Facing Antibiotic Resistance: Staphylococcus aureus Phages as a Medical Tool
Abstract
:1. Introduction
2. Staphylococcus spp.
3. Methicillin-resistant and vancomycin-intermediate Staphylococcus aureus (MRSA and VISA)
4. Staphylococcal Phages
5. Experimental Studies of Staphylococcal Phages in Animal Models
6. Staphylococcal Phages in Medicine
7. Anti-Staphylococcal Phage Preparations
8. Endolysins of Staphylococcal Phages
9. Current Status and Potential Disadvantages of Phage Therapy in Western Medicine
10. Conclusions
1915, 1917 | Phages were discovered by Twort and d’Herelle. |
---|---|
1921 | First report of medical use of anti-staphylococcal phages |
1926 | First report of phage therapy in Poland [136] |
1930 | Initiation of phage therapy in Georgia [94] |
1936 | Phages were applied in treatment of patients suffering from sepsis caused by S. aureus. |
1961 | MRSA strains were discovered. |
2005 | The first Phage Therapy Unit in accordance with EU regulations was founded in IIET in Wrocław. |
Author Contributions
Conflicts of Interest
References and Notes
- Frieden, T. Threat Report 2013. Available online: http://www.cdc.gov/drugresistance/threat-report-2013/ (accessed on 20 February 2013).
- Kloos, W.; Bannerman, T. Staphylococcus and Micrococcus. In Manual of Clinical Microbiology; Murray, P., Baron, E., Pfaller, M., Tenover, F., Yolken, R., Eds.; ASM Press: Washington, DC, USA, 1995; pp. 282–298, ISBN 13: 978–1555811266. [Google Scholar]
- Kwok, A.; Su, S.; Reynolds, R.; Bay, S.; Av-Gay, Y.; Dovichi, N.; Chow, A. Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int. J. Syst. Bacteriol. 1999, 49, 1181–1192. [Google Scholar] [CrossRef]
- Plata, K.; Rosato, A.; Wegrzyn, G. Staphylococcus aureus as an infectious agent: Overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochim. Pol. 2009, 56, 597–612. [Google Scholar]
- Noble, C.; Valkenburg, H.; Wolters, C. Carriage of Staphylococcus aureus in random samples of a normal population. J. Hyg. 1967, 65, 567–573. [Google Scholar]
- Casewell, M. Epidemiology and control of the “modern” methicillin-resistant Staphylococcus aureus. J. Hosp. Infect. 1986, 1, 1. [Google Scholar] [CrossRef]
- Lowy, F. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Ito, W.; Kobayashi, N.; Kayaba, H.; Takahashi, T.; Takeda, M.; Chiba, T.; Yamaguchi, K.; Fukui, R.; Tomita, N.; Chihara, J. Clinical evaluation after an introduction of our manual for antibiotic use during perioperative period and a notification policy of use of the antibiotics for MRSA. Rinsho Byori. 2007, 55, 224–229. [Google Scholar]
- Priest, D.; Peacock, J. Hematogenous vertebral osteomyelitis due to Staphylococcus aureus in the adult: Clinical features and therapeutic outcomes. South. Med. J. 2005, 98, 854–862. [Google Scholar] [CrossRef]
- Collins, F.; Hampton, S. Hand-washing and methicillin-resistant Staphylococcus aureus. Br. J. Nurs. 2005, 14, 703–707. [Google Scholar] [CrossRef]
- Fowler, V.; Miro, J.; Hoen, B.; Cabell, C.H.; Abrutyn, E.; Rubinstein, E.; Corey, G.; Spelman, D.; Bradley, S.; Barsic, B.; et al. Staphylococcus aureus endocarditis: A consequence of medical progress. JAMA 2005, 293, 3012–3021. [Google Scholar] [CrossRef]
- Nowakowska, M.; Jarosz-Chobot, P.; Polanska, J.; Machnica, L. Bacterial strains colonizing subcutaneous catheters of personal insulin pumps. Pol. J. Microbiol. 2007, 56, 239–243. [Google Scholar]
