Viral Ancestors of Antiviral Systems
Abstract
:1. Introduction
2. Prokaryotes
3. The R/M System, T/As and Virus
4. Toxins, Host Adaptation and Phage
5. CRISPRS
6. Eukaryotes Shift Virus and Antivirus Defenses
7. C. elegans, RNAi and Antivirus Systems
8. Paleovirology: The Filamentous Fungi
9. Paucity of Tunicate Virus, Antivirus States and the Problem of Gradualism
10. Components of Adaptive Immunity of Jawed Vertebrates: Big Bang Reexamined
11. The T-Cell Receptor (TCR and Ig Family)
12. The TCR ‘Receptor’ Must Link to a Recombination System
13. MHC Locus Is Dynamic via ERVs
14. The Sudden Emergence of IFN Alpha and Gamma System
15. T Cells Must Clonally Transform and Differentiate
16. Conclusions: Ongoing Viral Solutions to Adaptive and Other Immunity
References and Notes
- Breitbart, M.; Hewson, I.; Felts, B.; Mahaffy, J.M.; Nulton, J.; Salamon, P.; Rohwer, F. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 2003, 185, 6220–6223. [Google Scholar] [CrossRef] [PubMed]
- Angly, F.E.; Felts, B.; Breitbart, M.; Salamon, P.; Edwards, R.A.; Carlson, C.; Chan, A.M.; Haynes, M.; Kelley, S.; Liu, H.; et al. The marine viromes of four oceanic regions. PLoS Biol. 2006, 4, e368. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Meyerdierks, A.; Pena, A.; Rossello-Mora, R.; Amann, R.; Anton, J. Metagenomic approach to the study of halophages: The environmental halophage 1. Environ. Microbiol. 2007, 9, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M.; Haynes, M.; Kelley, S.; Angly, F.; Edwards, R.A.; Felts, B.; Mahaffy, J.M.; Mueller, J.; Nulton, J.; Rayhawk, S.; et al. Viral diversity and dynamics in an infant gut. Res. Microbiol. 2008, 159, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Desnues, C.; Rodriguez-Brito, B.; Rayhawk, S.; Kelley, S.; Tran, T.; Haynes, M.; Liu, H.; Furlan, M.; Wegley, L.; Chau, B.; et al. Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 2008, 452, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Dinsdale, E.A.; Edwards, R.A.; Hall, D.; Angly, F.; Breitbart, M.; Brulc, J.M.; Furlan, M.; Desnues, C.; Haynes, M.; Li, L.; et al. Functional metagenomic profiling of nine biomes. Nature 2008, 452, 629–632. [Google Scholar] [CrossRef]
- Schoenfeld, T.; Patterson, M.; Richardson, P.M.; Wommack, K.E.; Young, M.; Mead, D. Assembly of viral metagenomes from yellowstone hot springs. Appl. Environ. Microbiol. 2008, 74, 4164–4174. [Google Scholar] [CrossRef]
- Williamson, S.J.; Rusch, D.B.; Yooseph, S.; Halpern, A.L.; Heidelberg, K.B.; Glass, J.I.; Andrews-Pfannkoch, C.; Fadrosh, D.; Miller, C.S.; Sutton, G.; et al. The sorcerer ii global ocean sampling expedition: Metagenomic characterization of viruses within aquatic microbial samples. PLoS One 2008, 3, e1456. [Google Scholar] [CrossRef]
- Santos, F.; Yarza, P.; Parro, V.; Briones, C.; Anton, J. The metavirome of a hypersaline environment. Environ. Microbiol. 2010, 12, 2965–2976. [Google Scholar] [CrossRef]
- Roossinck, M.J.; Saha, P.; Wiley, G.B.; Quan, J.; White, J.D.; Lai, H.; Chavarria, F.; Shen, G.; Roe, B.A. Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology. Mol. Ecol. 2010, 19, 81–88. [Google Scholar] [CrossRef]
- Witzany, G. Natural genome-editing competences of viruses. Acta Biotheor. 2006, 54, 235–253. [Google Scholar] [CrossRef]
- Villarreal, L.P.; Witzany, G. Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 2010, 262, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Luria, S.E.; Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943, 28, 491–511. [Google Scholar] [CrossRef] [PubMed]
- d’Herelle, F. The Bacteriophage and Its Behavior; Williams and Wilkins: Baltimore, MD, USA, 1926. [Google Scholar]
- Delbrück, M.; Luria, S.E. Interference between bacterial viruses. Arch. Biochem. 1942, I, 111–141. [Google Scholar] [CrossRef]
- Redfield, R.J.; Campbell, A.M. Origin of cryptic lambda prophages in escherichia coli k-12. Cold Spring Harb. Symp. Quant. Biol. 1984, 49, 199–206. [Google Scholar] [CrossRef]
