An Update of Moisture Barrier Coating for Drug Delivery
Abstract
:1. Introduction
2. Principles of Moisture Uptake
2.1. Mechanism of Moisture Uptake
2.2. Testing of Moisture Uptake
3. Formulations of Moisture Barrier Coating
3.1. Film-Forming Polymers
3.2. Plasticizers
3.3. Pigments
4. Coating Process
4.1. Organic Solvent Coating
4.2. Aqueous Polymeric Film Coatings
4.3. Dry Coatings
5. Summary and Conclusions
Funding
Conflicts of Interest
References
- Joshi, S.; Petereit, H.-U. Film coatings for taste masking and moisture protection. Int. J. Pharm. 2013, 457, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.; O’Brien, D.P.; Croker, D.M.; Walker, G.M. The development of a pharmaceutical oral solid dosage forms. Comput. Aided Chem. Eng. 2018, 41, 27–65. [Google Scholar]
- Du, J.; Hoag, S.W. The influence of excipients on the stability of the moisture sensitive drugs aspirin and niacinamide: Comparison of tablets containing lactose monohydrate with tablets containing anhydrous lactose. Pharm. Dev. Technol. 2001, 6, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.A.; Evans, E.R.; Hall, I.H. Pharmaceutical Packaging Technology; CRC Press: London, UK, 2000. [Google Scholar]
- Remmelgas, J.; Simonutti, A.L.; Ronkvist, Å.; Gradinarsky, L.; Löfgren, A. A mechanistic model for the prediction of in-use moisture uptake by packaged dosage forms. Int. J. Pharm. 2013, 441, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Allinson, J.G.; Dansereau, R.J.; Sakr, A. The effects of packaging on the stability of a moisture sensitive compound. Int. J. Pharm. 2001, 221, 49–56. [Google Scholar] [CrossRef]
- Mwesigwa, E.; Buckton, G.; Basit, A.W. The hygroscopicity of moisture barrier film coatings. Drug Dev. Ind. Pharm. 2008, 31, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Grewal, J.; Jyoti, K.; Jain, U.K.; Chandra, R.; Madan, J. Chapter 15-Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; William Andrew: Norwich, CT, USA, 2018; pp. 567–626. [Google Scholar]
- Guo, J.H.; Robertson, R.E.; Amidon, G.L. Amidon influence of physical aging on mechanical properties of polymer free films: The prediction of long-term aging effects on the water permeability and dissolution rate of polymer film-coated tablets. Pharm. Res. 1991, 8, 1500–1504. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Stability of aqueous polymeric controlled release film coatings. Int. J. Pharm. 2013, 457, 437–445. [Google Scholar] [CrossRef]
- Sauer, D.; Cerea, M.; DiNunzio, J.; McGinity, J. Dry powder coating of pharmaceuticals: A review. Int. J. Pharm. 2013, 457, 488–502. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, J.; Ma, Y.; Zhang, H. Dry coating, a novel coating technology for solid pharmaceutical dosage forms. Int. J. Pharm. 2008, 358, 16–22. [Google Scholar] [CrossRef]
- Bose, S.; Bogner, R.H. Solventless pharmaceutical coating processes: A review. Pharm. Dev. Technol. 2007, 12, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Prinderre, P.; Cauture, E.; Piccerelle, P.; Kalantzis, G.; Kaloustian, J.; Joachim, J. Evaluation of some protective agents on stability and controlled release of oral pharmaceutical forms by fluid bed technique. Drug Dev. Ind. Pharm. 1997, 23, 817–826. [Google Scholar] [CrossRef]
- Chinma, C.E.; Ariahu, C.C.; Alakali, J.S. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. J. Food Sci. Technol. 2015, 52, 2380–2386. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yao, Y. Study on the method for testing the water vapor diffusion resistance of membranes. Polym. Test. 2018, 69, 80–90. [Google Scholar] [CrossRef]
