Development of Live-Attenuated Influenza Vaccines against Outbreaks of H5N1 Influenza
Abstract
:1. Introduction
2. Development of H5N1 LAIV
Vaccine type | Mode of modification | Stage of research | Vaccinee | Investigator | |
---|---|---|---|---|---|
Temperature-sensitive | Temperature-sensitive influenza vaccine donor strain (A/Guinea Fowl/Hong Kong/WF10/99 (WF10) H9N2) | pre-clinical | poultry and mouse | Daniel R. Perez [20,21] 2007, 2008 | |
Cold-adapted | Cold-adapted influenza vaccine donor strain (A/Ann Arbor/6/60(H2N2)) and deletion of HA cleavage site | phase I | human | Ruth A. Karron [22] 2009 | |
pre-clinical | mouse | Amorsolo L. Suguitan [23] 2006 | |||
pre-clinical | chicken, mouse and monkey | Shufang Fan [24] 2009 | |||
Truncated | NS1 protein | Truncation of NS1 protein, deletion of HA cleavage site, mutation of PB2 | pre-clinical | mouse and poultry | John Steel [25] 2009 |
Deletion of NS1 open reading frame and HA cleavage site | pre-clinical | chicken, mouse and ferret | Julia Romanova [26] 2009 | ||
M2 protein | Deletion of M2 cytoplasmic tail and HA cleavage site | pre-clinical | mouse | Tokiko Watanabe [27] 2007 | |
Knockout gene | Knockout of PB2 gene | pre-clinical | mouse | Yoshihiro Kawaoka [28,29] 2011, 2012 | |
Computer-aided rational design | Adjustment/redesign of mast coding regions of PB1, NP and HA based on degree of codon-pair deoptimization | pre-clinical | mouse | Steffen Mueller [30] 2010 |
2.1. Reassortment with a Temperature-Sensitive Vaccine Donor Strain
2.2. Reassortment with a Cold-Adapted Vaccine Donor Strain
2.3. Truncation of NS1 Protein or M2 Protein
2.3.1. Truncation of NS1 Protein
2.3.2. Truncation of M2 Protein
2.4. Knockout of PB2 Gene
2.5. Computer-Aided Rational Design
3. Adjuvants Applied in LAIV
3.1. Alpha-C-Galactosylceramide
Animal model | Mode of immunization | Immunogen | Dose of immunogen | Adjuvant | Dose of Adjuvant | Protection against a homologous challenge | Protection against a heterologous challenge | Investigator |
---|---|---|---|---|---|---|---|---|
mouse | intranasal | H1N1 LAIV | 102 PFU | alpha-C-GalCer | 0 | 100LD50 H1N1 (0%) | N. D. a | Sarah A. Kopecky-Bromberg [52] 2009 |
1 μg | 100LD50 H1N1 (80%) | |||||||
103 PFU | 0 | 100LD50 H1N1 (100%) | ||||||
1 μg | ||||||||
25 PFU | 0 | 100LD50 H1N1 (0%) | ||||||
0.11 μg | 100LD50 H1N1 (20%) | |||||||
0.33 μg | 100LD50 H1N1 (80%) | |||||||
1 μg | 100LD50 H1N1 (60%) | |||||||
3 μg | 100LD50 H1N1 (20%) | |||||||
mouse | intranasal | H2N2 LAIV | 2 × 105 PFU | IL-2 | − | 2 × 105 PFU H2N2 (57%) | N.D. | Boris Ferko [53] 2006 |
+ | 2 × 105 PFU H2N2 (100%) | |||||||
mouse | intranasal | H1N1 LAIV | 10TCID50 | Chitosan | 0 | 100LD50 H1N1 (0%) | N.D. | Ze Chen [54] 2012 |
0.2% | 100LD50 H1N1 (20%) | N.D. | ||||||
100TCID50 | 0 | 100LD50 H1N1 (0%) | 100LD50 H9N2 (0%) | |||||
0.2% | 100LD50 H1N1 (100%) | 100LD50 H9N2 (100%) | ||||||
1000TCID50 | 0 | 100LD50 H1N1 (100%) | N.D. | |||||
0.2% | 100LD50 H1N1 (100%) | N.D. |
3.2. Interleukin-2
3.3. Chitosan
4. Special Populations
4.1. Children
4.2. The Elderly
5. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Shelton, H.; Ayora-Talavera, G.; Ren, J.; Loureiro, S.; Pickles, R.J.; Barclay, W.S.; Jones, I.M. Receptor binding profiles of avian influenza virus hemagglutinin subtypes on human cells as a predictor of pandemic potential. J. Virol. 2011, 85, 1875–1880. [Google Scholar] [CrossRef]
- Ungchusak, K.; Auewarakul, P.; Dowell, S.F.; Kitphati, R.; Auwanit, W.; Puthavathana, P.; Uiprasertkul, M.; Boonnak, K.; Pittayawonganon, C.; Cox, N.J.; et al. Probable person-to-person transmission of avian influenza A (H5N1). New Engl. J. Med. 2005, 352, 333–340. [Google Scholar] [CrossRef]
- Ghedin, E.; Fitch, A.; Boyne, A.; Griesemer, S.; DePasse, J.; Bera, J.; Zhang, X.; Halpin, R.A.; Smit, M.; Jennings, L.; et al. Mixed infection and the genesis of influenza virus diversity. J. Virol. 2009, 83, 8832–8841. [Google Scholar]
- Horimoto, T.; Kawaoka, Y. Pandemic threat posed by avian influenza A viruses. Clin. Microbiol. Rev. 2001, 14, 129–149. [Google Scholar] [CrossRef]
- Belshe, R.; Lee, M.S.; Walker, R.E.; Stoddard, J.; Mendelman, P.M. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev. Vaccines 2004, 3, 643–654. [Google Scholar] [CrossRef]
- Gasparini, R.; Amicizia, D.; Lai, P.L.; Panato, D. Live attenuated influenza vaccine—A review. J. Prev. Med. Hyg. 2011, 52, 95–101. [Google Scholar]
- Lanthiera, P.A.; Hustona, G.E.; Moquina, A.; Eatona, S.M.; Szabaa, F.M.; Kummera, L.W.; Tighea, M.P.; Kohlmeiera, J.E.; Blair, P.J.; Broderickb, M.; et al. Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses. Vaccine 2011, 29, 7849–7856. [Google Scholar]
- Powell, T.J.; Strutt, T.; Reome, J.; Hollenbaugh, J.A.; Roberts, A.D.; Woodland, D.L.; Swain, S.L.; Dutton, R.W. Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J. Immunol. 2007, 178, 1030–1038. [Google Scholar]
- LaMere, M.W.; Lam, H.T.; Moquin, A.; Haynes, L.; Lund, F.E.; Randall, T.D.; Kaminski, D.A. Contributions of antinucleoprotein IgG to heterosubtypic immunity against influenza virus. J. Immunol. 2011, 186, 4331–4339. [Google Scholar] [CrossRef]
- Carter, N.J.; Plosker, G.L. Prepandemic influenza vaccine H5N1 (split Virion, Inactivated, Adjuvanted) [PrepandrixTM]. Biodrugs 2008, 22, 279–292. [Google Scholar] [CrossRef]
- Ashkenazi, S.; Vertruyen, A.; Arístegui, J.; Esposito, S.; McKeith, D.D.; Klemola, T.; Biolek, J.; Kühr, J.; Bujnowski, T.; Desgrandchamps, D.; Cheng, S.M.; et al. Superior relative efficacy of live attenuated influenza vaccine compared with inactivated influenza vaccine in young children with recurrent respiratory tract infections. Pediatr. Infect. Dis. J. 2006, 25, 870–879. [Google Scholar] [CrossRef]
- Treanora, J.J.; Kotloffb, K.; Bettsa, R.F.; Belshec, R.; Newmanc, F.; Iacuziod, D.; Wittese, J.; Bryant, M. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 1999, 18, 899–906. [Google Scholar] [CrossRef]
- Belshe, R.B.; Edwards, K.M.; Vesikari, T.; Black, S.V.; Walker, R.E.; Hultquist, M.; Kemble, G.; Connor, E.M. Live attenuated versus inactivated influenza vaccine in infants and young children. New Engl. J. Med. 2007, 356, 685–696. [Google Scholar] [CrossRef]
