Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing
Abstract
:1. Introduction
2. Experimental Section
2.1. Samples
Patient | Plasma | PBMC Pellet | Outer PCR Product * |
---|---|---|---|
AR01 | no | yes | yes |
AR05 | yes | no | yes |
AR06 | yes | no | no |
AR07 | yes | yes | yes |
2.2. RNA Extraction
2.3. DNA Extraction
2.4. Reverse Transcription and PCR Amplification
2.5. Purification and Quantification
2.6. Fragmentation
2.7. Sequencing and Data Analysis
3. Results
3.1. emPCR/Sequencing Associated Variability
Patient | Sample | 1% | 5% | 10% |
---|---|---|---|---|
emPCR/sequencing | ||||
AR01 | PBMC inner PCR | 86.78 | 99.41 | 99.92 |
AR05 | plasma outer PCR | 92.56 | 99.30 | 99.88 |
AR06 | plasma outer PCR | 85.69 | 98.72 | 99.84 |
plasma inner PCR 1a-2a | 84.03 | 98.17 | 99.59 | |
plasma inner PCR 1b-2b | 87.89 | 98.38 | 99.63 | |
AR07 | PBMC outer PCR | 88.21 | 98.61 | 99.65 |
plasma outer PCR | 90.48 | 98.51 | 99.53 | |
average | 87.94 | 98.73 | 99.72 | |
fragmentation method | ||||
AR01 | PBMC inner PCR | 78.90 | 96.34 | 99.29 |
plasma inner PCR | 90.30 | 98.68 | 99.61 | |
AR05 | plasma inner PCR | 88.90 | 99.14 | 99.80 |
AR06 | plasma inner PCR | 81.80 | 97.97 | 99.49 |
AR07 | PBMC inner PCR | 85.66 | 97.33 | 99.07 |
average | 85.11 | 97.89 | 99.45 |
3.2. Comparison of Nextera™ with Standard Shearing
3.3. Resistance Profiling
4. Discussion
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Palmer, S.; Kearney, M.; Maldarelli, F.; Halvas, E.K.; Bixby, C.J.; Bazmi, H.; Rock, D.; Falloon, J.; Davey, R.T., Jr.; Dewar, R.L.; et al. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J. Clin. Microbiol. 2005, 43, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, R.; Demeter, L.; Reichelderfer, P.; Tijnagel, J.; de Groot, T.; Boucher, C. Worldwide evaluation of DNA sequencing approaches for identification of drug resistance mutations in the human immunodeficiency virus type 1 reverse transcriptase. J. Clin. Microbiol. 1999, 37, 2291–2296. [Google Scholar] [PubMed]
- Halvas, E.K.; Aldrovandi, G.M.; Balfe, P.; Beck, I.A.; Boltz, V.F.; Coffin, J.M.; Frenkel, L.M.; Hazelwood, J.D.; Johnson, V.A.; Kearney, M.; et al. Blinded, multicenter comparison of methods to detect a drug-resistant mutant of human immunodeficiency virus type 1 at low frequency. J. Clin. Microbiol. 2006, 44, 2612–2614. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, R.; Brambilla, D.; de Groot, T.; Huang, D.; Land, S.; Bremer, J.; Benders, I.; Boucher, C.A.B.; ENVA Working Group. Underestimation of HIV type 1 drug resistance mutations: Results from the ENVA-2 genotyping proficiency program. AIDS Res. Hum. Retroviruses 2002, 18, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, K.; de Munter, P.; Schrooten, Y.; Verbesselt, R.; van Ranst, M.; van Wijngaerden, E.; Vandamme, A.M. No response to first-line tenofovir+lamivudine+efavirenz despite optimization according to baseline resistance testing: Impact of resistant minority variants on efficacy of low genetic barrier drugs. J. Clin. Virol. 2007, 39, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Geretti, A.M. Low-frequency HIV-1 drug resistance mutations can be clinically significant but must be interpreted with caution. J. Antimicrob. Chemother. 2010, 65, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Li, J.F.; Wei, X.; Lipscomb, J.; Irlbeck, D.; Craig, C.; Smith, A.; Bennett, D.E.; Monsour, M.; Sandstrom, P.; et al. Minority HIV-1 drug resistance mutations are present in antiretroviral treatment-naïve populations and associate with reduced treatment efficacy. PLoS Med. 2008, 5. [Google Scholar] [CrossRef] [PubMed]
