Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. STaR Study Design
2.2. FDA Snapshot Outcome
2.3. Resistance Analysis Population (RAP)
2.4. Deep Sequencing Sample Selection
2.5. Virology Assessments
2.5.1. Deep Sequencing Assay
2.5.2. Deep Sequencing Analysis
2.5.3. Population Sequencing Assay
2.5.4. Viral Load Assay
2.5.5. Mutant Copy Number
3. Results
Characteristic | RPV/FTC/TDF RAP N = 24 | EFV/FTC/TDF RAP N = 9 | Non-RAP Controls N = 118 |
---|---|---|---|
Median age, years (IQR) | 37 (31, 45) | 28 (22, 33) | 40 (31, 47) |
Male, % | 96% | 89% | 91% |
White race, % | 50% | 44% | 62% |
Mean baseline CD4 cell count, cells/mm3 (SD) | 253 (199) | 370 (175) | 329 (206) |
Mean baseline HIV-1 RNA, log10 copies/mL (SD) | 5.9 (6.2) | 5.4 (5.7) | 5.7 (6.1) |
≤100,000 copies/mL, n (%) | 11 (46%) | 5 (56%) | 52 (44%) |
>100,000 copies/mL, n (%) | 13 (54%) | 4 (44%) | 66 (56%) |
HIV-1 Subtype, n (%) | |||
A | 0 | 0 | 1 (0.85%) |
AE | 0 | 0 | 3 (2.54%) |
AG | 0 | 0 | 1 (0.85%) |
B | 23 (95.8%) | 8 (88.9%) | 102 (86.4%) |
C | 0 | 0 | 3 (2.54%) |
D | 0 | 0 | 1 (0.85%) |
G | 0 | 0 | 2 (1.70%) |
Complex | 1 (4.2%) | 1 (11.1%) | 5 (2.54%) |
RPV/FTC/TDF RAP N = 24 | EFV/FTC/TDF RAP N = 9 | Non-RAP Controls N = 118 | Total N = 151 | |
---|---|---|---|---|
No mutations, n (%) | 24 (100%) | 9 (100%) | 108 (91.5%) | 141 (93.4%) |
Any NRTI-R a or NNRTI-R b n (%) | 0 | 0 | 10 (8.5%) | 10 (6.6%) |
Any NRTI-R, n (%) | 0 | 0 | 3 (2.5%) | 3 (2.0%) |
Any NNRTI-R, n (%) | 0 | 0 | 7 (5.9%) | 7 (4.6%) |
Subject Number a | Baseline HIV-1 RNA (Copies/mL) | NRTI-R b (% Frequency) | NNRTI-R c (% Frequency) | Mutant Copy Number | Week 96 Snapshot Outcome |
---|---|---|---|---|---|
RPV/FTC/TDF | |||||
1 | 3,620,000 | K65R (2.00) | -- | 72,400 | Success |
2 | 562,000 | -- | V108I (2.23) | 12,533 | Success |
3 | 535,000 | -- | E138K (2.11) | 11,289 | Success |
4 | 1,240,000 | -- | Y181C (2.87) | 35,588 | Success |
5 | 92,200 | -- | G190E (3.73) | 3,439 | Success |
6 | 527,000 | -- | M230I (5.31) | 27,984 | Success |
EFV/FTC/TDF | |||||
7 | 61,400 | M41L (12.3) | -- | 7,552 | No data in window d |
8 | 2,500,000 | K219Q (2.36) | -- | 59,000 | Failure e |
9 | 164,000 | -- | L100I (14.6) | 23,944 | Success |
10 | 93,000 | -- | G190E (2.33) | 2,167 | Success |
Subject Number | Baseline HIV-1 RNA (copies/mL) | HIV-1 RNA at VF (copies/mL) | Deep Sequencing | Population Sequencing | ||
---|---|---|---|---|---|---|
NRTI-R a (% Frequency) | NNRTI-R b (% Frequency) | NRTI-R a | NNRTI-R b | |||
RPV/FTC/TDF | ||||||
1 | 2,330,000 | 586,000 | M184V (99) | K101E (64) E138K (11) Y181I (85) | M184V | K101K/E Y181I |
2 | 2,140,000 | 824,000 | D67N (2.4) M184I (>99) | E138K (96) E138Q (4) H221Y (49) | M184I | E138K H221H/Y |