- Wain-Hobson, S. Retrovirus evolution. In Origin and Evolution of Viruses, 2nd ed.; Domingo, E., Parrish, C.R., Holland, J.J., Eds.; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Villarreal, L.P.; Defilippis, V.R.; Gottlieb, K.A. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 2000, 272, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ryan, F.P. Viruses as symbionts. Symbiosis 2007, 43, 11–21. [Google Scholar]
- Roossinck, M.J. The good viruses: Viral mutualistic symbioses. Nat. Rev. Microbiol. 2011, 9, 99–108. [Google Scholar] [CrossRef]
- Yan, Y.; Buckler-White, A.; Wollenberg, K.; Kozak, C.A. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene fv1 in the genus mus. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3259–3263. [Google Scholar] [CrossRef]
- Mehta, P.; Casjens, S.; Krishnaswamy, S. Analysis of the lambdoid prophage element e14 in the e. Coli k-12 genome. BMC Microbiol. 2004, 4, 4. [Google Scholar] [CrossRef]
- Engelberg-Kulka, H.; Reches, M.; Narasimhan, S.; Schoulaker-Schwarz, R.; Klemes, Y.; Aizenman, E.; Glaser, G. Rexb of bacteriophage lambda is an anti-cell death gene. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 15481–15486. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Gohler, A.; Heller, K.J.; Neve, H. The ltp gene of temperate streptococcus thermophilus phage tp-j34 confers superinfection exclusion to streptococcus thermophilus and lactococcus lactis. Virology 2006, 350, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Mosig, G.; Yu, S.; Myung, H.; Haggard-Ljungquist, E.; Davenport, L.; Carlson, K.; Calendar, R. A novel mechanism of virus-virus interactions: Bacteriophage p2 tin protein inhibits phage t4 DNA synthesis by poisoning the t4 single-stranded DNA binding protein, gp32. Virology 1997, 230, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Hartskeerl, R.; Zuidweg, E.; van Geffen, M.; Hoekstra, W. The inci plasmids r144, r64 and colib belong to one exclusion group. J. Gen. Microbiol. 1985, 131, 1305–1311. [Google Scholar] [CrossRef]
- Briani, F.; Deho, G.; Forti, F.; Ghisotti, D. The plasmid status of satellite bacteriophage p4. Plasmid 2001, 45, 1–17. [Google Scholar] [CrossRef]
- Oshima, K.; Kakizawa, S.; Nishigawa, H.; Kuboyama, T.; Miyata, S.; Ugaki, M.; Namba, S. A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: Clue to viral ancestry or result of virus/plasmid recombination? Virology 2001, 285, 270–277. [Google Scholar] [CrossRef]
- Boyd, D.; Peters, G.A.; Cloeckaert, A.; Boumedine, K.S.; Chaslus-Dancla, E.; Imberechts, H.; Mulvey, M.R. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of salmonella enterica serovar typhimurium dt104 and its identification in phage type dt120 and serovar agona. J. Bacteriol. 2001, 183, 5725–5732. [Google Scholar] [CrossRef]
- Boltner, D.; MacMahon, C.; Pembroke, J.T.; Strike, P.; Osborn, A.M. R391: A conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 2002, 184, 5158–5169. [Google Scholar] [CrossRef]
- Jalasvuori, M.; Jaatinen, S.T.; Laurinavicius, S.; Ahola-Iivarinen, E.; Kalkkinen, N.; Bamford, D.H.; Bamford, J.K.H. The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea. J. Virol. 2009, 83, 9388–9397. [Google Scholar] [CrossRef]
- Lobocka, M.B.; Rose, D.J.; Plunkett, G., 3rd; Rusin, M.; Samojedny, A.; Lehnherr, H.; Yarmolinsky, M.B.; Blattner, F.R. Genome of bacteriophage p1. J. Bacteriol. 2004, 186, 7032–7068. [Google Scholar] [CrossRef]
- Yarmolinsky, M.B. Programmed cell death in bacterial populations. Science 1995, 267, 836–837. [Google Scholar] [CrossRef] [PubMed]
- Klassen, R.; Tontsidou, L.; Larsen, M.; Meinhardt, F. Genome organization of the linear cytoplasmic element ppe1b from pichia etchellsii. Yeast 2001, 18, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Binnewies, T.T.; Motro, Y.; Hallin, P.F.; Lund, O.; Dunn, D.; La, T.; Hampson, D.J.; Bellgard, M.; Wassenaar, T.M.; Ussery, D.W. Ten years of bacterial genome sequencing: Comparative-genomics-based discoveries. Funct. Integr. Genom. 2006, 6, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Wolf, Y.I. Genomics of bacteria and archaea: The emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 2008, 36, 6688–6719. [Google Scholar] [CrossRef]