- Abele-Horn, M.; Schupfner, B.; Emmerling, P.; Waldner, H.; Goring, H. Persistent wound infection after herniotomy associated with small-colony variants of Staphylococcus aureus. Infection 2000, 28, 53–54. [Google Scholar] [CrossRef]
- Spanu, T.; Romano, L.; D’Inzeo, T.; Masucci, L.; Albanese, A.; Papacci, F.; Marchese, E.; Sanguinetti, M.; Fadda, G. Recurrent ventriculoperitoneal shunt infection caused by small-colony variants of Staphylococcus aureus. Clin. Infect. Dis. 2005, 41, 48–52. [Google Scholar] [CrossRef]
- Seifert, H.; Wisplinghoff, H.; Schnabel, P. Small colony variants of Staphylococcus aureus and pacemaker-related infection. Emerg. Infect. Dis. 2003, 90, 1316–1318. [Google Scholar]
- Le Loir, Y.; Baron, F.; Gautier, M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2003, 2, 63–76. [Google Scholar]
- Pereira, V.; Lopes, C.; Castro, A.; Silva, J.; Gibbs, P.; Teixeira, P. Diversity and enterotoxigenicity of Staphylococcus spp. associated with domiati cheese; Outbreak of staphylococcal food intoxication after consumption of pasteurized milk products. Food Microbiol. 2009, 26, 278–282. [Google Scholar] [CrossRef]
- Haenni, M.; Galofaro, L.; Ponsin, C.; Bes, M.; Laurent, F.; Madec, J. Staphylococcal bovine mastitis in France: Enterotoxins, resistance and the human Geraldine methicillinresistant Staphylococcus aureus clone. J. Antimicrob. Chemother. 2010, 66, 216–218. [Google Scholar]
- Johler, S.; Layer, F.; Stephan, R. Comparison of virulence and antibiotic resistance genes of food poisoning outbreak isolates of Staphylococcus aureus with isolates obtained from bovine mastitis milk and pig carcasses. J. Food Prot. 2011, 74, 1852–1859. [Google Scholar] [CrossRef]
- Jablonski, L.; Bohach, G. Staphylococcus aureus. In Food Microbiology: Fundamentals and Frontiers; Doyle, M., Beuchat, L., Montville, T., Eds.; ASM Press: Washington, DC, USA, 1997; pp. 353–375, ISBN: 1-55581-117-5. [Google Scholar]
- García, P.; Madera, C.; Martínez, B.; Rodríguez, A. Biocontrol of Staphylococcus aureus in curd manufacturing processes using bacteriophages. Int. Dairy J. 2007, 17, 1232–1239. [Google Scholar] [CrossRef]
- Coveney, H.M.; Fitzgerald, G.F.; Daly, C. A study of the microbiological status of Irish farmhouse cheeses with emphasis on selected pathogenic and spoilage micro-organisms. J. Appl. Bacteriol. 1994, 77, 621–630. [Google Scholar]
- Meyrand, A.; Atrache, V.; Bavai, C.; Montet, M.; Vernozy-Rozand, C. An automated method for the detection of staphylococcal heat stable deoxyribonuclease in dairy products. Lett. Appl. Microbiol. 1999, 29, 216–220. [Google Scholar] [CrossRef]
- De Buyser, M.; Dufour, B.; Maire, M.; Lafarge, V. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int. J. Food Microbiol. 2001, 67, 1–17. [Google Scholar] [CrossRef]
- Paciorek, M.; Kochman, M.; Piekarska, K.; Grochowska, A.; Windyg, B. The distribution of enterotoxin and enterotoxin-like genes in Staphylococcus aureus strains isolated from nasal carriers and food samples. Int. J. Food Microbiol. 2007, 117, 319–323. [Google Scholar] [CrossRef]
- Sasidharan, S.; Prema, B.; Yoga Latha, L. Antimicrobial drug resistance of Staphylococcus aureus in dairy products. Asian Pac. J. Trop. Biomed. 2011, 1, 130–132. [Google Scholar] [CrossRef]
- Anonymous. Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health on Staphylococcal Enterotoxins in Milk Products, Particularly Cheeses; European Commission, Health & Consumer Protection. Directorate-General: European Commission, 26–27 March 2003. Available online: http://ec.europa.eu/food/fs/sc/scv/out61_en.pdf (accessed on 27 June 2014).