- Bedane, A.H.; Eić, M.; Farmahini-Farahani, M.; Xiao, H. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J. Membr. Sci. 2015, 493, 46–57. [Google Scholar] [CrossRef]
- Mukasyan, A.S. DTA/TGA-based methods. In Concise Encyclopedia of Self-Propagating High-Temperature Synthesis; Borovinskaya, I.P., Gromov, A.A., Levashov, E.A., Maksimov, Y.M., Mukasyan, A.S., Rogachev, A.S., Eds.; Elsevier: Amsterdam, Netherlands, 2017; pp. 93–95. [Google Scholar] [CrossRef]
- Pirayavaraporn, C.; Rades, T.; Tucker, I.G. Determination of moisture content in relation to thermal behaviour and plasticization of Eudragit RLPO. Int. J. Pharm. 2012, 422, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Sheokand, S.; Modi, S.R.; Bansal, A.K. Quantification of low levels of amorphous content in crystalline celecoxib using dynamic vapor sorption (DVS). Eur. J. Pharm. Biopharm. 2016, 102, 77–86. [Google Scholar] [CrossRef]
- Brady, J.; Dürig, T.; Lee, P.I.; Li, J.X. Chapter 7-Polymer Properties and Characterization. In Developing Solid Oral Dosage Forms, 2nd ed.; Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., Mantri, R.V., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 181–223. [Google Scholar]
- Parker, J.W.; Peck, G.E.; Banker, G.S. Effects of Solids-Loading on Moisture Permeability Coefficients of Free Films. J. Pharm. Sci. 1974, 63, 119–125. [Google Scholar] [CrossRef]
- Mazzeo, L.; Bianchi, M.; Cocchi, M.; Piemonte, V. Chapter 10-Drug Delivery with Membranes Systems. In Current Trends and Future Developments on (Bio-)Membranes; Basile, A., Charcosset, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 291–309. [Google Scholar]
- Yang, Q.W.; Flament, M.P.; Siepmann, F.; Busignies, V.; Leclerc, B.; Herry, C.; Tchoreloff, P.; Siepmann, J. Curing of aqueous polymeric film coatings: Importance of the coating level and type of plasticizer. Eur. J. Pharm. Biopharm. 2010, 74, 362–370. [Google Scholar] [CrossRef]
- Halake, K.; Birajdar, M.; Kim, B.S.; Bae, H.; Lee, C.; Kim, Y.J.; Kim, S.; Kim, H.J.; Ahn, S.; An, S.Y.; et al. Recent application developments of water-soluble synthetic polymers. J. Ind. Eng. Chem. 2014, 20, 3913–3918. [Google Scholar] [CrossRef]
- Kazlauske, J.; Gårdebjer, S.; Almer, S.; Larsson, A. The importance of the molecular weight of ethyl cellulose on the properties of aqueous-based controlled release coatings. Int. J. Pharm. 2017, 519, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Kazlauske, J.; Cafaro, M.M.; Caccavo, D.; Marucci, M.; Lamberti, G.; Barba, A.A.; Larsson, A. Determination of the release mechanism of Theophylline from pellets coated with Surelease®—A water dispersion of ethyl cellulose. Int. J. Pharm. 2017, 528, 345–353. [Google Scholar] [PubMed]
- Al-Gousous, J.; Penning, M.; Langguth, P. Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules. Int. J. Pharm. 2015, 484, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Patra, C.N.; Priya, R.; Swain, S.; Jena, G.K.; Panigrahi, K.C.; Ghose, D. Pharmaceutical significance of Eudragit: A review. Future J. Pharm. Sci. 2017, 3, 33–45. [Google Scholar] [CrossRef]
- De Leo, V.; Milano, F.; Mancini, E.; Comparelli, R.; Giotta, L.; Nacci, A.; Longobardi, F.; Garbetta, A.; Agostiano, A.; Catucci, L. Encapsulation of Curcumin-Loaded Liposomes for Colonic Drug Delivery in a pH-Responsive Polymer Cluster Using a pH-Driven and Organic Solvent-Free Process. Molecules 2018, 23, 739. [Google Scholar] [CrossRef] [PubMed]
