Th17 Lymphocytes in Respiratory Syncytial Virus Infection
Abstract
:1. Th17 lymphocytes and IL-17 and the immune system—basic biology
2. Th17 lymphocytes in the respiratory tract
3. IL-17 and Th17 lymphocytes in human RSV infection
3.1. The immune response at the onset of RSV infection
3.2. The adaptive immune response to RSV infection
4. The role of Th17 lymphocytes in the patho-physiology of RSV infection: some insights from in vitro and animal model studies.
4.1. Infection with RSV induces IL-17 production which promotes neutrophil influx during the early response.
4.2. Activation of Th17 and Th2 cells in response to RSV infection
4.3. IL-17 causes RSV-mediated exacerbation of asthma
Cell type | Response | in vitro/in vivo | Reference |
---|---|---|---|
CD8+ lymphocyte | Reduced RSV clearance | in vivo | [32] |
Epithelial cells | IL-6, IL-8, PGE2 | in vitro | [64] |
MUC5B, MUC5AC | in vitro | [60,61] | |
CCL20 | in vitro | [65] | |
beta defensin 2 | in vitro | [66] | |
IL-19 ** | in vitro | [67] | |
Endothelial cells | IL-6, IL-8, PGE2 | ||
Lung microvascular endothelial cells | CXCL1 (GROα), CXCL5, and IL-8 * | in vitro | [68] |
Fibroblasts | IL-6, IL-8, PGE2 | in vitro | [64] [69]* |
Smooth muscle | AHR (OVA induced asthma) | in vivo | [70] |
Contraction | in vitro |
5. Summary
Acknowledgements
Conflicts of interest
References
- Milner, J.D.; Brenchley, J.M.; Laurence, A.; Freeman, A.F.; Hill, B.J.; Elias, K.M.; Kanno, Y.; Spalding, C.; Elloumi, H.Z.; Paulson, M.L.; et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper–IgE syndrome. Nature 2008, 452, 773–776. [Google Scholar] [CrossRef]
- Chen, Z.; O'Shea, J.J. Th17 cells: a new fate for differentiating helper T cells. Immunol. Res. 2008, 41, 87–102. [Google Scholar] [CrossRef]
- Sutton, C.; Brereton, C.; Keogh, B.; Mills, K.H.G.; Lavelle, E.C. A crucial role for interleukin (IL)–1 in the induction of IL–17–producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 2006, 203, 1685–1691. [Google Scholar] [CrossRef]
- Toussirot, E. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm. Allergy Drug Targets 2012, 11, 159–168. [Google Scholar] [CrossRef]
- Leonardi, C.; Matheson, R.; Zachariae, C.; Cameron, G.; Li, L.; Edson-Heredia, E.; Braun, D.; Banerjee, S. Anti–interleukin–17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 2012, 366, 1190–1199. [Google Scholar] [CrossRef]
- Papp, K.A.; Leonardi, C.; Menter, A.; Ortonne, J.-P.; Krueger, J.G.; Kricorian, G.; Aras, G.; Li, J.; Russell, C.B.; Thompson, E.H.Z.; Baumgartner, S. Brodalumab, an anti–interleukin–17–receptor antibody for psoriasis. N. Engl. J. Med. 2012, 366, 1181–1189. [Google Scholar] [CrossRef]
- Gaffen, S.L. Recent advances in the IL–17 cytokine family. Curr. Opin. Immunol. 2011, 23, 613–619. [Google Scholar] [CrossRef]
- Khader, S.A.; Gaffen, S.L.; Kolls, J.K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal. Immunol. 2009, 2, 403–411. [Google Scholar] [CrossRef]
- Hartupee, J.; Liu, C.; Novotny, M.; Li, X.; Hamilton, T. IL–17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 2007, 179, 4135–4141. [Google Scholar]
- Zhu, S.; Pan, W.; Song, X.; Liu, Y.; Shao, X.; Tang, Y.; Liang, D.; He, D.; Wang, H.; Liu, W.; et al. The microRNA miR–23b suppresses IL–17–associated autoimmune inflammation by targeting TAB2, TAB3 and IKK–alpha. Nat. Med. 2012, 18, 1077–1086. [Google Scholar] [CrossRef]