- Delobel, P.; Saliou, A.; Nicot, F.; Dubois, M.; Trancart, S.; Tangre, P.; Aboulker, J.P.; Taburet, A.M.; Molina, J.M.; Massip, P.; et al. Minor HIV-1 variants with the K103N resistance mutation during intermittent efavirenz-containing antiretroviral therapy and virological failure. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Simen, B.B.; Simons, J.F.; Hullsiek, K.H.; Novak, R.M.; Macarthur, R.D.; Baxter, J.D.; Huang, C.; Lubeski, C.; Turenchalk, G.S.; Braverman, M.S.; et al. Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. J. Infect. Dis. 2009, 199, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Lataillade, M.; Chiarella, J.; Yang, R.; Schnittman, S.; Wirtz, V.; Mancini, M.; Uy, J.; Seekins, D.; Krystal, M.; McGrath, D.; et al. Prevalence and Clinical Significance of Transmitted Drug-Resistant (TDR) HIV Mutations by Ultra-Deep Sequencing (UDS) in HIV-Infected ARV-Naive Subjects in CASTLE Study; Antiviral Therapy: London, UK, 2009; Volume 14, p. A44. [Google Scholar]
- Stekler, J.D.; Ellis, G.M.; Carlsson, J.; Eilers, B.; Holte, S.; Maenza, J.; Stevens, C.E.; Collier, A.C.; Frenkel, L.M. Prevalence and impact of minority variant drug resistance mutations in primary HIV-1 infection. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Peuchant, O.; Thiébaut, R.; Capdepont, S.; Lavignolle-Aurillac, V.; Neau, D.; Morlat, P.; Dabis, F.; Fleury, H.; Masquelier, B.; ANRS CO3 Aquitaine Cohort. Transmission of HIV-1 minority-resistant variants and response to first-line antiretroviral therapy. AIDS 2008, 22, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Cozzi-Lepri, A.; Noguera-Julian, M.; di Giallonardo, F.; Schuurman, R.; Däumer, M.; Aitken, S.; Ceccherini-Silberstein, F.; D’Arminio Monforte, A.; Geretti, A.M.; Booth, C.L.; et al. Low-frequency drug-resistant HIV-1 and risk of virological failure to first-line NNRTI-based ART: A multicohort European case-control study using centralized ultrasensitive 454 pyrosequencing. J. Antimicrob. Chemother. 2015, 70, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Wittkop, L.; Günthard, H.F.; de Wolf, F.; Dunn, D.; Cozzi-Lepri, A.; de Luca, A.; Kücherer, C.; Obel, N.; von Wyl, V.; Masquelier, B.; et al. Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): A European multicohort study. Lancet Infect. Dis. 2011, 11, 363–371. [Google Scholar] [CrossRef]
- Little, S.J.; Holte, S.; Routy, J.P.; Daar, E.S.; Markowitz, M.; Collier, A.C.; Koup, R.A.; Mellors, J.W.; Connick, E.; Conway, B.; et al. Antiretroviral-drug resistance among patients recently infected with HIV. N. Engl. J. Med. 2002, 347, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.L.; Geretti, A.M. Prevalence and determinants of transmitted antiretroviral drug resistance in HIV-1 infection. J. Antimicrob. Chemother. 2007, 59, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Dongning, W. Minor-drug-resistant HIV populations and treatment failure. Future Virol. 2007, 2, 293–302. [Google Scholar] [CrossRef]
- Cane, P.A. New developments in HIV drug resistance. J. Antimicrob. Chemother. 2009, 64, i37–i40. [Google Scholar] [CrossRef] [PubMed]