- MRSA Tracking. Available online: http://www.cdc.gov/mrsa/tracking/index.html (accessed on 16 September 2013).
- Smith, M.; Pearson, M.; Kenneth, M.; Wilcox, R.; Cosme Cruz, P.; Lancaster, M.; Robinson-Dunn, B.; Tenover, F.; Zervos, M.; Band, J.; et al. Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. N. Engl. J. Med. 1999, 340, 493–501. [Google Scholar] [CrossRef]
- Rotun, S.; McMath, V.; Schoonamker, D. Staphylococcus aureus with reduced susceptibility to vancomycin isolated from a patient with fatal bacteremia. Emerg. Infect. Dis. 1999, 5, 147–149. [Google Scholar] [CrossRef]
- Methicillin-Resistant Staphylococcus aureus Skin or Soft Tissue Infections in a State Prison—Mississippi, 2000. Available online: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5042a2.htm (accessed on 19 September 2013).
- MRSA Study Results. Available online: http://www.ahrq.gov/news/newsroom/pressreleases/2013/mrsastudypr.html (accessed on 10 March 2014).
- MRSA Infections On The Rise In Hospitals And Health Care Settings: AHRQ Report. Available online: http://www.news-medical.net/news/20100422/MRSA-infections-on-the-rise-in-hospitals-and-health-care-settings-AHRQ-report.aspx (accessed on 15 February 2014).
- Loefflet, A. MRSA in small animal practice: An update. Practice 2008, 30, 538–543. [Google Scholar] [CrossRef]
- Parisien, A.; Allain, B.; Zhang, J.; Mandeville, R.; Lan, C. Novel alternatives to antibiotics: Bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol. 2008, 104, 1–13. [Google Scholar]
- Klein, E. Hospitalizations and Deaths Caused by Methicillin-Resistant Staphylococcus aureus, United States, 1999–2005. Available online: http://wwwnc.cdc.gov/eid/article/13/12/07–0629_article.htm (accessed on 15 January 2014).
- Strausbaugh, L.; Jacobson, C.; Sewell, D.; Potters, S.; Ward, T. Methicillin-resistant S. aureus (MRSA) in extended care facilities. Experiences in a Veterans’ Affairs nursing home and review of the literature. Infect. Control Hosp. Epidemiol. 1991, 12, 36–45. [Google Scholar] [CrossRef]
- Herwaldt, L. Control of methicillin-resistant Staphylococcus aureus in the hospital setting. Am. J. Med. 1999, 106, 11–18. [Google Scholar] [CrossRef]
- Robicsek, A. Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann. Intern. Med. 2008, 148, 409–418. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Fortuna, W.; Weber-Dąbrowska, B.; Górski, A. Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig. Med. Dosw. 2007, 61, 461–465. [Google Scholar]
- Fraser, J. Alternative Therapies, Incentive Models Eyed for Antibiotic Resistance. Available online: http://www.ip-watch.org/2014/03/28/alternative-therapies-incentive-models-eyed-for-antibiotic-resistance/ (accessed on 25 June 2014).
- Al-Rawahi, G.; Schreader, A.; Porter, S.; Roscoe, D.; Gustafson, R.; Bryce, E.A. Methicillin-resistant Staphylococcus aureus nasal carriage among injection drug users: Six years later. J. Clin. Microbiol. 2008, 46, 477–479. [Google Scholar]
- Antimicrobial resistance surveillance in Europe 2012. Available online: http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2012.pdf (accessed on 15 September 2013).