- Beyer, W.E.; Palache, A.M.; Jong, J.C.D.; Osterhaus, A.D. Cold-adapted live influenza vaccine versus inactivated vaccine: systemic vaccine reactions, local and systemic antibody response, and vaccine efficacy: A meta-analysis. Vaccine 2002, 20, 1340–1353. [Google Scholar] [CrossRef]
- Murphy, B.R.; Coelingh, K. Principles underlying the development and use of live attenuated cold-adapted influenza A and B virus vaccines. Viral Immunol. 2002, 15, 295–323. [Google Scholar] [CrossRef]
- Smith, D.B.; Inglis, S.C. The mutation rate and variability of eukaryotic viruses: An analytical review. J. Gen. Virol. 1987, 68, 2729–2740. [Google Scholar] [CrossRef]
- Cha, T.A.; Kao, K.; Zhao, J.; Fast, P.E.; Mendelman, P.M.; Arvin, A. Genotypic stability of cold-adapted influenza virus vaccine in an efficacy clinical trial. J. Clin. Microbiol. 2000, 38, 839–845. [Google Scholar]
- Esposito, S.; Montinaro, V.; Groppali, E.; Tenconi, R.; Semino, M.; Principi, N. Live attenuated intranasal influenza vaccine. Hum. Vaccines 2012, 8, 1–5. [Google Scholar] [CrossRef]
- Sugiura, A.; Tobita, K.; Kilbourne, E.D. Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus. J. Virol. 1972, 10, 639–647. [Google Scholar]
- Song, H.; Nieto, G.R.; Perez, D.R. A new generation of modified live-attenuated avian Influenza viruses using a two-strategy combination as potential vaccine candidates. J. Virol. 2007, 81, 9238–9248. [Google Scholar]
- Hickman, D.; Hossain, J.; Song, H.; Araya, Y.; Solorzano, A.; Perez, D.R. An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines. J. Gen. Virol. 2008, 89, 2682–2690. [Google Scholar] [CrossRef]
- Karron, R.A.; Talaat, K.; Luke, C.; Callahan, K.; Thumar, B.; DiLorenzo, S.; McAuliffe, J.; Schappell, E.; Suguitan, A.; Mills, K.; et al. Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine 2009, 27, 4953–4960. [Google Scholar] [CrossRef]
- Suguitan, A.L., Jr.; McAuliffe, J.; Mills, K.L.; Jin, H.; Duke, G.; Lu, B.; Luke, C.J.; Murphy, B.; Swayne, D.E.; Kemble, G.; Subbarao, K. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med. 2006, 3, 1541–1555. [Google Scholar]
- Fan, S.; Gao, Y.; Shinya, K.; Li, C.K.; Li, Y.; Shi, J.; Jiang, Y.; Suo, Y.; Tong, T.; Zhong, G.; et al. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates. PLoS Pathog. 2009, 5, e1000409. [Google Scholar]
- Steel, J.; Lowen, A.C.; Pena, L.; Angel, M.; Solo´rzano, A.; Albrecht, R.; Perez, D.R.; García-Sastre, A.; Palese, P. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol. 2009, 83, 1742–1753. [Google Scholar]
- Romanova, J.; Krenn, B.M.; Wolschek, M.; Ferko, B.; Romanovskaja-Romanko, E.; Morokutti, A.; Shurygina, A.P.; Nakowitsch, S.; Ruthsatz, T.; Kiefmann, B.; et al. Preclinical evaluation of a replication-deficient intranasal DeltaNS1 H5N1 influenza vaccine. PLoS One 2009, 4, e5984. [Google Scholar]
- Watanabe, T.; Watanabe, S.; Kim, J.H.; Hatta, M.; Kawaoka, Y. Novel approach to the development of effective H5N1 influenza A virus vaccines: Use of M2 cytoplasmic tail mutants. J. Virol. 2007, 82, 2486–2492. [Google Scholar]
- Victor, S.T.; Watanabe, S.; Katsura, H.; Ozawa, M.; Kawaoka, Y. A replication-incompetent PB2-knockout influenza A virus vaccine vector. J. Virol. 2012, 86, 4123–4128. [Google Scholar]