3 | 98,900 | 9,370 | D67N (62) M184V (35) | -- | K65K/R M184M/I/V | -- |
4 | 63,000 | 343,000 | M184V (>99) K219E (5.7) K219N (5.6) | Y181C (>99) | M184V | Y181C |
5 | 12,400 | 70,600 | M184I (>99) K219R (>99) | E138K (34) E138Q (66) H221Y (34) | M184I K219R d | E138K/Q |
6 | 6,410,000 | 1,530,000 | M184I (>99) | K101E (58) E138K (45) Y181C (44) H221Y (42) | M184I | K101K/E E138E/K Y181Y/C H221H/Y |
7 | 2,510,000 | 20,500 | K65R (>99) T69del (24) K219E (>99) | Y181C (99) Y188H (99) | K65R T69T/del K219K/E | Y181C Y188H |
8 | 891,000 | 46,600 | M184V (>99) | K101E (18) Y181I (>99) | M184V | K101K/E Y181I |
9 | 621,000 | 409,000 | M184V (>99) | E138K (>99) Y181I (>99) | M184V | E138K Y181I |
10 | 564,000 | 24,000 | M184I (>99) | E138Q (>99) | M184I | E138K/Q |
11 | 288,000 | 36,500 | Y115F (>99) M184I (99) K219E (69) | K101E (99) | Y115Y/F M184I K219K/E | K101E Y181Y/C |
12 | 215,000 | 24,100 | M184I (>99) | E138K (>99) H221Y (6.1) | M184I | E138K H221H/Y |
13 | 127,000 | 1,120 | K70E (>99) M184I (>99) | E138K (>99) | K70K/E M184I | E138K |
14 | 65,100 | 489 | M184V (64) | V108I (61) F227C (62) | K65K/N M184M/I/V | V108V/I F227F/C M230M/I |
15 | 314,000 | 998 | M184I (>99) | -- | M184I | -- |
16 | 59,100 | 2,750 | M184I (>99) | E138K (>99) | M184I | E138K |
17 | 50,700 | 798 | M184I (>99) | E138K (>99) H221Y (40) | M184I | E138K H221H/Y |
18 | 50,600 | 2,570 | L74V (>99) M184V (>99) | L100I (>99) K103N (99) P225H (99) | L74V M184V | L100I K103N P225H |
19 | 44,400 | 7,590 | M184I (>99) K219E (>99) | K101E (43) Y181C (>99) M230L (>99) | M184I K219E | K101E Y181C M230L |
20 | 10,500 | 1,980 | M184I (>99) | E138K (>99) | M184I | E138K |
21 | 522,000 | 527 | AF | AF | -- | -- |
22 | 60,600 | 518 | AF | AF | -- | -- |
23 | 154,000 | 659 | -- | -- | -- | -- |
24 | 20,600 | 24,700 | -- | -- | -- | -- |
EFV/FTC/TDF | ||||||
1 | 1,440,000 | 192,000 | K65R (7.8) D67N (99) M184I (>99) K219E (50) K219N (2.4) | G190E (55) G190Q (44) H221Y (8.7) | D67N M184I K219K/E | G190E/Q |
2 | 150,000 | 485 | -- | M230L (>99) | -- | -- |
3 | 97,700 | 648 | M184I (>99) | M230L (>99) | M184M/I | M230M/L |
4 | 32,400 | 24,700 | -- | K103N (99) | -- | K103N |
5 | 11,200 | 3,020 | -- | Y188L (>99) | -- | Y188L |
6 | 452,000 | 46,600 | -- | -- | -- | -- |
7 | 161,000 | 205,000 | -- | -- | -- | -- |
8 | 22,500 | 20,100 | -- | -- | -- | -- |
9 | 22,100 | 2,020 | -- | -- | -- | -- |
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Department for Health and Human Services (DHHS). Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. Developed by the Dhhs Panel on Antiretroviral Guidelines for Adults and Adolescents—A Working Group of the Office of Aids Research Advisory Council (OARAC). Available online: http://aidsinfo.Nih.Gov/guidelines (accessed on 5 November 2015).