- Klevens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298, 1763–1771. [Google Scholar] [CrossRef]
- Pasquale, T.; Jabrocki, B.; Salstrom, S.; Wiemken, T.; Peyrani, P.; Haque, N.; Scerpella, E.; Ford, K.; Zervos, M.; Ramirez, J.; et al. Emergence of methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of late-onset nosocomial pneumonia in intensive care patients in the USA. Int. J. Infect. Dis. 2013, 6, 398–403. [Google Scholar]
- McNamara, P.; Milligan-Monroe, K.; Khalili, S.; Proctor, R. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 2000, 182, 3197–3203. [Google Scholar] [CrossRef]
- Talon, D.; Woronoff-Lemsi, M.; Limat, S. The impact of resistance to methicillin in Staphylococcus aureus bacteremia on mortality. Eur. J. Intern. Med. 2002, 13, 31–36. [Google Scholar] [CrossRef]
- Chhibber, S.; Kaur, T.; Kaur, S. Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin-resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One 2013, 8, e56022. [Google Scholar] [CrossRef]
- Belthur, M.; Birchansky, S.; Verdugo, A.; Mason, E.; Hulten, K.; Kaplan, S.; Smith, E.; Phillips, W.; Weinberg, J. Pathologic fractures in children with acute Staphylococcus aureus osteomyelitis. J. Bone Joint Surg. Am. 2012, 94, 34–42. [Google Scholar] [CrossRef]
- Edwards, A.; Massey, R.; Clarke, S. Molecular mechanisms of Staphylococcus aureus nasopharyngeal colonization. Mol. Oral Microbiol. 2012, 27, 1–10. [Google Scholar] [CrossRef]
- Forcade, N.; Wiederhold, N.; Ryan, L.; Talbert, R.; Frei, C. Antibacterials as adjuncts to incision and drainage for adults with purulent methicillin-resistant Staphylococcus aureus (MRSA) skin infections. Drugs 2012, 72, 339–351. [Google Scholar] [CrossRef]
- Petinaki, E.; Spiliopoulou, I. Methicillin-resistant Staphylococcus aureus among companion and food-chain animals: Impact of human contacts. Clin. Microbiol. Infect. 2012, 18, 626–634. [Google Scholar] [CrossRef]
- Shadyab, A.; Crum-Cianflone, N. Methicillin-resistant Staphylococcus aureus (MRSA) infections among HIV-infected persons in the era of highly active antiretroviral therapy: A review of the literature. HIV Med. 2012, 13, 319–332. [Google Scholar] [CrossRef]
- Kim, M.; Myungdoi, H. Complete genome of Staphylococcus aureus phage SA11. J. Virol. 2013, 87, 3237–3247. [Google Scholar] [CrossRef]
- Bad Bug Book: Foodborne Pathogenic Microorganisms and Natural Toxins Handbook Staphylococcus aureus. Available online: http://www.fda.gov/Food/FoodborneIllnessContaminants/CausesOfIllnessBadBugBook/ucm070015.htm/ (accessed on 8 May 2013).
- Baorto, E. Staphylococcus Aureus Infection. Available online: http://emedicine.medscape.com/article/971358-overview (accessed on 16 March 2014).
- Staphylococcal phage genomes. Available online: http://patricbrc.org/portal/portal/patric/ Taxon?cType=taxon&cId=1279 (accessed on 19 September 2013).
