRef]
- Fernández-Díaz, J.; Gómez-García, G. Exact solution of smoluchowski’s continuous multi-component equation with an additive kernel. Europhys. Lett. 2007, 78, 56002. [Google Scholar] [CrossRef]
- Gelbard, F.; Seinfeld, J. Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci. 1980, 78, 485–501. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, R.; Singh, M.; Kumar, J.; Matsoukas, T. Analytical approach for solving population balances: A homotopy perturbation method. J. Phys. Math. Theor. 2019, 52, 385201. [Google Scholar] [CrossRef] [Green Version]
- Nandanwar, M.N.; Kumar, S. A new discretization of space for the solution of multi-dimensional population balance equations. Chem. Eng. Sci. 2008, 63, 2198–2210. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Chakraborty, J.; Kumar, S. On the solution and applicability of bivariate population balance equations for mixing in particle phase. Chem. Eng. Sci. 2010, 65, 3914–3927. [Google Scholar] [CrossRef]
- Vale, H.; McKenna, T. Solution of the population balance equation for two-component aggregation by an extended fixed pivot technique. Ind. Eng. Chem. Res. 2005, 44, 7885–7891. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Yapp, E.K.; Akroyd, J.; Mosbach, S.; Xu, R.; Yang, W.; Kraft, M. Extension of moment projection method to the fragmentation process. J. Comput. Phys. 2017, 335, 516–534. [Google Scholar] [CrossRef] [Green Version]
- Sen, M.; Ramachandran, R. A multi-dimensional population balance model approach to continuous powder mixing processes. Adv. Powder Technol. 2013, 24, 51–59. [Google Scholar] [CrossRef]
- Forestier-Coste, L.; Mancini, S. A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence. SIAM J. Sci. Comput. 2012, 34, B840–B860. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Kaur, G.; Tsotsas, E. An accurate and efficient discrete formulation of aggregation population balance equation. Kinet. Relat. Model. 2016, 9, 373–391. [Google Scholar]
- Qamar, S.; Warnecke, G. Solving population balance equations for two-component aggregation by a finite volume scheme. Chem. Eng. Sci. 2007, 62, 679–693. [Google Scholar] [CrossRef]
- Singh, M.; Ismail, H.Y.; Singh, R.; Albadarin, A.B.; Walker, G. Finite volume approximation of nonlinear agglomeration population balance equation on triangular grid. J. Aerosol Sci. 2019, 137, 105430. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Kaur, G.; Thomas, D.B.; Nopens, I. Solution of bivariate aggregation population balance equation: A comparative study. React. Kinet. Mech. Catal. 2018, 123, 1–17. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, J.; Bück, A.; Tsotsas, E. A volume-consistent discrete formulation of aggregation population balance equations. Math. Methods Appl. Sci. 2015, 39, 2275–2286. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, J.; Bück, A.; Tsotsas, E. An improved and efficient finite volume scheme for bivariate aggregation population balance equation. J. Comput. Appl. Math. 2016, 308, 83–97. [Google Scholar] [CrossRef]
- Singh, M.; Matsoukas, T.; Albadarin, A.B.; Walker, G. New volume consistent approximation for binary breakage population balance equation and its convergence analysis. ESAIM Math. Model. Numer. Anal. 2019, 53, 1695–1713. [Google Scholar] [CrossRef]
- Singh, M.; Matsoukas, T.; Walker, G. Mathematical analysis of finite volume preserving scheme for nonlinear smoluchowski equation. Phys. D Nonlinear Phenom. 2020, 402, 132221. [Google Scholar] [CrossRef]
- Singh, M.; Singh, R.; Singh, S.; Singh, G.; Walker, G. Finite volume approximation of multidimensional aggregation population balance equation on triangular grid. Math. Comput. Simul. 2020, 172, 191–212. [Google Scholar] [CrossRef]
- Singh, M.; Singh, R.; Singh, S.; Walker, G.; Matsoukas, T. Discrete finite volume approach for multidimensional agglomeration population balance equation on unstructured grid. Powder Technol. 2020, 376, 229–240. [Google Scholar] [CrossRef]
- Attarakih, M.M.; Drumm, C.; Bart, H.-J. Solution of the population balance equation using the sectional quadrature method of moments (sqmom). Chem. Eng. Sci. 2009, 64, 742–752. [Google Scholar] [CrossRef]
- Kostoglou, M. On the constant kernel smoluchowski equation: Fast algorithm for solution with arbitrary initial conditions. Comput. Phys. Commun. 2005, 173, 34–40. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y.; Lin, J.; Seipenbusch, M. Generalized temom scheme for solving the population balance equation. Aerosol Sci. Technol. 2015, 49, 1021–1036. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Laurent, F.; Fox, R. An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 2012, 51, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Matthies, G.; Tobiska, L. Finite element methods of an operator splitting applied to population balance equations. J. Comput. Appl. Math. 2011, 236, 1604–1621. [Google Scholar] [CrossRef]