- Osborn, A.M.; Boltner, D. When phage, plasmids, and transposons collide: Genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 2002, 48, 202–212. [Google Scholar] [CrossRef]
- Lehnherr, H.; Maguin, E.; Jafri, S.; Yarmolinsky, M.B. Plasmid addiction genes of bacteriophage p1: Doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 1993, 233, 414–428. [Google Scholar] [CrossRef]
- Basta, T.; Smyth, J.; Forterre, P.; Prangishvili, D.; Peng, X. Novel archaeal plasmid pah1 and its interactions with the lipothrixvirus afv1. Mol. Microbiol. 2009, 71, 23–34. [Google Scholar] [CrossRef]
- Ichige, A.; Kobayashi, I. Stability of ecori restriction-modification enzymes in vivo differentiates the ecori restriction-modification system from other postsegregational cell killing systems. J. Bacteriol. 2005, 187, 6612–6621. [Google Scholar] [CrossRef]
- Pagie, L.; Hogeweg, P. Individual- and population-based diversity in restriction-modification systems. Bull. Math. Biol. 2000, 62, 759–774. [Google Scholar] [CrossRef]
- Gelfand, M.S.; Koonin, E.V. Avoidance of palindromic words in bacterial and archaeal genomes: A close connection with restriction enzymes. Nucleic Acids Res. 1997, 25, 2430–2439. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Zhang, X.W.; Liang, C.W.; Wu, J.Y.; Bao, Q.Y.; Qin, S. Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria. Physiol. Genom. 2006, 24, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Dziewit, L.; Jazurek, M.; Drewniak, L.; Baj, J.; Bartosik, D. The sxt conjugative element and linear prophage n15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the paracoccus aminophilus plasmid pami2. J. Bacteriol. 2007, 189, 1983–1997. [Google Scholar] [CrossRef] [PubMed]
- Naderer, M.; Brust, J.R.; Knowle, D.; Blumenthal, R.M. Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J. Bacteriol. 2002, 184, 2411–2419. [Google Scholar] [CrossRef] [PubMed]
- Tyndall, C.; Lehnherr, H.; Sandmeier, U.; Kulik, E.; Bickle, T.A. The type ic hsd loci of the enterobacteria are flanked by DNA with high homology to the phage p1 genome: Implications for the evolution and spread of DNA restriction systems. Mol. Microbiol. 1997, 23, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Mrazek, J.; Karlin, S. Detecting alien genes in bacterial genomes. Ann. N. Y. Acad. Sci. 1999, 870, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Zaleski, P.; Wojciechowski, M.; Piekarowicz, A. The role of dam methylation in phase variation of haemophilus influenzae genes involved in defence against phage infection. Microbiology 2005, 151, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Pullinger, G.D.; Bevir, T.; Lax, A.J. The pasteurella multocida toxin is encoded within a lysogenic bacteriophage. Mol. Microbiol. 2004, 51, 255–269. [Google Scholar] [CrossRef]
- Persson, O.P.; Pinhassi, J.; Riemann, L.; Marklund, B.I.; Rhen, M.; Normark, S.; Gonzalez, J.M.; Hagstrom, A. High abundance of virulence gene homologues in marine bacteria. Environ. Microbiol. 2009, 11, 1348–1357. [Google Scholar] [CrossRef]
- Kunin, V.; He, S.; Warnecke, F.; Peterson, S.B.; Garcia Martin, H.; Haynes, M.; Ivanova, N.; Blackall, L.L.; Breitbart, M.; Rohwer, F.; et al. A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res. 2008, 18, 293–297. [Google Scholar] [CrossRef]
- Williamson, S.J.; Cary, S.C.; Williamson, K.E.; Helton, R.R.; Bench, S.R.; Winget, D.; Wommack, K.E. Lysogenic virus-host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J. 2008, 2, 1112–1121. [Google Scholar] [CrossRef]
- Rodriguez-Valera, F.; Martin-Cuadrado, A.B.; Rodriguez-Brito, B.; Pasic, L.; Thingstad, T.F.; Rohwer, F.; Mira, A. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 2009, 7, 828–836. [Google Scholar] [CrossRef]
- Cheetham, B.F.; Katz, M.E. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 1995, 18, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Ooka, T.; Asadulghani; Terajima, J. ; Nougayrede, J.P.; Kurokawa, K.; Tashiro, K.; Tobe, T.; Nakayama, K.; Kuhara, S.; et al. Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic escherichia coli strains of o157 and non-o157 serotypes. Genome Biol. 2007, 8, R138. [Google Scholar] [CrossRef] [PubMed]