- Ackermann, H.W. Phages examined in the electron microscope. Arch. Virol. 2007, 152, 227–243. [Google Scholar] [CrossRef]
- Ackermann, H.W.; DuBow, M.S. Natural Groups of Bacteriophages. Viruses of Prokaryotes; CRC Press: Boca Raton, FL, USA, 1987; Volume 2. [Google Scholar]
- Kwan, T.; Liu, J.; DuBow, M.; Gros, P.; Pelletier, J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages Tony. Proc. Natl. Acad. Sci. USA 2005, 14, 5174–5179. [Google Scholar]
- Łobocka, M.; Hejnowicz, M.; Dąbrowski, K.; Gozdek, A.; Kosakowski, J.; Witkowska, M.; Ulatowska, M.; Weber-Dąbrowska, B.; Kwiatek, M.; Parasion, S.; et al. Genomics of staphylococcal Twort-like phages—potential therapeutics of the post-antibiotic era. Adv. Virus Res. 2012, 83, 143–216. [Google Scholar] [CrossRef]
- Bradbury, J. “My enemy’s enemy is my friend”: Using phages to fight bacteria. Lancet 2004, 363, 624–625. [Google Scholar] [CrossRef]
- Clark, J.R.; March, J.B. Bacteriophages and biotechnology: Vaccines, gene therapy and antibacterials. Trends Biotechnol. 2006, 5, 212–218. [Google Scholar] [CrossRef]
- Donlan, R. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009, 17, 66–72. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Fortuna, W.; Weber-Dąbrowska, B.; Górski, A. Bacterial viruses against viruses pathogenic for man? Virus Res. 2005, 110, 1–8. [Google Scholar] [CrossRef]
- Wagenaar, J.; Yue, H.; Pritchard, J.; Broekhuizen-Stins, M.; Huijsdens, X.; Mevius, D.; Van Duijkeren, T. Unexpected sequence types in livestock associated methicillin-resistant Staphylococcus aureus (MRSA): MRSA ST9 and a single locus variant of ST9 in pig farming in China. Vet. Microbiol. 2009, 139, 405–409. [Google Scholar] [CrossRef]
- Guenther, S.; Huwyler, D.; Richard, S.; Loessner, M.J. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl. Environ. Microbiol. 2008, 75, 93–100. [Google Scholar]
- Bigwood, T.; Hudson, J.; Billington, C.; Carey-Smith, G.V.; Heinemann, J. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol. 2008, 25, 400–406. [Google Scholar] [CrossRef]
- Goodridge, L.D. Bacteriophage biocontrol of plant pathogens: Fact or fiction? Trends Biotechnol. 2004, 22, 384–385. [Google Scholar]
- Kramberger, P.; Honour, R.; Herman, R.; Smrekar, F.; Peterka, M. Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths. J. Virol. Methods 2010, 166, 60–64. [Google Scholar] [CrossRef]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Yasuda, M.; Nishikawa, H.; Kuroda, M.; Ujihara, T.; Shuin, T.; Shen, Y.; Jin, Z.; Fujimoto, S.; Nasimuzzan, M.D.; et al. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ΦMR11. J. Infect. Dis. 2003, 187, 613–624. [Google Scholar] [CrossRef]
- Capparelli, R.; Parlato, M.; Borriello, G.; Salvatore, P.; Iannelli, D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother. 2007, 51, 2765–2773. [Google Scholar] [CrossRef]
- Wills, Q.; Kerrigan, C.; Soothill, J. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemo. 2005, 49, 1220–1221. [Google Scholar] [CrossRef]
- Ioseliani, G.; Meladze, G.; Chkhetiia, N.; Mebuke, M.; Kiknadze, N. Use of bacteriophages and antibiotics for prevention of acute postoperative empyema in chronic suppurative lung diseases. Grud. Khirurgiia 1980, 6, 63–67. [Google Scholar]
- Meladze, G.; Mebuke, M.; Chkhetia, N.; Kiknadze, N.; Koguashvili, G.; Timoshuk, I.; Larionova, N.; Vasadze, G. The efficacy of staphylococcal bacteriophage in treatment of purulent diseases of lungs and pleura. Grudn Khir 1982, 1, 53–56. [Google Scholar]
- Bruynoghe, R.; Maisin, J. Essais de thérapeutique au moyen du bacteriophage. Compt. Rend. Soc. Biol. 1921, 85, 1120–1121. [Google Scholar]