- Ozawa, M.; Victor, S.T.; Taft, A.S.; Yamada, S.; Li, C.; Hatta, M.; Das, S.C.; Takashita, E.; Kakugawa, S.; Maher, E.A.; et al. Replication-incompetent influenza A viruses that stably express a foreign gene. J. Gen. Virol. 2011, 92, 2879–2888. [Google Scholar] [CrossRef]
- Mueller, S.; Coleman, J.R.; Papamichail, D.; Ward, C.B.; Nimnual, A.; Futcher, B.; Skiena, S.; Wimmer, E. Live attenuated influenza vaccines by computer-aided rational design. Nat. Biotechnol. 2010, 28, 723–726. [Google Scholar] [CrossRef]
- Smmox, R.W.; Hirst, G.K. Temperature-sensitive mutants of influenza A virus: Isolation of mutants and preliminary observations on genetic recombination and complementation. Virology 1968, 35, 41–49. [Google Scholar]
- Murphy, B.R.; Markoff, L.J.; Hosier, N.T.; Rusten, H.M.; Chanock, R.M.; Kendal, A.P.; Douglas, R.G.; Betts, R.F.; Cate, T.R., Jr.; Couch, R.B.; et al. Temperature-sensitive mutants of influenza A virus: Evaluation of A/Victoria/3/75-ts-l[E] recombinant viruses in volunteers. Infect. Immun. 1978, 20, 671–677. [Google Scholar]
- Herlocher, M.L.; Clavo, A.C.; Maassab, H.F. Sequence comparisons of A/AA/6/60 influenza viruses: Mutations which may contribute to attenuation. Virus Res. 1996, 42, 11–25. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, H.; Lu, B.; Kemble, G. Imparting temperature sensitivity and attenuation in ferrets to A/Puerto Rico/8/34 influenza virus by transferring the genetic signature for temperature sensitivity from cold-adapted A/Ann Arbor/6/60. J. Virol. 2004, 78, 995–998. [Google Scholar] [CrossRef]
- Cai, Y.; Song, H.; Ye, J.; Shao, H.; Padmanabhan, R.; Sutton, T.C.; Perez, D.R. Improved hatchability and efficient protection after in ovo vaccination with live-attenuated H7N2 and H9N2 avian influenza viruses. Virol. J. 2011, 8, 31. [Google Scholar] [CrossRef]
- Solorzano, A.; Ye, J.; Perez, D.R. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu. J. Virol. 2010, 84, 4587–4596. [Google Scholar] [CrossRef]
- Pena, L.; Vincent, A.L.; Ye, J.; Ciacci-Zanella, J.R.; Angel, M.; Lorusso, A.; Gauger, P.C.; Janke, B.H.; Loving, C.L.; Perez, D.R. Modifications in the polymerase genes of a swine-like triple-reassortant influenza virus to generate live attenuated vaccines against 2009 pandemic H1N1 viruses. J. Virol. 2011, 85, 456–469. [Google Scholar] [CrossRef]
- Jin, H.; Lu, B.; Zhou, H.; Ma, C.; Zhao, J.; Yang, C.F.; Kemble, G.; Greenberg, H. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (Flumist) derived from cold-adapted A/Ann Arbor/6/60. Virology 2003, 306, 18–24. [Google Scholar]
- Maassab, H.F. Biologic and immunologic characteristics of cold-adapted influenza virus. J. Immunol. 1969, 102, 728–732. [Google Scholar]
- Stech, J. Attenuated influenza A viruses with modified cleavage sites in hemagglutinin as live vaccines. Expert Rev. Vaccines 2008, 7, 739–743. [Google Scholar] [CrossRef]
- Jin, H.; Manetz, S.; Leininger, J.; Luke, C.; Subbarao, K.; Murphy, B.; Kemble, G.; Coelingh, K.L. Toxicological evaluation of live attenuated, cold-adapted H5N1 vaccines in ferrets. Vaccine 2007, 25, 8664–8672. [Google Scholar] [CrossRef]