- Jaffar, Z.; Ferrini, M.E.; Herritt, L.A.; Roberts, K.; et al. Cutting edge: lung mucosal Th17–mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J. Immunol. 2009, 182, 4507–4511. [Google Scholar] [CrossRef]
- Mitsdoerffera, M.; Leea, Y.; Jägera, A.; Kimb, H.-J.; Kornc, T.; Koolsd, J.K.; Cantorb, H.; Bettellie, E.; Kuchrooa, V.K. Proinflammatory T helper type 17 cells are effective B–cell helpers. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 14292–14297. [Google Scholar] [CrossRef]
- Dodd, J.S.; Clark, D.; Muir, R.; Korpis, C.; Openshaw, P.J. Endogenous IL–21 regulates pathogenic mucosal CD4 T–cell responses during enhanced RSV disease in mice. Mucosal Immunol. 2012. [Epub ahead of print]. [Google Scholar] [CrossRef]
- Zheng, Y.; Valdez, P.A.; Danilenko, D.M.; Hu, Y.; Sa, S.M.; Gong, Q.; Abbas, A.R.; Modrusan, Z.; Ghilardi, N.; de Sauvage, F.J.; Ouyang, W. Interleukin–22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14, 282–289. [Google Scholar] [CrossRef]
- Shaw, M.H.; Kamada, N.; Kim, Y.G.; Núñez, G. Microbiota–induced IL–1beta, but not IL–6, is critical for the development of steady–state TH17 cells in the intestine. J. Exp. Med. 2012, 209, 251–258. [Google Scholar] [CrossRef]
- Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL–6 programs T(H)–17 cell differentiation by promoting sequential engagement of the IL–21 and IL–23 pathways. Nat. Immunol. 2007, 8, 967–974. [Google Scholar] [CrossRef]
- Boniface, K.; Bak-Jensen, K.S.; Li, Y.; Blumenschein, W.M.; McGeachy, M.J.; McClanahan, T.K.; McKenzie, B.S.; Kastelein, R.A.; Cua, D.J.; de Waal Malefyt, R. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J. Exp. Med. 2009, 206, 535–548. [Google Scholar] [CrossRef]
- Ivanov, I.I.; McKenzie, B.S.; Zhou, L.; Tadokoro, C.E.; Lepelley, A.; Lafaille, J.J.; Cua, D.J.; Littman, D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL–17+ T helper cells. Cell 2006, 126, 1121–1133. [Google Scholar] [CrossRef]
- Purvis, H.A.; Stoop, J.N.; Mann, J.; Woods, S.; Kozijn, A.E.; Hambleton, S.; Robinson, J.H.; Isaacs, J.D.; Anderson, A.E.; Hilkens, C.M. Low–strength T–cell activation promotes Th17 responses. Blood 2010, 116, 4829–4837. [Google Scholar] [CrossRef]
- Liu, X.K.; Lin, X.; Gaffen, S.L. Crucial role for nuclear factor of activated T cells in T cell receptor–mediated regulation of human interleukin–17. J. Biol. Chem. 2004, 279, 52762–52771. [Google Scholar] [CrossRef]
- Dang, E.V.; Barbi, J.; Yang, H.Y.; Jinasena, D.; Yu, H.; Zheng, Y.; Bordman, Z.; Fu, J.; Kim, Y.; Yen, H.R.; Luo, W.; et al. Control of T(H)17/T(reg) balance by hypoxia–inducible factor 1. Cell 2011, 146, 772–784. [Google Scholar] [CrossRef]
- Ikejiri, A.; Nagai, S.; Goda, N.; Kurebayashi, Y.; Osada-Oka, M.; Takubo, K.; Suda, T.; Koyasu, S. Dynamic regulation of Th17 differentiation by oxygen concentrations. Int. Immunol. 2012, 24, 137–146. [Google Scholar] [CrossRef]
- Hirota, K.; Duarte, J.H.; Veldhoen, M.; Hornsby, E.; Li, Y.; Cua, D.J.; Ahlfors, H.; Wilhelm, C.; Tolaini, M.; Menzel, U.; et al. Fate mapping of IL–17–producing T cells in inflammatory responses. Nat. Immunol. 2011, 12, 255–263. [Google Scholar] [CrossRef]
- Lukacs, N.W.; Smit, J.J.; Mukherjee, S.; Morris, S.B.; Nunez, G.; Lindell, D.M. Respiratory virus–induced TLR7 activation controls IL–17–associated increased mucus via IL–23 regulation. J. Immunol. 2010, 185, 2231–2239. [Google Scholar] [CrossRef]