- Muschert, S.; Siepmann, F.; Leclercq, B.; Carlin, B.; Siepmann, J. Prediction of drug release from ethylcellulose coated pellets. J. Control. Release 2009, 135, 71–79. [Google Scholar] [CrossRef]
- Al-Hassan, A.A.; Norziah, M.H. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll. 2012, 26, 108–117. [Google Scholar] [CrossRef]
- Rumondor, A.C.; Marsac, P.J.; Stanford, L.A.; Taylor, L.S. Phase Behavior of Poly(vinylpyrrolidone) Containing Amorphous Solid Dispersions in the Presence of Moisture. Mol. Pharm. 2009, 6, 1492–1505. [Google Scholar] [CrossRef]
- Sato, S.; Ido, R.; Ose, T.; Takahashi, Y.; Kanehashi, S.; Ishimura, T.; Honda, T.; Miyakoshi, T.; Nagai, K. Transformation of a Kurome natural lacquer film from glassy to rubbery polymer by the presence of moisture. Prog. Org. Coat. 2017, 104, 43–49. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Maul, K.A.; Schmidt, P.C. Influence of different-shaped pigments on bisacodyl release from Eudragit L 30 D. Int. J. Pharm. 1995, 118, 103–112. [Google Scholar] [CrossRef]
- Augustine, O.; Okhamafe, P.Y. Effect of solids-polymer interactions on the properties of some aqueous-based tablet film coating formulations. I. Moisture permeability. Int. J. Pharm. 1984, 22, 265–272. [Google Scholar]
- Okhamafe, A.O.; York, P. Studies on the moisture permeation process in some pigmented aqueous-based tablet film coats. Pharm Acta Helv. 1985, 60, 92–96. [Google Scholar] [PubMed]
- Hsu, E.R.; Gebert, M.S.; Becker, N.T.; Gaertner, A.L. The effects of plasticizers and titanium dioxide on the properties of poly(vinyl alcohol) coatings. Pharm. Dev. Technol. 2001, 6, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, F.; Siepmann, J.; Walther, M.; MacRae, R.J.; Bodmeier, R. Polymer blends used for the aqueous coating of solid dosage forms: Importance of the type of plasticizer. J. Control. Release 2004, 99, 1–13. [Google Scholar] [CrossRef]
- Lecomte, F.; Siepmann, J.; Walther, M.; MacRae, R.J.; Bodmeier, R. Polymer blends for controlled release coatings. J. Control. Release 2008, 125, 1–15. [Google Scholar]
- Herrlich, S.; Spieth, S.; Messner, S.; Zengerle, R. Osmotic micropumps for drug delivery. Adv. Drug Deliv. Rev. 2012, 64, 1617–1627. [Google Scholar] [CrossRef]
- Sapna, N.; Makhija, P.R.V. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine: I. Cellulose acetate as a semipermeable membrane. J. Control. Release 2003, 89, 5–18. [Google Scholar]
- Andersson, H.; Hjärtstam, J.; Stading, M.; von Corswant, C.; Larsson, A. Effects of molecular weight on permeability and microstructure of mixed ethyl-hydroxypropyl-cellulose films. Eur. J. Pharm. Sci. 2013, 48, 240–248. [Google Scholar] [CrossRef]
- Pearnchob, N.; Siepmann, J.; Bodmeier, R. Pharmaceutical Applications of Shellac: Moisture-Protective and Taste-Masking Coatings and Extended-Release Matrix Tablets. Drug Dev. Ind. Pharm. 2003, 29, 925–938. [Google Scholar] [CrossRef]
- Satturwar, P.M.; Fulzele, S.V.; Joshi, S.B.; Dorle, A.K. Evaluation of the Film-Forming Property of Hydrogenated Rosin. Drug Dev. Ind. Pharm. 2003, 29, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Palakurthi, S. Zein in controlled drug delivery and tissue engineering. J. Control. Release 2014, 189, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, L.; Che, X.; Zhang, H.; Shi, N.; Li, C.; Chen, Y.; Kong, W. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. J. Control. Release 2015, 206, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Felton, L.A. Mechanisms of polymeric film formation. Int. J. Pharm. 2013, 457, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Macchi, E.; Felton, L.A. Influence of relative humidity during coating on polymer deposition and film formation. Int. J. Pharm. 2016, 510, 116–124. [Google Scholar] [CrossRef]