- Ooka, T.; Ogura, Y.; Asadulghani, M.; Ohnishi, M.; Nakayama, K.; Terajima, J.; Watanabe, H.; Hayashi, T. Inference of the impact of insertion sequence (is) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in escherichia coli o157 genomes. Genome Res. 2009, 19, 1809–1816. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Liu, B.; Beutin, L.; Xu, J.; Ren, Y.; Feng, L.; Lan, R.; Reeves, P.R.; Wang, L. Derivation of escherichia coli o157:H7 from its o55:H7 precursor. PLoS One 2010, 5, e8700. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Ooka, T.; Iguchi, A.; Toh, H.; Asadulghani, M.; Oshima, K.; Kodama, T.; Abe, H.; Nakayama, K.; Kurokawa, K.; et al. Comparative genomics reveal the mechanism of the parallel evolution of o157 and non-o157 enterohemorrhagic escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 17939–17944. [Google Scholar] [CrossRef]
- Iguchi, A.; Thomson, N.R.; Ogura, Y.; Saunders, D.; Ooka, T.; Henderson, I.R.; Harris, D.; Asadulghani, M.; Kurokawa, K.; Dean, P.; et al. Complete genome sequence and comparative genome analysis of enteropathogenic escherichia coli o127:H6 strain e2348/69. J. Bacteriol. 2009, 191, 347–354. [Google Scholar] [CrossRef]
- Asadulghani, M.; Ogura, Y.; Ooka, T.; Itoh, T.; Sawaguchi, A.; Iguchi, A.; Nakayama, K.; Hayashi, T. The defective prophage pool of escherichia coli o157: Prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 2009, 5, e1000408. [Google Scholar] [CrossRef]
- Abe, H.; Miyahara, A.; Oshima, T.; Tashiro, K.; Ogura, Y.; Kuhara, S.; Ogasawara, N.; Hayashi, T.; Tobe, T. Global regulation by horizontally transferred regulators establishes the pathogenicity of escherichia coli. DNA Res. 2008, 15, 25–38. [Google Scholar] [CrossRef]
- Oshima, K.; Toh, H.; Ogura, Y.; Sasamoto, H.; Morita, H.; Park, S.H.; Ooka, T.; Iyoda, S.; Taylor, T.D.; Hayashi, T.; et al. Complete genome sequence and comparative analysis of the wild-type commensal escherichia coli strain se11 isolated from a healthy adult. DNA Res. 2008, 15, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Brussow, H. Bacteria between protists and phages: From antipredation strategies to the evolution of pathogenicity. Mol. Microbiol. 2007, 65, 583–589. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, X.; Ma, Q.; Zhang, X.S.; Wood, T.K. Toxin-antitoxin systems in escherichia coli influence biofilm formation through yjgk (taba) and fimbriae. J. Bacteriol. 2009, 191, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.J.; Wade, W.D.; Akierman, S.; Vacchi-Suzzi, C.; Stremick, C.A.; Turner, R.J.; Ceri, H. The chromosomal toxin gene yafq is a determinant of multidrug tolerance for escherichia coli growing in a biofilm. Antimicrob. Agents Chemother. 2009, 53, 2253–2258. [Google Scholar] [CrossRef] [PubMed]
- Blower, T.R.; Fineran, P.C.; Johnson, M.J.; Toth, I.K.; Humphreys, D.P.; Salmond, G.P. Mutagenesis and functional characterization of the rna and protein components of the toxin abortive infection and toxin-antitoxin locus of erwinia. J. Bacteriol. 2009, 191, 6029–6039. [Google Scholar] [CrossRef] [PubMed]
- Fineran, P.C.; Blower, T.R.; Foulds, I.J.; Humphreys, D.P.; Lilley, K.S.; Salmond, G.P. The phage abortive infection system, toxin, functions as a protein-rna toxin-antitoxin pair. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Novick, R.P. Phage-mediated intergeneric transfer of toxin genes. Science 2009, 323, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Spoering, A.L.; Vulic, M.; Lewis, K. Glpd and plsb participate in persister cell formation in escherichia coli. J. Bacteriol. 2006, 188, 5136–5144. [Google Scholar] [CrossRef]
- Horvath, P.; Barrangou, R. Crispr/cas, the immune system of bacteria and archaea. Science 2010, 327, 167–170. [Google Scholar] [CrossRef]
- Marraffini, L.A.; Sontheimer, E.J. Self versus non-self discrimination during crispr rna-directed immunity. Nature 2010, 463, 568–571. [Google Scholar] [CrossRef]