- Bimber, B.N.; Dudley, D.M.; Lauck, M.; Becker, E.A.; Chin, E.N.; Lank, S.M.; Grunenwald, H.L.; Caruccio, N.C.; Maffitt, M.; Wilson, N.A.; et al. Whole-genome characterization of human and simian immunodeficiency virus intrahost diversity by ultradeep pyrosequencing. J. Virol. 2010, 84, 12087–12092. [Google Scholar] [CrossRef] [PubMed]
- Willerth, S.M.; Pedro, H.A.M.; Pachter, L.; Humeau, L.M.; Arkin, A.P.; Schaffer, D.V. Development of a low bias method for characterizing viral populations using next generation sequencing technology. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Gall, A.; Ferns, B.; Morris, C.; Watson, S.; Cotten, M.; Robinson, M.; Berry, N.; Pillay, D.; Kellam, P. Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes. J. Clin. Microbiol. 2012, 50, 3838–3844. [Google Scholar] [CrossRef] [PubMed]
- Henn, M.R.; Boutwell, C.L.; Charlebois, P.; Lennon, N.J.; Power, K.A.; Macalalad, A.R.; Berlin, A.M.; Malboeuf, C.M.; Ryan, E.M.; Gnerre, S.; et al. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog. 2012, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R.M.; Meyer, A.M.; Winner, D.; Archer, J.; Feyertag, F.; Ruiz-Mateos, E.; Leal, M.; Robertson, D.L.; Schmotzer, C.L.; Quiñones-Mateu, M.E. Sensitive deep-sequencing-based HIV-1 genotyping assay to simultaneously determine susceptibility to protease, reverse transcriptase, integrase, and maturation inhibitors, as well as HIV-1 coreceptor tropism. Antimicrob. Agents Chemother. 2014, 58, 2167–2185. [Google Scholar] [CrossRef] [PubMed]
- Cuypers, L.; Snoeck, J.; Vrancken, B.; Kerremans, L.; Vuagniaux, G.; Verbeeck, J.; Nevens, F.; Camacho, R.J.; Vandamme, A.M.; van Dooren, S. A near-full length genotypic assay for HCV1b. J. Virol. Methods 2014, 209, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Batty, E.M.; Wong, T.H.N.; Trebes, A.; Argoud, K.; Attar, M.; Buck, D.; Ip, C.L.C.; Golubchik, T.; Cule, M.; Bowden, R.; et al. A modified RNA-Seq approach for whole genome sequencing of RNA viruses from faecal and blood samples. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Malboeuf, C.M.; Yang, X.; Charlebois, P.; Qu, J.; Berlin, A.M.; Casali, M.; Pesko, K.N.; Boutwell, C.L.; DeVincenzo, J.P.; Ebel, G.D.; et al. Complete viral RNA genome sequencing of ultra-low copy samples by sequence-independent amplification. Nucleic Acids Res. 2013, 41. [Google Scholar] [CrossRef] [PubMed]
- Vrancken, B.; Lequime, S.; Theys, K.; Lemey, P. Covering all bases in HIV research: Unveiling a hidden world of viral evolution. AIDS Rev. 2010, 12, 89–102. [Google Scholar] [PubMed]
- Hoffmann, C.; Minkah, N.; Leipzig, J.; Wang, G.; Arens, M.Q.; Tebas, P.; Bushman, F.D. DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations. Nucleic Acids Res. 2007, 35. [Google Scholar] [CrossRef] [PubMed]
- Karrer, E.E.; Lincoln, J.E.; Hogenhout, S.; Bennett, A.B.; Bostock, R.M.; Martineau, B.; Lucas, W.J.; Gilchrist, D.G.; Alexander, D. In situ isolation of mRNA from individual plant cells: Creation of cell-specific cDNA libraries. Proc. Natl. Acad. Sci. USA 1995, 92, 3814–3818. [Google Scholar] [CrossRef] [PubMed]
- Polz, M.F.; Cavanaugh, C.M. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 1998, 64, 3724–3730. [Google Scholar] [PubMed]
- Vrancken, B.; Lemey, P. High-throughput HIV sequencing: Evolution in 2D. Future Virol. 2011, 6, 417–420. [Google Scholar] [CrossRef]