- Okhamafe, A.O.; York, P. Analysis of the permeation and mechanical characteristics of some aqueous-based film coating systems. Pharm Acta Helv. 1983, 35, 409–415. [Google Scholar] [CrossRef]
- Bley, O.; Siepmann, J.; Bodmeier, R. Protection of moisture-sensitive drugs with aqueous polymer coatings: Importance of coating and curing conditions. Int. J. Pharm. 2009, 378, 59–65. [Google Scholar] [CrossRef]
- Bley, O.; Siepmann, J.; Bodmeier, R. Importance of glassy-to-rubbery state transitions in moisture-protective polymer coatings. Eur. J. Pharm. Sci. 2009, 73, 146–153. [Google Scholar] [CrossRef]
- Mwesigwa, E.; Basit, A.W. An investigation into moisture barrier film coating efficacy and its relevance to drug stability in solid dosage forms. Int. J. Pharm. 2016, 497, 70–77. [Google Scholar] [CrossRef]
- Penhasi, A.; Elias, M.; Eshtauber, E.; Naiman-Nissenboim, H.; Reuveni, A.; Baluashvili, I. A novel hybrid solid dispersion film coat as a moisture barrier for pharmaceutical applications. J. Drug Deliv. Sci. Technol. 2017, 40, 105–115. [Google Scholar] [CrossRef]
- Kasai, T.; Eguchi, T.; Ishiwaki, N.; Kaneshige, J.; Ozeki, T.; Yuasa, H. Application of acid-treated yeast cell wall (AYC) as a pharmaceutical additive: I. AYC as a novel coating material. Int. J. Pharm. 2000, 204, 53–59. [Google Scholar] [CrossRef]
- Li, X.N.; Guo, H.X.; Heinamaki, J. Aqueous coating dispersion (pseudolatex) of zein improves formulation of sustained-release tablets containing very water-soluble drug. J. Colloid Interface Sci. 2010, 345, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Heinämäki, J.; Halenius, A.; Paavo, M.; Alakurtti, S.; Pitkänen, P.; Pirttimaa, M.; Paaver, U.; Kirsimäe, K.; Kogermann, K.; Yliruusi, J. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. Int. J. Pharm. 2015, 489, 91–99. [Google Scholar] [CrossRef] [PubMed]
- López, E.V.; Álvarez, A.L.; Méndez, J.B.; Espinar, F.J.O. Cellulose-polysaccharide film-coating of cyclodextrin based pellets for controlled drug release. J. Drug Deliv. Sci. Technol. 2017, 42, 273–283. [Google Scholar] [CrossRef]
- Luangtana-anan, M.; Soradech, S.; Saengsod, S.; Nunthanid, J.; Limmatvapirat, S. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer. J. Food Sci. Technol. 2017, 82, 2915–2925. [Google Scholar] [CrossRef] [PubMed]
- Fukui, E.; Uemura, K.; Kobayashi, M. Studies on applicability of press-coated tablets using hydroxypropylcellulose (HPC) in the outer shell for timed-release preparations. J. Control. Release 2000, 68, 215–223. [Google Scholar] [CrossRef]
- Huang, H.; Wu, Z.; Qi, X.; Zhang, H.; Chen, Q.; Xing, J.; Chen, H.; Rui, Y. Compression-coated tablets of glipizide using hydroxypropylcellulose for zero-order release: In vitro and in vivo evaluation. Int. J. Pharm. 2013, 446, 211–218. [Google Scholar] [CrossRef]
- Ando, M.; Ito, R.; Ozeki, Y.; Nakayama, Y.; Nabeshima, T. Evaluation of a novel sugar coating method for moisture protective tablets. Int. J. Pharm. 2007, 336, 319–328. [Google Scholar] [CrossRef]
- Vincent, J.; Yvonne, C. Hot-melt coating with lipid excipients. Int. J. Pharm. 2013, 457, 480–487. [Google Scholar]