- Jore, M.M.; Lundgren, M.; van Duijn, E.; Bultema, J.B.; Westra, E.R.; Waghmare, S.P.; Wiedenheft, B.; Pul, U.; Wurm, R.; Wagner, R.; et al. Structural basis for crispr rna-guided DNA recognition by cascade. Nat. Struct. Mol. Biol. 2011, 18, 529–536. [Google Scholar] [CrossRef]
- Marraffini, L.A.; Sontheimer, E.J. Crispr interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322, 1843–1845. [Google Scholar] [CrossRef]
- Horvath, P.; Romero, D.A.; Coute-Monvoisin, A.C.; Richards, M.; Deveau, H.; Moineau, S.; Boyaval, P.; Fremaux, C.; Barrangou, R. Diversity, activity, and evolution of crispr loci in streptococcus thermophilus. J. Bacteriol. 2008, 190, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.C.; Bateson, M.M.; Lavin, M.; Young, M.J. Use of cellular crispr (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples. Appl. Environ. Microbiol. 2010, 76, 7251–7258. [Google Scholar] [CrossRef] [PubMed]
- Bize, A.; Forterre, P.; Prangishvili, D. Archeovirus. Virologie 2010, 14, 101–117. [Google Scholar]
- Wang, Y.; Duan, Z.H.; Zhu, H.J.; Guo, X.; Wang, Z.Y.; Zhou, J.; She, Q.X.; Huang, L. A novel sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus. Virology 2007, 363, 124–133. [Google Scholar] [CrossRef]
- Zegans, M.E.; Wagner, J.C.; Cady, K.C.; Murphy, D.M.; Hammond, J.H.; O’Toole, G.A. Interaction between bacteriophage dms3 and host crispr region inhibits group behaviors of pseudomonas aeruginosa. J. Bacteriol. 2009, 191, 210–219. [Google Scholar] [CrossRef]
- Shah, S.A.; Hansen, N.R.; Garrett, R.A. Distribution of crispr spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem. Soc. Trans. 2009, 37, 23–28. [Google Scholar] [CrossRef]
- Touchon, M.; Rocha, E.P.C. The small, slow and specialized crispr and anti-crispr of escherichia and salmonella. PLoS One 2010, 5, e11126. [Google Scholar] [CrossRef]
- Gill, E.E.; Brinkman, F.S.L. The proportional lack of archaeal pathogens: Do viruses/phages hold the key? Bioessays 2011, 33, 248–254. [Google Scholar] [CrossRef]
- Agarkova, I.V.; Dunigan, D.D.; Van Etten, J.L. Virion-associated restriction endonucleases of chloroviruses. J. Virol. 2006, 80, 8114–8123. [Google Scholar] [CrossRef]
- Volff, J.N.; Korting, C.; Froschauer, A.; Sweeney, K.; Schartl, M. Non-ltr retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J. Mol. Evol. 2001, 52, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Tomari, Y.; Zamore, P.D. Perspective: Machines for RNAi. Gene. Dev. 2005, 19, 517–529. [Google Scholar] [CrossRef]
- Anglicheau, D.; Muthukumar, T.; Suthanthiran, M. Micrornas: Small rnas with big effects. Transplantation 2010, 90, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Yigit, E.; Li, W.X.; Ding, S.W. An rig-i-like rna helicase mediates antiviral rnai downstream of viral sirna biogenesis in caenorhabditis elegans. PLoS Pathog. 2009, 5, e1000286. [Google Scholar] [CrossRef]
- Sijen, T.; Fleenor, J.; Simmer, F.; Thijssen, K.L.; Parrish, S.; Timmons, L.; Plasterk, R.H.; Fire, A. On the role of rna amplification in dsrna-triggered gene silencing. Cell 2001, 107, 465–476. [Google Scholar] [CrossRef]
- Iyer, L.M.; Koonin, E.V.; Aravind, L. Evolutionary connection between the catalytic subunits of DNA-dependent rna polymerases and eukaryotic rna-dependent rna polymerases and the origin of rna polymerases. BMC Struct. Biol. 2003, 3, 1. [Google Scholar] [CrossRef]
- Jin, L.; Kryukov, K.; Suzuki, Y.; Imanishi, T.; Ikeo, K.; Gojobori, T. The evolutionary study of small rna-directed gene silencing pathways by investigating rnase iii enzymes. Gene 2009, 435, 1–8. [Google Scholar] [CrossRef]
- Barstead, R. Genome-wide rnai. Curr. Opin. Chem. Biol. 2001, 5, 63–66. [Google Scholar] [CrossRef]
- van Roessel, P.; Brand, A.H. Spreading silence with sid. Genome Biol. 2004, 5, 208. [Google Scholar] [CrossRef]
- May, R.C.; Plasterk, R.H. Rna interference spreading in c. Elegans. Meth. Enzymol. 2005, 392, 308–315. [Google Scholar]
- Felix, M.A.; Ashe, A.; Piffaretti, J.; Wu, G.; Nuez, I.; Belicard, T.; Jiang, Y.; Zhao, G.; Franz, C.J.; Goldstein, L.D.; et al. Natural and experimental infection of caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011, 9, e1000586. [Google Scholar] [CrossRef] [PubMed]