- Garcıa-Sastre, A.; Egorovb, A.; Matassov, D.; Brandt, S.; Levy, D.E.; Durbin, J.E.; Palese, P.; Muster, T. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 1998, 252, 324–350. [Google Scholar] [CrossRef]
- Steel, J. New strategies for the development of H5N1 subtype influenza vaccines. Biodrugs 2011, 25, 285–298. [Google Scholar]
- Wang, L.; Suarez, D.L.; Pantin-Jackwood, M.; Mibayashi, M.; García-Sastre, A.; Saif, Y.M.; Lee, C-W. Characterization of influenza virus variants with different sizes of the non-structural (NS) genes and their potential as a live influenza vaccine in poultry. Vaccine 2008, 26, 3580–3586. [Google Scholar] [CrossRef]
- Iwatsuki-Horimoto, K.; Horimoto, T.; Noda, T.; Kiso, M.; Maeda, J.; Watanabe, S.; Muramoto, Y.; Fujii, K.; Kawaoka, Y. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J. Virol. 2006, 80, 5233–5240. [Google Scholar] [CrossRef]
- Guilligay, D.; Tarendeau, F.; Resa-Infante, P.; Coloma, R.; Crepin, T.; Sehr, P.; Lewis, J.; Ruigrok, R.W.H.; Ortin, J.; Hart, D.J.; Cusack, S. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 2008, 15, 500–506. [Google Scholar] [CrossRef]
- Hatta, M.; Gao, P.; Halfmann, P.; Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001, 293, 1840–1842. [Google Scholar] [CrossRef]
- Bresson, J.L.; Perronne, C.; Launay, O.; Gerdil, C.; Saville, M.; Wood, J.; Hoschler, K.; Zambon, M.C. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: Phase I randomised trial. Lancet 2006, 367, 1657–1664. [Google Scholar] [CrossRef]
- Treanor, J.J.; Campbell, J.D.; Zangwill, K.M.; Rowe, T.; Wolff, M. Safety and immunogenicity of an inactivated subvirion influenza a (H5N1) vaccine. New Engl. J. Med. 2006, 354, 1343–1351. [Google Scholar] [CrossRef]
- van Kaer, L. Alpha-Galactosylceramide therapy for autoimmune diseases: Prospects and obstacles. Nat. Rev. Immunol. 2005, 5, 31–42. [Google Scholar]
- Fujii, S.; Shimizu, K.; Hemmi, H.; Fukui, M.; Bonito, A.J.; Chen, G.; Franck, R.W.; Tsuji, M.; Steinman, R.M. Glycolipid α-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11252–11257. [Google Scholar]
- Kopecky-Bromberg, S.A.; Fraser, K.A.; Pica, N.; Carnero, E.; Moran, T.M.; Franck, R.W.; Tsuji, M.; Palese, P. Alpha-C-Galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine 2009, 27, 3766–3774. [Google Scholar] [CrossRef]
- Ferko, B.; Kittel, C.; Romanova, J.; Sereinig, S.; Katinger, H.; Egorov, A. Live attenuated influenza virus expressing human interleukin-2 reveals increased immunogenic potential in young and aged hosts. J. Virol. 2006, 80, 11621–11627. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Liu, F.; Zheng, M.; Zheng, D.; Zhang, T.; Yi, Y.; Ding, Y.; Luo, J.; Dai, C.; Wang, H.; Sun, B.; Chen, Z. Intranasal immunization with live attenuated influenza vaccine plus chitosan as an adjuvant protects mice against homologous and heterologous virus challenge. Arch. Virol. 2012, 157, 1451–1461. [Google Scholar]
- Toka, F.N.; Pack, C.D.; Rouse, B.T. Molecular adjuvants for mucosal immunity. Immunol. Rev. 2004, 199, 100–112. [Google Scholar]
- Ilium, L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 1998, 15, 1326–1331. [Google Scholar] [CrossRef]