- Zhu, Z.; Dorao, C.; Jakobsen, H. A least-squares method with direct minimization for the solution of the breakage–coalescence population balance equation. Math. Comput. Simul. 2008, 79, 716–727. [Google Scholar] [CrossRef]
- Kumar, J.; Peglow, M.; Warnecke, G.; Heinrich, S. The cell average technique for solving multi-dimensional aggregation population balance equations. Comput. Chem. Eng. 2008, 32, 1810–1830. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, J.; Warnecke, G. Numerical methods for solving two-dimensional aggregation population balance equations. Comput. Chem. Eng. 2011, 35, 999–1009. [Google Scholar] [CrossRef]
- Mostafaei, P.; Rajabi-Hamane, M.; Salehpour, A. A modified cell average technique for the solution of population balance equation. J. Aerosol Sci. 2015, 87, 111–125. [Google Scholar] [CrossRef]
- Singh, M.; Ghosh, D.; Kumar, J. A comparative study of different discretizations for solving bivariate aggregation population balance equation. Appl. Math. Comput. 2014, 234, 434–451. [Google Scholar] [CrossRef]
- Chaudhury, A.; Kapadia, A.; Prakash, A.V.; Barrasso, D.; Ramachandran, R. An extended cell-average technique for a multi-dimensional population balance of granulation describing aggregation and breakage. Adv. Powder Technol. 2013, 24, 962–971. [Google Scholar] [CrossRef]
- Hao, X.; Zhao, H.; Xu, Z.; Zheng, C. Population balance-monte carlo simulation for gas-to-particle synthesis of nanoparticles. Aerosol Sci. Technol. 2013, 47, 1125–1133. [Google Scholar] [CrossRef]
- Lin, Y.; Lee, K.; Matsoukas, T. Solution of the population balance equation using constant-number monte carlo. Chem. Eng. Sci. 2002, 57, 2241–2252. [Google Scholar] [CrossRef]
- Smith, M.; Matsoukas, T. Constant-number monte carlo simulation of population balances. Chem. Eng. Sci. 1998, 53, 1777–1786. [Google Scholar] [CrossRef]
- Singh, M. Forward and Inverse Problems in Population Balances. Ph.D. Thesis, IIT, Kharagpur, India, 2015. [Google Scholar]
- Singh, M.; Kaur, G.; Kumar, J.; De Beer, T.; Nopens, I. A comparative study of numerical approximations for solving the smoluchowski coagulation equation. Braz. J. Chem. Eng. 2018, 35, 1343–1354. [Google Scholar] [CrossRef]
- Singh, M.; Vuik, K.; Kaur, G.; Bart, H.-J. Effect of different discretizations on the numerical solution of 2D aggregation population balance equation. Powder Technol. 2019, 342, 972–984. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Kumar, J.; Heinrich, S. A weighted finite volume scheme for multivariate aggregation population balance equation. Comput. Chem. Eng. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Chakraborty, J.; Kumar, S. A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 2007, 62, 4112–4125. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
1 | |
1 | |
Parameter | Value |
---|---|
1 | |
1 | |
s | |
total mass of the particles in the system |
Moments | CAT | FVS | CAT | FVS |
---|---|---|---|---|
0.27110 | 0.14838 | 0.22142 | 0.10737 | |
0.29518 | 0.21496 | 0.25672 | 0.14373 | |
0.36367 | 0.32288 | 0.32813 | 0.25187 | |
0.35038 | 0.30358 | 0.32345 | 0.24179 | |
0.51598 | 0.46139 | 0.48715 | 0.42507 | |
0.53205 | 0.51217 | 0.49247 | 0.45377 |
Moments | CAT | FVS | CAT | FVS |
---|---|---|---|---|
0.18180 | 0.15587 | 0.11325 | 0.08356 | |
0.33015 | 0.14861 | 0.30735 | 0.10185 | |
0.81804 | 0.29930 | 0.65429 | 0.27372 | |
0.82524 | 0.27404 | 0.65840 | 0.26817 | |
2.12448 | 0.59022 | 1.43660 | 0.37667 | |
2.05260 | 0.67102 | 1.40687 | 0.38896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Kumar, A.; Shirazian, S.; Ranade, V.; Walker, G. Characterization of Simultaneous Evolution of Size and Composition Distributions Using Generalized Aggregation Population Balance Equation. Pharmaceutics 2020, 12, 1152. https://doi.org/10.3390/pharmaceutics12121152
Singh M, Kumar A, Shirazian S, Ranade V, Walker G. Characterization of Simultaneous Evolution of Size and Composition Distributions Using Generalized Aggregation Population Balance Equation. Pharmaceutics. 2020; 12(12):1152. https://doi.org/10.3390/pharmaceutics12121152
Chicago/Turabian StyleSingh, Mehakpreet, Ashish Kumar, Saeed Shirazian, Vivek Ranade, and Gavin Walker. 2020. "Characterization of Simultaneous Evolution of Size and Composition Distributions Using Generalized Aggregation Population Balance Equation" Pharmaceutics 12, no. 12: 1152. https://doi.org/10.3390/pharmaceutics12121152
APA StyleSingh, M., Kumar, A., Shirazian, S., Ranade, V., & Walker, G. (2020). Characterization of Simultaneous Evolution of Size and Composition Distributions Using Generalized Aggregation Population Balance Equation. Pharmaceutics, 12(12), 1152. https://doi.org/10.3390/pharmaceutics12121152