- Bekal, S.; Domier, L.; Niblack, T.; Lambert, K. Discovery and initial analysis of novel viral genomes in the soybean cyst nematode. J. Gen. Virol. 2011, 92, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Bagasra, O.; Prilliman, K.R. Rna interference: The molecular immune system. J. Mol. Histol. 2004, 35, 545–553. [Google Scholar] [CrossRef]
- Lu, R.; Maduro, M.; Li, F.; Li, H.W.; Broitman-Maduro, G.; Li, W.X.; Ding, S.W. Animal virus replication and rnai-mediated antiviral silencing in caenorhabditis elegans. Nature 2005, 436, 1040–1043. [Google Scholar] [CrossRef]
- Schott, D.H.; Cureton, D.K.; Whelan, S.P.; Hunter, C.P. An antiviral role for the rna interference machinery in caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 18420–18424. [Google Scholar] [CrossRef]
- Wilkins, C.; Dishongh, R.; Moore, S.C.; Whitt, M.A.; Chow, M.; Machaca, K. Rna interference is an antiviral defence mechanism in caenorhabditis elegans. Nature 2005, 436, 1044–1047. [Google Scholar] [CrossRef]
- Fritz, J.H.; Girardin, S.E.; Philpott, D.J. Innate immune defense through RNA interference. Sci. STKE 2006, 2006, pe27. [Google Scholar] [CrossRef]
- Bowen, N.J.; McDonald, J.F. Genomic analysis of caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res. 1999, 9, 924–935. [Google Scholar] [CrossRef]
- Vastenhouw, N.L.; Plasterk, R.H. Rnai protects the caenorhabditis elegans germline against transposition. Trends Genet 2004, 20, 314–319. [Google Scholar] [CrossRef]
- Robert, V.J.; Sijen, T.; van Wolfswinkel, J.; Plasterk, R.H. Chromatin and rnai factors protect the c. Elegans germline against repetitive sequences. Gene. Dev. 2005, 19, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, L.P. Origin of Group Identity: Viruses, Addiction, and Cooperation; Springer: New York, NY, USA, 2009; pp. xxiv, 614, 619, plates. [Google Scholar]
- Voinnet, O. Induction and suppression of rna silencing: Insights from viral infections. Nat. Rev. 2005, 6, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Malone, C.D.; Hannon, G.J. Small rnas as guardians of the genome. Cell 2009, 136, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Luo, Y.; Lu, R.; Lau, N.; Lai, E.C.; Li, W.X.; Ding, S.W. Virus discovery by deep sequencing and assembly of virus-derived small silencing rnas. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1606–1611. [Google Scholar] [CrossRef]
- Pelisson, A.; Sarot, E.; Payen-Groschene, G.; Bucheton, A. A novel repeat-associated small interfering rna-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the drosophila ovary. J. Virol. 2007, 81, 1951–1960. [Google Scholar] [CrossRef] [PubMed]
- Czech, B.; Malone, C.D.; Zhou, R.; Stark, A.; Schlingeheyde, C.; Dus, M.; Perrimon, N.; Kellis, M.; Wohlschlegel, J.A.; Sachidanandam, R.; et al. An endogenous small interfering rna pathway in drosophila. Nature 2008, 453, U798–U797. [Google Scholar] [CrossRef] [PubMed]
- Aravind, L.; Dixit, V.M.; Koonin, E.V. Apoptotic molecular machinery: Vastly increased complexity in vertebrates revealed by genome comparisons. Science 2001, 291, 1279–1284. [Google Scholar] [CrossRef]
- Nakayashiki, H.; Kadotani, N.; Mayama, S. Evolution and diversification of rna silencing proteins in fungi. J. Mol. Evol. 2006, 63, 127–135. [Google Scholar] [CrossRef]
- de Jong, D.; Eitel, M.; Jakob, W.; Osigus, H.J.; Hadrys, H.; Desalle, R.; Schierwater, B. Multiple dicer genes in the early-diverging metazoa. Mol. Biol. Evol. 2009, 26, 1333–1340. [Google Scholar] [CrossRef]
- Ghabrial, S.A. New developments in fungal virology. Adv. Virus Res. 1994, 43, 303–388. [Google Scholar]
- Hillman, B.I.; Supyani, S.; Kondo, H.; Suzuki, N. A reovirus of the fungus cryphonectria parasitica that is infectious as particles and related to the coltivirus genus of animal pathogens. J. Virol. 2004, 78, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.N.; Beever, R.E.; Boine, B.; Arthur, K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 2009, 10, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Ghabrial, S.A. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 1998, 16, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Biella, S.; Smith, M.L.; Aist, J.R.; Cortesi, P.; Milgroom, M.G. Programmed cell death correlates with virus transmission in a filamentous fungus. Proc. Roy. Soc. Lond. B Biol. Sci. 2002, 269, 2269–2276. [Google Scholar] [CrossRef]