- Hashimoto, K.; Durbin, J.E.; Zhou, W.; Collins, R.D.; Ho, S.B.; Kolls, J.K.; Dubin, P.J.; Sheller, J.R.; Goleniewska, K.; O'Neal, J.F.; et al. Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL–17 levels. J. Allergy Clin. Immunol. 2005, 116, 550–557. [Google Scholar] [CrossRef]
- Di Stefano, A.; Caramori, G.; Gnemmi, I.; Contoli, M.; Vicari, C.; Capelli, A.; Magno, F.; D'Anna, S.E.; Zanini, A.; Brun, P.; et al. T helper type 17–related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin. Exp. Immunol. 2009, 157, 316–324. [Google Scholar] [CrossRef]
- Vargas-Rojas, M.I.; Ramírez-Venegas, A.; Limón-Camacho, L.; Ochoa, L.; Hernández-Zenteno, R.; Sansores, R.H. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir. Med. 2011, 105, 1648–1654. [Google Scholar] [CrossRef]
- Wilson, R.H.; Whitehead, G.S.; Nakano, H.; Free, M.E.; Kolls, J.K.; Cook, D.N. Allergic sensitization through the airway primes Th17–dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care. Med. 2009, 180, 720–730. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, J.; Gao, Y.D.; Guo, W. Th17 immunity in patients with allergic asthma. Int. Arch. Allergy Immunol. 2010, 151, 297–307. [Google Scholar] [CrossRef]
- Yang, X.O.; Chang, S.H.; Park, H.; Nurieva, R.; Shah, B.; Acero, L.; Wang, Y.H.; Schluns, K.S.; Broaddus, R.R.; Zhu, Z.; Dong, C. Regulation of inflammatory responses by IL–17F. J. Exp. Med. 2008, 205, 1063–1075. [Google Scholar] [CrossRef]
- Faber, T.E.; Groen, H.; Welfing, M.; Jansen, K.J.; Bont, L.J. Specific increase in local IL–17 production during recovery from primary RSV bronchiolitis. J. Med. Virol. 2012, 84, 1084–1088. [Google Scholar] [CrossRef]
- Mukherjee, S.; Lindell, D.M.; Berlin, A.A.; Morris, S.B.; Shanley, T.P.; Hershenson, M.B.; Lukacs, N.W. IL–17–induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am. J. Pathol. 2011, 179, 248–258. [Google Scholar] [CrossRef]
- Newcomb, D.C.; Boswell, M.G.; Huckabee, M.M.; Goleniewska, K.; Dulek, D.E.; Reiss, S.; Lukacs, N.W.; Kolls, J.K.; Peebles, R., Jr. IL–13 regulates Th17 secretion of IL–17A in an IL–10–dependent manner. J. Immunol. 2012, 188, 1027–1035. [Google Scholar] [CrossRef]
- Polack, F.P.; Irusta, P.M.; Hoffman, S.J.; Schiatti, M.P.; Melendi, G.A.; Delgado, M.F.; Laham, F.R.; Thumar, B.; Hendry, R.M.; Melero, J.A.; Karron, R.A.; Collins, P.L.; Kleeberger, S.R. The cysteine–rich region of respiratory syncytial virus attachment protein inhibits innate immunity elicited by the virus and endotoxin. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8996–9001. [Google Scholar] [CrossRef]
- Hall, C.B.; Weinberg, G.A.; Iwane, M.K.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Auinger, P.; Griffin, M.R.; Poehling, K.A.; Erdma, D.; et al. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 2009, 360, 588–598. [Google Scholar] [CrossRef]
- Zhang, L.; Peeples, M.E.; Boucher, R.C.; Collins, P.L.; Pickles, R.J. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopatholog. J. Virol. 2002, 76, 5654–5666. [Google Scholar] [CrossRef]
- Habibi, M.S.; Openshaw, P.J. Benefit and harm from immunity to respiratory syncytial virus: implications for treatment. Curr. Opin. Infect. Dis. 2012, 25, 687–694. [Google Scholar] [CrossRef]
- Panuska, J.R.; Cirino, N.M.; Midulla, F.; Despot, J.E.; McFadden, E.R. Jr.; Huang, Y.T. Productive infection of isolated human alveolar macrophages by respiratory syncytial virus. J. Clin. Invest. 1990, 86, 113–119. [Google Scholar] [CrossRef]