- Li, J.Z.; Paredes, R.; Ribaudo, H.J.; Kozal, M.J.; Svarovskaia, E.S.; Johnson, J.A.; Geretti, A.M.; Metzner, K.J.; Jakobsen, M.R.; Hullsiek, K.H.; et al. Impact of minority nonnucleoside reverse transcriptase inhibitor resistance mutations on resistance genotype after virologic failure. J. Infect. Dis. 2013, 207, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Nicot, F.; Saune, K.; Raymond, S.; Jeanne, N.; Carcenac, R.; Lefebvre, C.; Cuzin, L.; Marchou, B.; Delobel, P.; Izopet, J. Minority resistant HIV-1 variants and the response to first-line NNRTI therapy. J. Clin. Virol. 2015, 62, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Lataillade, M.; Chiarella, J.; Yang, R.; Schnittman, S.; Wirtz, V.; Uy, J.; Seekins, D.; Krystal, M.; Mancini, M.; McGrath, D.; et al. Prevalence and clinical significance of HIV drug resistance mutations by ultra-deep sequencing in antiretroviral-naive subjects in the CASTLE study. PLoS ONE 2010, 5, e10952. [Google Scholar] [CrossRef] [PubMed]
- Messiaen, P.; Verhofstede, C.; Vandenbroucke, I.; Dinakis, S.; van Eygen, V.; Thys, K.; Winters, B.; Aerssens, J.; Vogelaers, D.; Stuyver, L.J.; et al. Ultra-deep sequencing of HIV-1 reverse transcriptase before start of an NNRTI-based regimen in treatment-naive patients. Virology 2012, 426, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Metzner, K.J.; Scherrer, A.U.; von Wyl, V.; Boni, J.; Yerly, S.; Klimkait, T.; Aubert, V.; Furrer, H.; Hirsch, H.H.; Vernazza, P.L.; et al. Limited clinical benefit of minority K103N and Y181C-variant detection in addition to routine genotypic resistance testing in antiretroviral therapy-naive patients. AIDS 2014, 28, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, C.; Lee, G.Q.; Rodriguez, C.; Visseaux, B.; Storto, A.; Fagard, C.; Molina, J.M.; Katlama, C.; Yazdanpanah, Y.; Harrigan, P.R.; et al. Highly frequent HIV-1 minority resistant variants at baseline of the ANRS 139 TRIO trial had a limited impact on virological response. J. Antimicrob. Chemother. 2015, 70, 2090–2096. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Paredes, R.; Ribaudo, H.J.; Svarovskaia, E.S.; Metzner, K.J.; Kozal, M.J.; Hullsiek, K.H.; Balduin, M.; Jakobsen, M.R.; Geretti, A.M.; et al. Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: A systematic review and pooled analysis. JAMA 2011, 305, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Cozzi-Lepri, A.; Noguera-Julian, M.; di Giallonardo, F.; Schuurman, R.; Daumer, M.; Aitken, S.; Ceccherini-Silberstein, F.; D’Arminio Monforte, A.; Geretti, A.M.; Booth, C.L.; et al. Low-frequency drug-resistant HIV-1 and risk of virological failure to first-line NNRTI-based art: A multicohort European case-control study using centralized ultrasensitive 454 pyrosequencing. J. Antimicrob. Chemother. 2015, 70, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Simen, B.B.; Simons, J.F.; Hullsiek, K.H.; Novak, R.M.; Macarthur, R.D.; Baxter, J.D.; Huang, C.; Lubeski, C.; Turenchalk, G.S.; Braverman, M.S.; et al. Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. J. Infect. Dis. 2009, 199, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Gianella, S.; Delport, W.; Pacold, M.E.; Young, J.A.; Choi, J.Y.; Little, S.J.; Richman, D.D.; Kosakovsky Pond, S.L.; Smith, D.M. Detection of minority resistance during early HIV-1 infection: Natural variation and spurious detection rather than transmission and evolution of multiple viral variants. J. Virol. 2011, 85, 8359–8367. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.; Wohl, D.; Arribas, J.R.; Henry, K.; van Lunzen, J.; Bloch, M.; Towner, W.; Wilkins, E.; Ebrahimi, R.; Porter, D.; et al. Week 48 results from a randomized clinical trial of rilpivirine/emtricitabine/tenofovir disoproxil fumarate vs. Efavirenz/emtricitabine/tenofovir disoproxil fumarate in treatment-naive HIV-1-infected adults. AIDS 2014, 28, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.; Wohl, D.; Arribas, J.; Henry, K.; van Lunzen, J.; Bloch, M.; Towner, W.; Wilkins, E.; Ebrahimi, R.; Porter, D.; et al. Star study: Single-tablet regimen rilpivirine/emtricitabine/tenofovir DF maintains non-inferiority to efavirenz/emtricitabine/tenofovir DF in art-naïve adultsweek 96 results. In Proceedings of the 14th European AIDS Conference, Brussels, Belgium, 16–19 October 2013.