- Bracho, M.A.; García-Robles, I.; Jiménez, N.; Torres-Puente, M.; Moya, A.; González-Candelas, F. Effect of oligonucleotide primers in determining viral variability within hosts. Virol. J. 2004, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, A.F.Y.; Swenson, L.C.; Dong, W.W.Y.; Deng, W.; Kosakovsky Pond, S.L.; Brumme, Z.L.; Mullins, J.I.; Richman, D.D.; Harrigan, P.R.; Frost, S.D.W. Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. Mol. Biol. Evol. 2010, 27, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, I.; Marck, H.V.; Mostmans, W.; Eygen, V.V.; Rondelez, E.; Thys, K.; van Baelen, K.; Fransen, K.; Vaira, D.; Kabeya, K.; et al. HIV-1 V3 envelope deep sequencing for clinical plasma specimens failing in phenotypic tropism assays. AIDS Res. Ther. 2010, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, K.D.; Brenner, S.E.; Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 2010, 38. [Google Scholar] [CrossRef] [PubMed]
- Poptsova, M.S.; Il’icheva, I.A.; Nechipurenko, D.Y.; Panchenko, L.A.; Khodikov, M.V.; Oparina, N.Y.; Polozov, R.V.; Nechipurenko, Y.D.; Grokhovsky, S.L. Non-random DNA fragmentation in next-generation sequencing. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Marine, R.; Polson, S.W.; Ravel, J.; Hatfull, G.; Russell, D.; Sullivan, M.; Syed, F.; Dumas, M.; Wommack, K.E. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA. Appl. Environ. Microbiol. 2011, 77, 8071–8079. [Google Scholar] [CrossRef] [PubMed]
- Covens, K.; Dekeersmaeker, N.; Schrooten, Y.; Weber, J.; Schols, D.; Quiñones-Mateu, M.E.; Vandamme, A.M.; van Laethem, K. Novel recombinant virus assay for measuring susceptibility of human immunodeficiency virus type 1 group M subtypes to clinically approved drugs. J. Clin. Microbiol. 2009, 47, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, J.; Riva, C.; Steegen, K.; Schrooten, Y.; Maes, B.; Vergne, L.; van Laethem, K.; Peeters, M.; Vandamme, A.M. Optimization of a genotypic assay applicable to all human immunodeficiency virus type 1 protease and reverse transcriptase subtypes. J. Virol. Methods 2005, 128, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, K.; Schrooten, Y.; Covens, K.; Dekeersmaeker, N.; de Munter, P.; van Wijngaerden, E.; van Ranst, M.; Vandamme, A.M. A genotypic assay for the amplification and sequencing of integrase from diverse HIV-1 group M subtypes. J. Virol. Methods 2008, 153, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, K.; Schrooten, Y.; Dedecker, S.; van Heeswijck, L.; Deforche, K.; van Wijngaerden, E.; van Ranst, M.; Vandamme, A.M. A genotypic assay for the amplification and sequencing of gag and protease from diverse human immunodeficiency virus type 1 group M subtypes. J. Virol. Methods 2006, 132, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, K.; Schrooten, Y.; Vandamme, A.M. In-house developed amplification protocols for Vif-Vpr-Vpu and Nef. Unpublished data. 2015. [Google Scholar]
- Van Laethem, K.; Schrooten, Y.; Lemey, P.; Covens, K.; Dekeersmaeker, N.; van Ranst, M.; van Wijngaerden, E.; Vandamme, A.M. Transmission cluster of dual-class resistant HIV-1 in untreated patients. In Proceedings of The 13th International BioInformatics Workshop on Virus Evolution and Molecular Epidemiology, Lisbon, Portugal, 9–14 September 2007.
- Bioinformatics at COMAV. Available online: https://bioinf.comav.upv.es/ (accessed on 6 January 2016).