- Chen, H.; Shi, S.; Liu, A.; Tang, X. Combined application of extrusion-spheronization and hot-melt coating technologies for improving moisture-proofing of herbal extracts. J. Pharm. Sci. 2010, 99, 2444–2454. [Google Scholar] [CrossRef]
- Cerea, M.; Zheng, W.; Young, C.R.; McGinity, J.W. A novel powder coating process for attaining taste masking and moisture protective films applied to tablets. Int. J. Pharm. 2004, 279, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Ma, Y.; Zhu, J.; Chow, K.; Shi, K. An update on electrostatic powder coating for pharmaceuticals. China Particuology 2017, 31, 1–7. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Shi, K.; Yang, G.; Zhu, J. Electrostatic coated controlled porosity osmotic pump with ultrafine powders. Powder Technol. 2018, 333, 71–77. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Zhu, J. Dry powder coated osmotic drug delivery system. Eur. J. Pharm. Sci. 2018, 111, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Luo, Y.; Ma, Y.; Zhang, H. Direct Coating Solid Dosage Forms Using Powdered Materials. U.S. 7862848 B2, 4 January 2012. [Google Scholar]
- Prasad, L.K.; McGinity, J.W.; Williams, R.O. Electrostatic powder coating: Principles and pharmaceutical applications. Int. J. Pharm. 2016, 505, 289–302. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, L.; Yuan, F.; Fu, H.; Shan, W. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference. Int. J. Pharm. 2018, 543, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Luo, Y.; Zhang, L.; Ma, Y.; Stephenson, T.S.; Zhu, J. Sustained release coating of tablets with Eudragit® RS/RL using a novel electrostatic dry powder coating process. Int. J. Pharm. 2010, 399, 37–43. [Google Scholar] [CrossRef]
- Qiao, M.; Zhang, L.; Ma, Y.; Zhu, J.; Xiao, W. A novel electrostatic dry coating process for enteric coating of tablets with Eudragit® L100-55. Eur. J. Pharm. Biopharm. 2013, 83, 293–300. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Zhu, J. Applying a novel electrostatic dry powder coating technology to pellets. Eur. J. Pharm. Biopharm. 2015, 97, 118–124. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Zhu, J. Sustained drug release from electrostatic powder coated tablets with ultrafine ethylcellulose powders. Adv. Powder Technol. 2016, 27, 2145–2152. [Google Scholar] [CrossRef]
- Qiao, M.; Zhang, L.; Ma, Y.; Zhu, J.; Chow, K. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: Immediate release coatings for tablets. Eur. J. Pharm. Biopharm. 2010, 76, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.; Ehmann, H.M.A.; Coclite, A.M.; Werzer, O. Polymer Encapsulation of an Amorphous Pharmaceutical by initiated Chemical Vapor Deposition for Enhanced Stability. ACS Appl. Mater. Interfaces 2016, 8, 21177–21184. [Google Scholar]
- Perrotta, A.; Werzer, O.; Coclite, A.M. Strategies for Drug Encapsulation and Controlled Delivery Based on Vapor-Phase Deposited Thin Films. Adv. Eng. Mater. 2017, 20, 1700639. [Google Scholar] [CrossRef]
- Zhu, J.; Jing, Z.; Ynag, Q.; Ma, Y.; Chow, K.; Shi, K. CHAPTER 16 Dry Powder Coating of Pharmaceutical Solid Dosages. In Green Chemistry for Surface Coatings, Inks and Adhesives: Sustainable Applications; The Royal Society of Chemistry: London, UK, 2019; pp. 395–418. [Google Scholar]
Type | Trademark | Polymer | Manufacturer |
---|---|---|---|
Water-soluble polymers | Opadry® AMB | Polyvinyl alcohol (PVA) | Colorcon (Harleysville, PA, USA) |
Methocel® E3/E5/E6/E15 | Hydroxypropyl methyl cellulose (HPMC) | Dow Chemical (Midland, MI, USA) | |
Walocel® HM 3 PA/HM 5 PA/HM 6 PA/HM 15 PA | Dow Wolff Cellulosics (Mitterland, MI, USA) | ||