- Thornburg, N.J.; Shepherd, B.; Crowe, J.E. Jr. Transforming growth factor beta is a major regulator of human neonatal immune responses following respiratory syncytial virus infection. J. Virol. 2010, 84, 12895–12902. [Google Scholar] [CrossRef]
- Polack, F.P.; Teng, M.N.; Collins, P.L.; Prince, G.A.; Exner, M.; Regele, H.; Lirman, D.D.; Rabold, R.; Hoffman, S.J.; Karp, C.L.; Kleeberger, S.R.; Wills-Karp, M.; Karron, R.A. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 2002, 196, 859–865. [Google Scholar] [CrossRef]
- McNamara, P.S.; Ritson, P.; Selby, A.; Hart, C.A.; Smyth, R.L. Bronchoalveolar lavage cellularity in infants with severe respiratory syncytial virus bronchiolitis. Arch. Dis. Child. 2003, 88, 922–926. [Google Scholar] [CrossRef]
- Lukens, M.V.; van de Pol, A.C.; Coenjaerts, F.E.; Jansen, N.J.; Kamp, V.M.; Kimpen, J.L.; Rossen, J.W.; Ulfman, L.H.; Tacke, C.E.; Viveen, M.C.; Koenderman, L.; Wolfs, T.F.; van Bleek, G.M. A systemic neutrophil response precedes robust CD8(+) T–cell activation during natural respiratory syncytial virus infection in infants. J. Virol. 2010, 84, 2374–2383. [Google Scholar] [CrossRef]
- Lukens, MV; Kruijsen, D; Coenjaerts, FE; Kimpen, J.L.L.; van Bleek, G.M. Respiratory syncytial virus–induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung–draining lymph node. J. Virol. 2009, 83, 7235–7243. [Google Scholar] [CrossRef]
- Graham, B.S.; Bunton, L.A.; Wright, P.F.; Karzon, D.T. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest. 1991, 88, 1026–1033. [Google Scholar] [CrossRef]
- Averbuch, D.; Chapgier, A.; Boisson–Dupuis, S.; Casanova, J.L.; Engelhard, D. The clinical spectrum of patients with deficiency of Signal Transducer and Activator of Transcription–1. Pediatr. Infect. Dis. J. 2011, 30, 352–355. [Google Scholar] [CrossRef]
- Durbin, J.E.; Johnson, T.R.; Durbin, R.K.; Mertz, S.E.; Morotti, R.A.; Peebles, R.S.; Graham, B.S. The role of IFN in respiratory syncytial virus pathogenesis. J. Immunol. 2002, 168, 2944–2952. [Google Scholar]
- Welliver, R.C.; Wong, D.T.; Sun, M.; Middleton, E., Jr.; Vaughan, R.S.; Ogra, P.L. The development of respiratory syncytial virus–specific IgE and the release of histamine in nasopharyngeal secretions after infection. N. Engl. J. Med. 1981, 305, 841–846. [Google Scholar] [CrossRef]
- Mobbs, K.J.; Smyth, R.L.; O'Hea, U.; Ashby, D.; Ritson, P.; Hart, C.A. Cytokines in severe respiratory syncytial virus bronchiolitis. Pediatr. Pulmonol. 2002, 33, 449–452. [Google Scholar] [CrossRef]
- Hussell, T.; Spender, L.C.; Georgiou, A.; O'Garra, A.; Openshaw, P.J. Th1 and Th2 cytokine induction in pulmonary T cells during infection with respiratory syncytial virus. J. Gen. Virol. 1996, 77, 2447–2455. [Google Scholar] [CrossRef]
- Boelen, A.; Kwakkel, J.; Barends, M.; de Rond, L.; Dormans, J.; Kimman, T. Effect of lack of Interleukin–4, Interleukin–12, Interleukin–18, or the Interferon–gamma receptor on virus replication, cytokine response, and lung pathology during respiratory syncytial virus infection in mice. J. Med. Virol. 2002, 66, 552–560. [Google Scholar] [CrossRef]