- Archer, J.; Baillie, G.; Watson, S.J.; Kellam, P.; Rambaut, A.; Robertson, D.L. Analysis of high-depth sequence data for studying viral diversity: A comparison of next generation sequencing platforms using Segminator II. BMC Bioinform. 2012, 13. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Charlebois, P.; Gnerre, S.; Coole, M.G.; Lennon, N.J.; Levin, J.Z.; Qu, J.; Ryan, E.M.; Zody, M.C.; Henn, M.R. De novo assembly of highly diverse viral populations. BMC Genom. 2012, 13. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Alvarez, V.; Teal, T.K.; Schmidt, T.M. Systematic artifacts in metagenomes from complex microbial communities. ISME J. 2009, 3, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Gilles, A.; Meglécz, E.; Pech, N.; Ferreira, S.; Malausa, T.; Martin, J.F. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genom. 2011, 12. [Google Scholar] [CrossRef] [PubMed]
- Shafer, R.W. Rationale and uses of a public HIV drug-resistance database. J. Infect. Dis. 2006, 194, S51–S58. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.E.; Camacho, R.J.; Otelea, D.; Kuritzkes, D.R.; Fleury, H.; Kiuchi, M.; Heneine, W.; Kantor, R.; Jordan, M.R.; Schapiro, J.M.; et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 Update. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Bellecave, P.; Recordon-Pinson, P.; Papuchon, J.; Vandenhende, M.A.; Reigadas, S.; Tauzin, B.; Fleury, H. Detection of low-frequency HIV type 1 reverse transcriptase drug resistance mutations by ultradeep sequencing in naive HIV type 1-infected individuals. AIDS Res. Hum. Retroviruses 2014, 30, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Diaz, A.; Guerrero-Ramos, A.; McCormick, A.L.; Macartney, M.; Conibear, T.; Johnson, M.A.; Haque, T.; Webster, D.P. Evaluation of the Roche prototype 454 HIV-1 ultradeep sequencing drug resistance assay in a routine diagnostic laboratory. J. Clin. Virol. 2013, 58, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Mateu, M.E.; Avila, S.; Reyes-Teran, G.; Martinez, M.A. Deep sequencing: Becoming a critical tool in clinical virology. J. Clin. Virol. 2014, 61, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, K.; Theys, K.; Vandamme, A.M. HIV-1 genotypic drug resistance testing: Digging deep, reaching wide? Curr. Opin. Virol. 2015, 14, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Knierim, E.; Lucke, B.; Schwarz, J.M.; Schuelke, M.; Seelow, D. Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Jabara, C.B.; Jones, C.D.; Roach, J.; Anderson, J.A.; Swanstrom, R. Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. Proc. Natl. Acad. Sci. USA 2011, 108, 20166–20171. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.W.; Kennedy, S.R.; Salk, J.J.; Fox, E.J.; Hiatt, J.B.; Loeb, L.A. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl. Acad. Sci. USA 2012, 109, 14508–14513. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.I.; Hussmann, J.A.; McBee, R.M.; Acevedo, A.; Andino, R.; Press, W.H.; Sawyer, S.L. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 19872–19877. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, A.; Andino, R. Library preparation for highly accurate population sequencing of RNA viruses. Nat. Protoc. 2014, 9, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Morey, M.; Fernández-Marmiesse, A.; Castiñeiras, D.; Fraga, J.M.; Couce, M.L.; Cocho, J.A. A glimpse into past, present, and future DNA sequencing. Mol. Genet. Metab. 2013, 110, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Leek, J.T.; Scharpf, R.B.; Bravo, H.C.; Simcha, D.; Langmead, B.; Johnson, W.E.; Geman, D.; Baggerly, K.; Irizarry, R.A. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 2010, 11, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Robasky, K.; Lewis, N.E.; Church, G.M. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 2014, 15, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Boltz, V.F.; Bao, Y.; Lockman, S.; Halvas, E.K.; Kearney, M.F.; McIntyre, J.A.; Schooley, R.T.; Hughes, M.D.; Coffin, J.M.; Mellors, J.W.; et al. Low-frequency nevirapine (NVP)-resistant HIV-1 variants are not associated with failure of antiretroviral therapy in women without prior exposure to single-dose NVP. J. Infect. Dis. 2014, 209, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Balduin, M.; Oette, M.; Däumer, M.P.; Hoffmann, D.; Pfister, H.J.; Kaiser, R. Prevalence of minor variants of HIV strains at reverse transcriptase position 103 in therapy-naïve patients and their impact on the virological failure. J. Clin. Virol. 2009, 45, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Vingerhoets, J.; Rimsky, L.; van Eygen, V.; Nijs, S.; Vanveggel, S.; Boven, K.; Picchio, G. Pre-existing mutations in the rilpivirine Phase III trials ECHO and THRIVE: Prevalence and impact on virological response. Antivir. Ther. 2013, 18, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Wensing, A.M.; Calvez, V.; Günthard, H.F.; Johnson, V.A.; Paredes, R.; Pillay, D.; Shafer, R.W.; Richman, D.D. 2014 Update of the drug resistance mutations in HIV-1. Top Antivir. Med. 2014, 22, 642–650. [Google Scholar] [PubMed]