Pharmacoat® 603/606/615/645 | Shin-Etsu (Tokyo, Japan) | ||
Sepifilm® LP | Seppic (Castres Cedex, France) | ||
Oxycellulose, Natrosol | Hydroxyethyl cellulose (HEC) | Ashland Aqualon (Covington, Kentucky, USA) | |
Kollicoat® IR Protect | Polyvinyl alcohol–polyethylene glycol (PVA–PEG copolymer) | BASF (Ludwigshafen, Germany) | |
Kollicoat® IR AquaPolish® | Polyvinyl alcohol–polyethylene glycol (PVA–PEG) | BASF (Ludwigshafen, Germany) BioGrund | |
Kollicoat® Smartseal 30D | Methyl methacrylate and diethylamino–ethyl ethacrylate copolymer dispersion | BASF (Ludwigshafen, Germany) | |
Klucel™ | Hydroxypropyl cellulose (HPC) | Ashland (Covington, Kentucky, USA) | |
Insoluble polymers | Kollicoat® SR 30 D | Polyvinyl acetate | BASF (Ludwigshafen, Germany) |
Auqacoat® ECD | Ethyl cellulose | FMC (Philadelphia, PA, USA) | |
Surelease® (Fertigprodukt) | Colorcon (Harleysville, PA, USA) | ||
EthocelTM | Dow Chemical (Mitterland, MI, USA) | ||
Eastman CA | Cellulose acetate | Eastman (Rochester, MN, USA) | |
Eudragit® RL/ RS 30 D Eudragit® RL/ RS 12.5 Eudragit® RL/ RS 100 Eudragit® RL/ RS PO | Ammonio methacrylate | Evonik (Essen, Germany) | |
Aquapolish® R | Ammonio methacrylate copolymer (type A and type B) | Biogrund (Hünstetten, Germany) | |
Eudragit® NE 30 D Eudragit® NM 30 D | Poly (ethyl acrylate–co-methyl methacrylate) 2:1 | Evonik (Essen, Germany) | |
Entero-soluble polymers | SSB 55 Pharma | Shellac | Chineway (Shanghai, China) |
Aquacoat® CPD | Cellulose acetate phthalate (CAP) | FMC (Philadelphia, PA, USA) | |
Eastman C-A-P NF | Eastman (Rochester, MN, USA) | ||
CAB Eastman | Cellulose acetate butyrate (CAB) | Eastman (Rochester, MN, USA) | |
Eudragit® L30D-55/ L 100-55 | Methacrylic acid copolymer, Type A | Evonik (Essen, Germany) | |
Eastacryl 30 D NF | Eastman (Rochester, MN, USA) | ||
Kollicoat® MAE 30 DP/100 P | BASF (Ludwigshafen, Germany) | ||
Eudragit® L 12.5/ L 100 | Methacrylic acid copolymer, Type B | Evonik (Essen, Germany) | |
Eudragit® S 12.5/ S 100 | Methacrylic acid copolymer, Type C | Evonik (Essen, Germany) | |
Eudragit® FS 30 D | Methacrylic acid copolymer | Evonik (Essen, Germany) | |
Kollicoat® Smartseal 30 D | Amino diethyl–methacrylate copolymer | BASF (Ludwigshafen, Germany) | |
Eudragit® ®E/ E 12.5 Eudragit® E PO | Amino dimethyl methacrylate copolymer | Evonik (Essen, Germany) | |
Aquapolish® E | Acrylic acid copolymer | Biogrund (Hünstetten, Germany) | |
Keltone LV CR | Sodium alginate | FMC (Philadelphia, PA, USA) | |
Akucell | Carboxymethyl cellulose CMC | Ashland Aqualon (Covington, Kentucky, USA) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Yuan, F.; Xu, L.; Yan, Q.; Yang, Y.; Wu, D.; Guo, F.; Yang, G. An Update of Moisture Barrier Coating for Drug Delivery. Pharmaceutics 2019, 11, 436. https://doi.org/10.3390/pharmaceutics11090436
Yang Q, Yuan F, Xu L, Yan Q, Yang Y, Wu D, Guo F, Yang G. An Update of Moisture Barrier Coating for Drug Delivery. Pharmaceutics. 2019; 11(9):436. https://doi.org/10.3390/pharmaceutics11090436
Chicago/Turabian StyleYang, Qingliang, Feng Yuan, Lei Xu, Qinying Yan, Yan Yang, Danjun Wu, Fangyuan Guo, and Gensheng Yang. 2019. "An Update of Moisture Barrier Coating for Drug Delivery" Pharmaceutics 11, no. 9: 436. https://doi.org/10.3390/pharmaceutics11090436
APA StyleYang, Q., Yuan, F., Xu, L., Yan, Q., Yang, Y., Wu, D., Guo, F., & Yang, G. (2019). An Update of Moisture Barrier Coating for Drug Delivery. Pharmaceutics, 11(9), 436. https://doi.org/10.3390/pharmaceutics11090436