- Porter, D.P.; Kulkarni, R.; Fralich, T.; Miller, M.D.; White, K.L. 96-Week resistance analyses of the star study: Rilpivirine/emtricitabine/tenofovir df vs. efavirenz/emtricitabine/tenofovir DF in antiretroviral-naive, HIV-1-infected subjects. HIV Clin. Trials 2015, 16, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Gilead Sciences Inc. Complera® (emtricitabine, rilpivirine, tenofovir disoproxil fumarate) tablets. Us prescribing information. Foster city, ca. Revised May 2015.
- Gilead Sciences International Limited. Eviplera® (emtricitabine, rilpivirine, tenofovir disoproxil fumarate) 200 mg/25 mg/245 mg film-coated tablets. Summary of product characteristics. Cambridge, UK, May 2015. [Google Scholar]
- U.S. Department of Health and Human Services; Food and Drug Administration (FDA); Center for Drug Evaluation and Research (CDER). Human Immunodeficiency Virus-1 Infection: Developing Antiretroviral Drugs for Treatment. Guidance for Industry. Revision 1. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM355128.pdf (accessed on 1 December 2015).
- Porter, D.P.; Kulkarni, R.; Fralich, T.; Miller, M.D.; White, K.L. Characterization of HIV-1 drug resistance development through week 48 in antiretroviral naive subjects on rilpivirine/emtricitabine/tenofovir DF or efavirenz/emtricitabine/tenofovir DF in the STaR study (GS-US-264-0110). J. Acquir. Immune Defic. Syndr. 2014, 65, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Thielen, A.; Martini, N.; Thiele, B.; Daumer, M. Validation of HIV-1 drug resistance testing by deep sequencing: Insights from comparative Sanger sequencing. In Proceedings of the International Workshop on Antiviral Drug Resistance (IDRW), Berlin, Germany, 3–7 June 2014.
- Yang, X.; Charlebois, P.; Gnerre, S.; Coole, M.G.; Lennon, N.J.; Levin, J.Z.; Qu, J.; Ryan, E.M.; Zody, M.C.; Henn, M.R. De novo assembly of highly diverse viral populations. BMC Genom. 2012, 13. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.P.; Stromberg, M.P.; Ward, A.; Stewart, C.; Garrison, E.P.; Marth, G.T. Mosaik: A hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS ONE 2014, 9, e90581. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, C.J.; Parkin, N.T.; Limoli, K.L.; Lie, Y.S.; Wrin, T.; Huang, W.; Tian, H.; Smith, D.; Winslow, G.A.; Capon, D.J.; et al. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 2000, 44, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Nicot, F.; Saliou, A.; Raymond, S.; Saune, K.; Dubois, M.; Massip, P.; Marchou, B.; Delobel, P.; Izopet, J. Minority variants associated with resistance to HIV-1 nonnucleoside reverse transcriptase inhibitors during primary infection. J. Clin. Virol. 2012, 55, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.D.; Zhou, Y.; Margot, N.A.; McColl, D.J.; Zhong, L.; Borroto-Esoda, K.; Miller, M.D.; Svarovskaia, E.S. Low level of the K103N HIV-1 above a threshold is associated with virological failure in treatment-naive individuals undergoing efavirenz-containing therapy. AIDS 2011, 25, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Van Eygen, V.; Thys, K.; Vingerhoets, J.; van Hove, C.; Rimsky, L.T.; Aerssens, J.; Picchio, G.R. Deep sequencing analysis of rilpivirine virologic failures in the phase III studies echo and thrive shows no association with the presence of minority resistance-associated variants at baseline. In Proceedings of the International Workshop on HIV & Hepatitis Virus Drug Resistance and Curative Strategies, Melia Sitges, Spain, 5–9 June 2012.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porter, D.P.; Daeumer, M.; Thielen, A.; Chang, S.; Martin, R.; Cohen, C.; Miller, M.D.; White, K.L. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study. Viruses 2015, 7, 6360-6370. https://doi.org/10.3390/v7122943
Porter DP, Daeumer M, Thielen A, Chang S, Martin R, Cohen C, Miller MD, White KL. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study. Viruses. 2015; 7(12):6360-6370. https://doi.org/10.3390/v7122943
Chicago/Turabian StylePorter, Danielle P., Martin Daeumer, Alexander Thielen, Silvia Chang, Ross Martin, Cal Cohen, Michael D. Miller, and Kirsten L. White. 2015. "Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study" Viruses 7, no. 12: 6360-6370. https://doi.org/10.3390/v7122943
APA StylePorter, D. P., Daeumer, M., Thielen, A., Chang, S., Martin, R., Cohen, C., Miller, M. D., & White, K. L. (2015). Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study. Viruses, 7(12), 6360-6370. https://doi.org/10.3390/v7122943