- Sauvé, L. Le bactériophage in chirurgie. Médecine 1936, 17, 49–54. [Google Scholar]
- MacNeal, W.; Frisbee, F. One hundred patients with Staphylococcus septicaemia receiving bacteriophage service. Am. J. Med. Sci. 1936, 191, 179–195. [Google Scholar] [CrossRef]
- Sakandelidze, V.; Meipariani, A. Use of combined phages in suppurative-inflammatory diseases. Mikrobiol. Epidemiol. Immunobiol. 1974, 6, 135–136. [Google Scholar]
- Alisky, J.; Iczkowski, K.; Rapoport, A.; Troitsky, N. Bacteriophages show promise as antimicrobial agents. J. Infect. 1998, 36, 5–15. [Google Scholar]
- Vieu, J. Les Bacteriophages. In Traite de Therapeutique, Serums et Vaccins; Fabre, J., Ed.; Flammarion: Paris, France, 1975; pp. 337–340. [Google Scholar]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J.G. Bacteriophage Therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. [Google Scholar] [CrossRef]
- Borysowski, J.; Międzybrodzki, R.; Górski, A. Phage Therapy: Current Research and Applications; Caister Academic Press: Norfolk, England, 2014. [Google Scholar]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Clinical aspects of phage therapy. Adv. Virus Res. 2012, 83, 73–121. [Google Scholar] [CrossRef]
- Górski, A.; Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Łobocka, M.; Fortuna, W.; Letkiewicz, S.; Zimecki, M.; Filby, G. Bacteriophage therapy for treatment of infections. Curr. Opin. Investig. Drugs 2009, 10, 766–774. [Google Scholar]
- Ślopek, S.; Durlakowa, I.; Weber-Dabrowska, B.; Kucharewicz-Krukowska, A.; Dabrowski, M.; Bisikiewicz, R. Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch. Immunol. Ther. Exp. 1983, 31, 267–291. [Google Scholar]
- Ślopek, S.; Weber-Dabrowska, B.; Dabrowski, M.; Kucharewicz-Krukowska, A. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch. Immunol. Ther. Exp. 1987, 35, 569–583. [Google Scholar]
- Weber-Dabrowska, B.; Dabrowski, M.; Ślopek, S. Studies on bacteriophage penetration in patients subjected to phage therapy. Arch. Immunol. Ther. Exp. 1987, 35, 563–568. [Google Scholar]
- Kucharewicz-Krukowska, A.; Ślopek, S. Immunogenic effect of bacteriophage in patients subjected to phage therapy. Arch. Immunol. Ther. Exp. 1987, 35, 553–561. [Google Scholar]
- Kochetkova, V.; Mamontov, A.; Moskovtseva, R.; Erastova, E.; Trofimov, E.; Popov, M.; Dzhubalieva, S. Phagotherapy of postoperativesuppurative-inflammatory complications in patients with neoplasms. Sov. Med. 1989, 6, 23–26. [Google Scholar]
- Mathur, M.; Vidhani, S.; Mehndiratta, P. Bacteriophage therapy: An alternative to conventional antibiotics. J. Assoc. Physicians India 2003, 51, 593–596. [Google Scholar]
- Weber-Dąbrowska, B.; Mulczyk, M.; Górski, A. Therapy of infections in cancer patients with bacteriophages. Clin. Appl. Immunol. Rev. 2001, 1, 131. [Google Scholar] [CrossRef]
- Eaton, M.; Bayne-Jones, S. Bacteriophage therapy: Review of the principles and results of the use of bacteriophage in the treatment of infections. J. Am. Med. Assoc. 1934, 103, 1795–1939. [Google Scholar]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef]
- Kutter, E.; De Vos, D.; Gvasalia, G.; Alavidze, Z.; Gogokhia, L.; Kuhl, S.; Abedon, S.T. Phage therapy in clinical practice: Treatment of human infections. Curr. Pharm. Biotechnol. 2010, 11, 69–86. [Google Scholar] [CrossRef]
- Borysowski, J.; Łobocka, M.; Międzybrodzki, R.; Weber-Dąbrwska, B.; Górski, A. Potential of bacteriophages and their lysins in the treatment of MRSA—Current status and future perspectives. Biodrugs 2011, 25, 347–355. [Google Scholar] [CrossRef]
- Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect. 2008, 38, 426–430. [Google Scholar] [CrossRef]