- Allen, T.D.; Nuss, D.L. Linkage between mitochondrial hypovirulence and viral hypovirulence in the chestnut blight fungus revealed by cdna microarray analysis. Eukaryotic. Cell 2004, 3, 1227–1232. [Google Scholar] [CrossRef]
- Cortesi, P.; McCulloch, C.E.; Song, H.Y.; Lin, H.Q.; Milgroom, M.G. Genetic control of horizontal virus transmission in the chestnut blight fungus, cryphonectria parasitica. Genetics 2001, 159, 107–118. [Google Scholar] [CrossRef]
- Liu, Y.C.; Linder-Basso, D.; Hillman, B.I.; Kaneko, S.; Milgroom, M.G. Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus cryphonectria. Mol. Ecol. 2003, 12, 1619–1628. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Jiang, D.; Li, G.; Xie, J.; Cheng, J.; Peng, Y.; Ghabrial, S.A.; Yi, X. Widespread horizontal gene transfer from double-stranded rna viruses to eukaryotic nuclear genomes. J. Virol. 2010, 84, 11876–11887. [Google Scholar] [CrossRef]
- Hammond, T.M.; Bok, J.W.; Andrewski, M.D.; Reyes-Dominguez, Y.; Scazzocchio, C.; Keller, N.P. Rna silencing gene truncation in the filamentous fungus aspergillus nidulans. Eukaryot. Cell 2008, 7, 339–349. [Google Scholar] [CrossRef]
- Hammond, T.M.; Keller, N.P. Rna silencing in aspergillus nidulans is independent of RNA-dependent RNA polymerases. Genetics 2005, 169, 607–617. [Google Scholar] [CrossRef]
- Cogoni, C. Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 2001, 55, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Daboussi, M.J.; Capy, P. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 2003, 57, 275–299. [Google Scholar] [CrossRef] [PubMed]
- Ebbole, D.J. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathology 2007, 45, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Gorinsek, B.; Gubensek, F.; Kordis, D. Phylogenomic analysis of chromoviruses. Cytogenet. Genome Res. 2005, 110, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Delsuc, F.; Brinkmann, H.; Chourrout, D.; Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006, 439, 965–968. [Google Scholar] [CrossRef]
- Klein, J. The grapes of incompatibility. Dev. Cell 2006, 10, 2–4. [Google Scholar] [CrossRef]
- Oren, M.; Douek, J.; Fishelson, Z.; Rinkevich, B. Identification of immune-relevant genes in histoincompatible rejecting colonies of the tunicate botryllus schlosseri. Dev. Comp. Immunol. 2007, 31, 889–902. [Google Scholar] [CrossRef]
- Pancer, Z.; Saha, N.R.; Kasamatsu, J.; Suzuki, T.; Amemiya, C.T.; Kasahara, M.; Cooper, M.D. Variable lymphocyte receptors in hagfish. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9224–9229. [Google Scholar] [CrossRef]
- Rogozin, I.B.; Iyer, L.M.; Liang, L.; Glazko, G.V.; Liston, V.G.; Pavlov, Y.I.; Aravind, L.; Pancer, Z. Evolution and diversification of lamprey antigen receptors: Evidence for involvement of an aid-apobec family cytosine deaminase. Nat. Immunol. 2007, 8, 647–656. [Google Scholar] [CrossRef]
- Nonaka, M.; Yoshizaki, F. Primitive complement system of invertebrates. Immunol. Rev. 2004, 198, 203–215. [Google Scholar] [CrossRef]
- Marino, R.; Kimura, Y.; De Santis, R.; Lambris, J.D.; Pinto, M.R. Complement in urochordates: Cloning and characterization of two c3-like genes in the ascidian ciona intestinalis. Immunogenetics 2002, 53, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.H.; Cooper, E.L. Tunicate thy-1—An invertebrate member of the ig superfamily. Progr. Clin. Biol. Res. 1987, 233, 33–42. [Google Scholar] [CrossRef]
- Herrin, B.R.; Cooper, M.D. Alternative adaptive immunity in jawless vertebrates. J. Immunol. 2010, 185, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Hsu, E. The invention of lymphocytes. Curr. Opin. Immunol. 2010, 23, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.J.; McCormack, T.J.; Mears, T.L.; Davidson, E.H. Gypsy/ty3-class retrotransposons integrated in the DNA of herring, tunicate, and echinoderms. J. Mol. Evol. 1995, 40, 13–24. [Google Scholar] [CrossRef]