- Larranaga, C.L.; Ampuero, S.L.; Luchsinger, V.F.; Carrión, F.A.; Aguilar, N.V.; Morales, P.R.; Palomino, M.A.; Tapia, L.F.; Avendaño, L.F. Impaired immune response in severe human lower tract respiratory infection by respiratory syncytial virus. Pediatr. Infect. Dis. J. 2009, 28, 867–873. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Schwarze, J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin. Microbiol. Rev. 2010, 23, 74–98. [Google Scholar] [CrossRef]
- Goriely, S.; Vincart, B.; Stordeur, P.; Vekemans, J.; Willems, F.; Goldman, M.; De Wit, D. Deficient IL–12(p35) gene expression by dendritic cells derived from neonatal monocytes. J. Immunol. 2001, 166, 2141–2146. [Google Scholar]
- Qin, L.; Hu, C.P.; Feng, J.T.; Xia, Q. Activation of lymphocytes induced by bronchial epithelial cells with prolonged RSV infection. PLoS One 2011, 6, e27113. [Google Scholar]
- Bera, M.M.; Lu, B.; Martin, T.R.; Cui, S.; Rhein, L.M.; Gerard, C.; Gerard, N.P. Th17 cytokines are critical for respiratory syncytial virus–associated airway hyperreponsiveness through regulation by complement C3a and tachykinins. J. Immunol. 2011, 187, 4245–4255. [Google Scholar] [CrossRef]
- Ryzhakov, G.; Lai, C.C.; Blazek, K.; To, K.W.; Hussell, T.; Udalova, I. IL–17 boosts proinflammatory outcome of antiviral response in human cells. J. Immunol. 2011, 187, 5357–5362. [Google Scholar] [CrossRef]
- Davidson, S.; Kaiko, G.; Loh, Z.; Lalwani, A.; Zhang, V.; Spann, K.; Foo, S.Y.; Hansbro, N.; Uematsu, S.; Akira, S.; Matthaei, K.I.; Rosenberg, H.F.; Foster, P.S.; Phipps, S. Plasmacytoid dendritic cells promote host defense against acute pneumovirus infection via the TLR7–MyD88–dependent signaling pathway. J. Immunol. 2011, 186, 5938–5948. [Google Scholar] [CrossRef]
- Kallal, L.E.; Hartigan, A.J.; Hogaboam, C.M.; Schaller, M.A.; Lukacs, N.W. Inefficient lymph node sensitization during respiratory viral infection promotes IL–17–mediated lung pathology. J. Immunol. 2010, 185, 4137–4147. [Google Scholar]
- Cannon, M.J.; Openshaw, P.J.; Askonas, B.A. Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J. Exp. Med. 1988, 168, 1163–1168. [Google Scholar] [CrossRef]
- Chen, Y.; Thai, P.; Zhao, YH.; Ho, Y.S.; DeSouza, M.M.; Wu, R. Stimulation of airway mucin gene expression by interleukin (IL)–17 through IL–6 paracrine/autocrine loop. J. Biol. Chem. 2003, 278, 17036–17043. [Google Scholar]
- Fujisawa, T.; Chang, M.M.; Velichko, S.; Thai, P.; Hung, L.Y.; Huang, F.; Phuong, N.; Chen, Y.; Wu, R. NF–kappaB mediates IL–1beta– and IL–17A–induced MUC5B expression in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2011, 45, 246–252. [Google Scholar] [CrossRef]
- Newcomb, D.C.; Boswell, M.G.; Zhou, W.; Huckabee, M.M.; Goleniewska, K.; Sevin, C.M.; Hershey, G.K.; Kolls, J.K.; Peebles, R.S., Jr. Human TH17 cells express a functional IL–13 receptor and IL–13 attenuates IL–17A production. J. Allergy Clin. Immunol. 2011, 127, 1006–1013. [Google Scholar] [CrossRef]
- Hashimoto, K.; Graham, B.S.; Ho, S.B.; Adler, K.B.; Collins, R.D.; Olson, S.J.; Zhou, W.; Suzutani, T.; Jones, P.W.; Goleniewska, K.; O'Neal, J.F.; Peebles, R.S., Jr. Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob–5. Am. J. Respir. Crit. Care. Med. 2004, 170, 306–312. [Google Scholar] [CrossRef]
- Fossiez, F.; Djossou, O.; Chomarat, P.; Flores-Romo, L.; Ait-Yahia, S.; Maat, C.; Pin, J.J.; Garrone, P.; Garcia, E.; Saeland, S.; Blanchard, D.; Gaillard, C.; Das Mahapatra, B.; Rouvier, E.; Golstein, P.; Banchereau, J.; Lebecque, S. T cell interleukin–17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 1996, 183, 2593–2603. [Google Scholar] [CrossRef]