- Li, J.Z.; Paredes, R.; Ribaudo, H.J.; Svarovskaia, E.S.; Metzner, K.J.; Kozal, M.J.; Hullsiek, K.H.; Balduin, M.; Jakobsen, M.R.; Geretti, A.M.; et al. Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: A systematic review and pooled analysis. JAMA 2011, 305, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Gega, A.; Kozal, M.J. New technology to detect low-level drug-resistant HIV variants. Future Virol. 2011, 6, 17–26. [Google Scholar] [CrossRef]
- Gianella, S.; Richman, D.D. Minority variants of drug-resistant HIV. J. Infect. Dis. 2010, 202, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Codoñer, F.M.; Pou, C.; Thielen, A.; García, F.; Delgado, R.; Dalmau, D.; Álvarez-Tejado, M.; Ruiz, L.; Clotet, B.; Paredes, R. Added value of deep sequencing relative to population sequencing in heavily pre-treated HIV-1-infected subjects. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Penaranda, G.; Gonzalez, D.; Camus, C.; Khiri, H.; Boulmé, R.; Sayada, C.; Philibert, P.; Olive, D.; Halfon, P. Comparison of ultra-deep versus Sanger sequencing detection of minority mutations on the HIV-1 drug resistance interpretations after virological failure. AIDS 2014, 28, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Todesco, E.; Rodriguez, C.; Morand-Joubert, L.; Mercier-Darty, M.; Desire, N.; Wirden, M.; Girard, P.M.; Katlama, C.; Calvez, V.; Marcelin, A.G. Improved detection of resistance at failure to a tenofovir, emtricitabine and efavirenz regimen by ultradeep sequencing. J. Antimicrob. Chemother. 2015, 70, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Pou, C.; Noguera-Julian, M.; Pérez-Álvarez, S.; García, F.; Delgado, R.; Dalmau, D.; Álvarez-Tejado, M.; Gonzalez, D.; Sayada, C.; Chueca, N.; et al. Improved prediction of salvage antiretroviral therapy outcomes using ultrasensitive HIV-1 drug resistance testing. Clin. Infect. Dis. 2014, 59, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Fun, A.; Wensing, A.M.J.; Verheyen, J.; Nijhuis, M. Human immunodeficiency virus gag and protease: Partners in resistance. Retrovirology 2012, 9. [Google Scholar] [CrossRef] [PubMed]
- Flynn, W.F.; Chang, M.W.; Tan, Z.; Oliveira, G.; Yuan, J.; Okulicz, J.F.; Torbett, B.E.; Levy, R.M. Deep sequencing of protease inhibitor resistant HIV patient isolates reveals patterns of correlated mutations in Gag and protease. PLoS Comput. Biol. 2015, 11. [Google Scholar] [CrossRef] [PubMed]
- Zagordi, O.; Däumer, M.; Beisel, C.; Beerenwinkel, N. Read length versus depth of coverage for viral quasispecies reconstruction. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Giallonardo, F.D.; Töpfer, A.; Rey, M.; Prabhakaran, S.; Duport, Y.; Leemann, C.; Schmutz, S.; Campbell, N.K.; Joos, B.; Lecca, M.R.; et al. Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic Acids Res. 2014, 42. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Boltz, V.F.; Spindler, J.E.; Kearney, M.F.; Maldarelli, F.; Mellors, J.W.; Stewart, C.; Volfovsky, N.; Levitsky, A.; Stephens, R.M.; et al. Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA. Retrovirology 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Mild, M.; Hedskog, C.; Jernberg, J.; Albert, J. Performance of ultra-deep pyrosequencing in analysis of HIV-1 pol gene variation. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrancken, B.; Trovão, N.S.; Baele, G.; Van Wijngaerden, E.; Vandamme, A.-M.; Van Laethem, K.; Lemey, P. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing. Viruses 2016, 8, 12. https://doi.org/10.3390/v8010012
Vrancken B, Trovão NS, Baele G, Van Wijngaerden E, Vandamme A-M, Van Laethem K, Lemey P. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing. Viruses. 2016; 8(1):12. https://doi.org/10.3390/v8010012
Chicago/Turabian StyleVrancken, Bram, Nídia Sequeira Trovão, Guy Baele, Eric Van Wijngaerden, Anne-Mieke Vandamme, Kristel Van Laethem, and Philippe Lemey. 2016. "Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing" Viruses 8, no. 1: 12. https://doi.org/10.3390/v8010012