- Dąbrowska, K.; Skardziński, G.; Jończyk, P.; Kurzępa, A.; Wietrzyk, J.; Owczarek, B..; Żaczek, M.; Świtała-Jeleń, K.; Boratyński, J.; Poźniak , G.; et al. The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration. BMC Microbiol. 2009, 9, 13. [Google Scholar] [CrossRef]
- Pantucek, R.; Dvorackova, M.; Benesik, M.; Doskar, J.; Maslanova, I.; Ruzickova, V.; Ruzicka, F.; Mosa, M. Characterization of in vitro lytic activity of bacteriophage preparation STAFAL against Staphylococcus aureus. Vet. Food 2013, 2, 91–93. [Google Scholar]
- Brzozowska, E.; Bazan, J.; Gamian, A. The functions of bacteriophage proteins. Postepy Hig. Med. Dosw. 2011, 65, 167–176. [Google Scholar] [CrossRef]
- Loeffler, J.; Nelson, D.; Fischetti, V. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001, 294, 2170–2172. [Google Scholar] [CrossRef]
- Loessner, M. Bacteriophage endolysins—Current state of research and applications. Curr. Opin. Microbiol. 2005, 8, 480–487. [Google Scholar] [CrossRef]
- Nelson, D.; Schmelcher, M.; Rodriguez-Rubio, L.; Klumpp, J.; Pritchard, D.; Dong, S.; Donovan, D. Endolysins as antimicrobials. Adv. Virus Res. 2012, 83, 299–365. [Google Scholar] [CrossRef]
- Borysowski, J.; Weber-Dąbrowska, B.; Górski, A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. 2006, 231, 366–377. [Google Scholar]
- Jun, S.; Jung, G.; Son, J.; Yoon, S.; Choi, Y.; Kang, S. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrob. Agents Chemother. 2011, 55, 1764–7176. [Google Scholar] [CrossRef]
- Cheng, A.; Kim, H.; Missiakas, D. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J. 2010, 24, 648. [Google Scholar]
- Entenza, J.; Loeffler, J.; Grandgirard, D.; Fischetti, V.; Moreillon, P. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob. Agents Chemother. 2005, 49, 4789–4792. [Google Scholar] [CrossRef]
- Fischetti, V. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 2008, 11, 393–400. [Google Scholar] [CrossRef]
- Nelson, D.; Loomis, L.; Fischetti, V. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 2001, 98, 4107–4112. [Google Scholar] [CrossRef]
- Obeso, J.; Martínez, B.; Rodríguez, A.; García, P. Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int. J. Food Microbiol. 2008, 128, 212–218. [Google Scholar] [CrossRef]
- Wang, X.; Wilkinson, B.; Jayaswal, R. Sequence analysis of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. Gene 1991, 102, 105–109. [Google Scholar] [CrossRef]
- Sass, P.; Bierbaum, G. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl. Environ. Microbiol. 2007, 73, 347–352. [Google Scholar] [CrossRef]
- Loessner, M.; Gaeng, S.; Wendlinger, G.; Maier, S.; Scherer, S. The two-component lysis system of Staphylococcus aureus bacteriophage twort: A large TTG-start holin and an associated amidaseendolysin. FEMS Microbiol. Lett. 1998, 162, 265–274. [Google Scholar] [CrossRef]
- Loessner, M.; Gaeng, S.; Scherer, S. Evidence for a holin-like protein gene fully embedded out of frame in the endolysin gene of Staphylococcus aureus bacteriophage 187. J. Bacteriol. 1999, 181, 4452–4460. [Google Scholar]
- Takac, M.; Blasi, U. Phage P68 virion-associated protein 17 displays activity against clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 2934–2940. [Google Scholar] [CrossRef]
- Yokoi, K.; Kawahigashia, N.; Uchidaa, M.; Sugaharaa, K.; Shinoharaa, M.; Kawasakib, K.; Nakamurac, S.; Taketod, A.; Kodaira, K. The two-component cell lysis genes holWMY and lysWMY of the Staphylococcus warneri M phage fWMY: Cloning, sequencing, expression, and mutational analysis in Escherichia coli. Gene 2005, 351, 97–108. [Google Scholar] [CrossRef]
- O’Flaherty, S.; Coffey, A.; Meaney, W.; Fitzgerald, G.; Ross, R. Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett. Appl. Microbiol. 2005, 41, 274–279. [Google Scholar] [CrossRef]