- Singla, A.K.; Chawla, M. Chitosan: Some pharmaceutical and biological aspects—An update. J. Pharm. Pharmacol. 2001, 53, 1047–1067. [Google Scholar] [CrossRef]
- Jabbal-Gill, I.; Fisher, A.N.; Rappuoli, R.; Davis, S.S.; Illum, L. Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice. Vaccine 1998, 16, 2039–2046. [Google Scholar] [CrossRef]
- McNeela, E.A.; O'Connor, D.; Jabbal-Gill, I.; Illum, L.; Davis, S.S.; Pizza, M.; Peppoloni, S.; Rappuoli, R.; Mills, K.H.G. A mucosal vaccine against diphtheria: Formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine 2000, 19, 1188–1198. [Google Scholar] [CrossRef]
- Westerink, M.A.J.; Smithson, S.L.; Srivastava, N.; Blonder, J.; Coeshott, C.; Rosenthal, G.J. ProJuvant™ (PluronicF127®/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine 2001, 20, 711–723. [Google Scholar] [CrossRef]
- Sui, Z.; Chen, Q.; Wu, R.; Zhang, H.; Zheng, M.; Wang, H.; Chen, Z. Cross-protection against influenza virus infection by intranasal administration of M2-based vaccine with chitosan as an adjuvant. Arch. Virol. 2010, 155, 535–544. [Google Scholar] [CrossRef]
- Sui, Z.; Chen, Q.; Fang, F.; Zheng, M.; Chen, Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010, 28, 7690–7698. [Google Scholar]
- van der Lubben, I.M.; Verhoef, J.C.; Borchard, G.; Junginger, H.E. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci. 2001, 14, 201–207. [Google Scholar] [CrossRef]
- Davidson, L.E.; Fiorino, A.-M.; Snydman, D.R.; Hibberd, P.L. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: A randomized double-blind placebo-controlled trial. Eur. J. Clin. Nutr. 2011, 65, 501–507. [Google Scholar] [CrossRef]
- Ambrose, C.S.; Luke, C.; Coelingh, K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respi. Viruses 2008, 2, 193–202. [Google Scholar]
- Lang, P.O.; Govind, S.; Mitchell, W.A.; Siegrist, C.A.; Aspinall, R. Vaccine effectiveness in older individuals: What has been learned from the influenza-vaccine experience. Ageing Res. Rev. 2011, 10, 389–395. [Google Scholar]
- de Villiers, P.J.; Steele, A.D.; Hiemstra, L.A.; Rappaport, R.; Dunning, A.J.; Gruber, W.C.; Forrest, B.D. LAIV Elderly Study Trial Network. Efficacy and safety of a live attenuated influenza vaccine in adults 60 years of age and older. Vaccine 2009, 28, 228–234. [Google Scholar] [CrossRef]
- Forrest, B.D.; Steele, A.D.; Hiemstra, L.; Rappaport, R.; Ambrose, C.S.; Gruber, W.C. A prospective, randomized, open-label trial comparing the safety and efficacy of trivalent live attenuated and inactivated influenza vaccines in adults 60 years of age and older. Vaccine 2011, 29, 3633–3639. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zheng, D.; Yi, Y.; Chen, Z. Development of Live-Attenuated Influenza Vaccines against Outbreaks of H5N1 Influenza. Viruses 2012, 4, 3589-3605. https://doi.org/10.3390/v4123589
Zheng D, Yi Y, Chen Z. Development of Live-Attenuated Influenza Vaccines against Outbreaks of H5N1 Influenza. Viruses. 2012; 4(12):3589-3605. https://doi.org/10.3390/v4123589
Chicago/Turabian StyleZheng, Dan, Yinglei Yi, and Ze Chen. 2012. "Development of Live-Attenuated Influenza Vaccines against Outbreaks of H5N1 Influenza" Viruses 4, no. 12: 3589-3605. https://doi.org/10.3390/v4123589