- Kao, C.Y.; Huang, F.; Chen, Y.; Thai, P.; Wachi, S.; Kim, C.; Tam, L.; Wu, R. Up–regulation of CC chemokine ligand 20 expression in human airway epithelium by IL–17 through a JAK–independent but MEK/NF–kappaB–dependent signaling pathway. J. Immunol. 2005, 175, 6676–6685. [Google Scholar]
- Kao, C.Y.; Chen, Y.; Thai, P.; Wachi, S.; Huang, F.; Kim, C.; Harper, R.W.; Wu, R. IL–17 markedly up–regulates beta–defensin–2 expression in human airway epithelium via JAK and NF–kappaB signaling pathways. J. Immunol. 2004, 173, 3482–3491. [Google Scholar]
- Huang, F.; Wachi, S.; Thai, P.; Loukoianov, A.; Tan, K.H.; Forteza, R.M.; Wu, R. Potentiation of IL–19 expression in airway epithelia by IL–17A and IL–4/IL–13: important implications in asthma. J. Allergy Clin. Immunol. 2008, 121, 1415–1421. [Google Scholar] [CrossRef]
- Fujie, H.; Niu, K.; Ohba, M.; Tomioka, Y.; Kitazawa, H.; Nagashima, K.; Ohrui, T.; Numasaki, M. A distinct regulatory role of Th17 cytokines IL–17A and IL–17F in chemokine secretion from lung microvascular endothelial cells. Inflammation 2012, 35, 1119–1131. [Google Scholar] [CrossRef]
- Katz, Y.; Nadiv, O.; Beer, Y. Interleukin–17 enhances tumor necrosis factor alpha–induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts: a possible role as a "fine–tuning cytokine" in inflammation processes. Arthritis Rheum. 2001, 44, 2176–2184. [Google Scholar] [CrossRef]
- Kudo, M.; Melton, A.C.; Chen, C.; Engler, M.B.; Huang, K.E.; Ren, X.; Wang, Y.; Bernstein, X.; Li, J.T.; Atabai, K.; Huang, X.; Sheppard, D. IL–17A produced by alphabeta T cells drives airway hyper–responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 2012, 18, 547–554. [Google Scholar] [CrossRef]
- Peters, A.; Pitcher, L.A.; Sullivan, J.M.; Mitsdoerffer, M.; Acton, S.E.; Franz, B.; Wucherpfennig, K.; Turley, S.; Carroll, M.C.; Sobel, R.A.; Bettelli, E.; Kuchroo, V.K. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 2011, 35, 986–996. [Google Scholar] [CrossRef]
- Rangel–Moreno, J.; Carragher, D.M.; de la Luz Garcia–Hernandez, M.; Hwang, J.Y.; Kusser, K.; Hartson, L.; Kolls, J.K.; Khader, S.A.; Randall, T.D. The development of inducible bronchus–associated lymphoid tissue depends on IL–17. Nat. Immunol. 2011, 12, 639–646. [Google Scholar] [CrossRef]
- Rangel–Moreno, J.; Hartson, L.; Navarro, C.; Gaxiola, M.; Selman, M.; Randall, T.D. Inducible bronchus–associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J. Clin. Invest. 2006, 116, 3183–3194. [Google Scholar] [CrossRef]
- Chen, K.; McAleer, J.P.; Lin, Y.; Paterson, D.L.; Zheng, M.; Alcorn, J.F.; Weaver, C.T.; Kolls, J.K. Th17 cells mediate clade–specific, serotype–independent mucosal immunity. Immunity 2011, 35, 997–1009. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bystrom, J.; Al-Adhoubi, N.; Al-Bogami, M.; Jawad, A.S.; Mageed, R.A. Th17 Lymphocytes in Respiratory Syncytial Virus Infection. Viruses 2013, 5, 777-791. https://doi.org/10.3390/v5030777
Bystrom J, Al-Adhoubi N, Al-Bogami M, Jawad AS, Mageed RA. Th17 Lymphocytes in Respiratory Syncytial Virus Infection. Viruses. 2013; 5(3):777-791. https://doi.org/10.3390/v5030777
Chicago/Turabian StyleBystrom, Jonas, Nasra Al-Adhoubi, Mohammed Al-Bogami, Ali S. Jawad, and Rizgar A. Mageed. 2013. "Th17 Lymphocytes in Respiratory Syncytial Virus Infection" Viruses 5, no. 3: 777-791. https://doi.org/10.3390/v5030777