- Rashel, M.; Uchiyama, J.; Ujihara, T.; Uehara, Y.; Kuramoto, S.; Sugihara, S.; Yagyu, K.; Muraoka, A.; Sugai, M.; Hiramatsu, K.; et al. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J. Infect. Dis. 2007, 196, 1237–1247. [Google Scholar] [CrossRef]
- Gu, J.; Xu, W.; Lei, L.; Huang, J.; Feng, X.; Sun, C.; Du, C.; Zuo, J.; Li, Y.; Du, T.; et al. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol. 2011, 49, 111–117. [Google Scholar]
- O’Gara, J.; Humphreys, H. Staphylococcus epidermidis biofilms: Importance and implications. J. Med. Microbiol. 2001, 50, 582–587. [Google Scholar]
- Son, J.; Lee, S.; Jun, S.; Yoon, S.; Kang, S.; Paik, H.; Kang, J.; Choi, Y. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl. Microbiol. Biotechnol. 2010, 86, 1439–1449. [Google Scholar] [CrossRef]
- Gupta, R.; Prasad, Y. P-27/HP endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections. Curr. Microbiol. 2011, 63, 39–45. [Google Scholar] [CrossRef]
- Donovan, D.; Lardeo, M.; Foster-Frey, J. Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol. Lett. 2006, 265, 133–139. [Google Scholar] [CrossRef]
- Kerr, D.; Plaut, K.; Bramley, A.; Williamson, C.; Lax, A.; Moore, K.; Wells, K.; Wall, R. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat. Biotechnol. 2001, 19, 66–70. [Google Scholar] [CrossRef]
- Wall, R.; Powell, A.; Paape, M.; Kerr, D.; Bannerman, D.; Pursel, V.; Wells, K.; Talbot, N.; Hawk, H. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat. Biotechnol. 2005, 23, 441–451. [Google Scholar]
- Pirnay, J.P.; De Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M.; Zizi, M.; Laire, G.; Lavigne, R.; Huys, I.; et al. The phage therapy paradigm: Pret-a-porter or sur-mesure? Pharm. Res. 2011, 28, 934–937. [Google Scholar] [CrossRef]
- Kutter, E.; Sulakvelidze, A. Bacteriophages: Biology and Applications: Molecular Biology and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Krylov, V. Phagotherapy in terms of bacteriophage genetics: Hopes, perspectives, safety, limitations. Genetika 2001, 37, 869–887. [Google Scholar]
- Loc-Carrillo, C.; Abedon, T. Pros and cons of phage therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar] [CrossRef]
- Inal, J. Phage therapy: A reappraisal of bacteriophages as antibiotics. Arch. Immunol. Ther. Exp. 2003, 51, 237–244. [Google Scholar]
- Barrow, P.; Soothill, J. Bacteriophage therapy and prophylaxis: Rediscovery and renewed assessment of potential. Trends Microbiol. 1997, 5, 268–271. [Google Scholar] [CrossRef]
- Clark, W. Comparison of several methods for preserving bacteriophages. Appl. Microbiol. 1962, 10, 466–471. [Google Scholar]
- Engel, W.; Smith, L.; Berwald, L. The preservation of mycobacteriophage by means of freeze drying. Am. Rev. Respir. Dis. 1974, 109, 561–566. [Google Scholar]
- Ackermann, H.; Tremblay, D.; Moineau, S. Long-term bacteriophage preservation. WFCC Newsletter 2004, 38, 35–40. [Google Scholar]
- Jasieński, J. O bakteriofagi. Chirurgia Kliniczna 1927, 4, 67–73. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kaźmierczak, Z.; Górski, A.; Dąbrowska, K. Facing Antibiotic Resistance: Staphylococcus aureus Phages as a Medical Tool. Viruses 2014, 6, 2551-2570. https://doi.org/10.3390/v6072551
Kaźmierczak Z, Górski A, Dąbrowska K. Facing Antibiotic Resistance: Staphylococcus aureus Phages as a Medical Tool. Viruses. 2014; 6(7):2551-2570. https://doi.org/10.3390/v6072551
Chicago/Turabian StyleKaźmierczak, Zuzanna, Andrzej Górski, and Krystyna Dąbrowska. 2014. "Facing Antibiotic Resistance: Staphylococcus aureus Phages as a Medical Tool" Viruses 6, no. 7: 2551-2570. https://doi.org/10.3390/v6072551