- Volff, J.N.; Lehrach, H.; Reinhardt, R.; Chourrout, D. Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate oikopleura dioica. Mol. Biol. Evol. 2004, 21, 2022–2033. [Google Scholar] [CrossRef]
- Dehal, P.; Satou, Y.; Campbell, R.K.; Chapman, J.; Degnan, B.; De Tomaso, A.; Davidson, B.; Di Gregorio, A.; Gelpke, M.; Goodstein, D.M.; et al. The draft genome of ciona intestinalis: Insights into chordate and vertebrate origins. Science 2002, 298, 2157–2167. [Google Scholar] [CrossRef]
- Gadd, T.; Jakava-Viljanen, M.; Tapiovaara, H.; Koski, P.; Sihvonen, L. Epidemiological aspects of viral haemorrhagic septicaemia virus genotype ii isolated from baltic herring, clupea harengus membras l. J. Fish Dis. 2011, 34, 517–529. [Google Scholar] [CrossRef]
- Liongue, C.; John, L.B.; Ward, A. Origins of adaptive immunity. Crit. Rev. Immunol. 2011, 31, 61–71. [Google Scholar] [CrossRef]
- Ward, A.C.; Liongue, C.L., C.; John, L.B. Origins of adaptive immunity. Crit. Rev. Immunol. 2011, 31, 61–71. [Google Scholar]
- Litman, G.W.; Rast, J.P.; Fugmann, S.D. The origins of vertebrate adaptive immunity. Nat. Rev. Immunol. 2010, 10, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Witzany, G. Natural genome editing from a biocommunicative perspective. Biosemiotics 2011. [Google Scholar] [CrossRef]
- Shapiro, J.A. Evolution : A View from the 21st Century; FT Press Science: Upper Saddle River, NJ, USA, 2011; pp. xi, 253. [Google Scholar]
- Witzany, G. The agents of natural genome editing. J. Mol. Cell Biol. 2011, 3, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.D.; Alder, M.N. The evolution of adaptive immune systems. Cell 2006, 124, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, L.P. The source of self: Genetic parasites and the origin of adaptive immunity. Ann. N. Y. Acad. Sci. 2009, 1178, 194–232. [Google Scholar] [CrossRef] [PubMed]
- Jaillon, O.; Aury, J.M.; Brunet, F.; Petit, J.L.; Stange-Thomann, N.; Mauceli, E.; Bouneau, L.; Fischer, C.; Ozouf-Costaz, C.; Bernot, A.; et al. Genome duplication in the teleost fish tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004, 431, 946–957. [Google Scholar] [CrossRef]
- Poulter, R.; Butler, M. A retrotransposon family from the pufferfish (fugu) fugu rubripes. Gene 1998, 215, 241–249. [Google Scholar] [CrossRef]
- Gorinsek, B.; Gubensek, F.; Kordis, D. Evolutionary genomics of chromoviruses in eukaryotes. Mol. Biol. Evol. 2004, 21, 781–798. [Google Scholar] [CrossRef]
- Mulero, V.; Lopez-Munoz, A.; Roca, F.J.; Meseguer, J. New insights into the evolution of ifns: Zebrafish group ii ifns induce a rapid and transient expression of ifn-dependent genes and display powerful antiviral activities. J. Immunol. 2009, 182, 3440–3449. [Google Scholar]
- Workenhe, S.T.; Rise, M.L.; Kibenge, M.J.; Kibenge, F.S. The fight between the teleost fish immune response and aquatic viruses. Mol. Immunol. 2010, 47, 2525–2536. [Google Scholar] [CrossRef]
- Muroga, K. Viral and bacterial diseases of marine fish and shellfish in japanese hatcheries. Aquaculture 2001, 202, 23–44. [Google Scholar] [CrossRef]
- Magnadottir, B. Immunological control of fish diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Rahman, A. What brought the adaptive immune system to vertebrates?—The jaw hypothesis and the seahorse. Immunol. Rev. 1998, 166, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Du Pasquier, L. Speculations on the origin of the vertebrate immune system. Immunol. Lett. 2004, 92, 3–9. [Google Scholar] [CrossRef]
- Makino, T.; McLysaght, A. Interacting gene clusters and the evolution of the vertebrate immune system. Mol. Biol. Evol. 2008, 25, 1855–1862. [Google Scholar] [CrossRef]
- Du Pasquier, L. Innate immunity in early chordates and the appearance of adaptive immunity. Comptes Rendus Biologies 2004, 327, 591–601. [Google Scholar] [CrossRef]
- Dermody, T.S.; Kirchner, E.; Guglielmi, K.M.; Stehle, T. Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity. PLoS Pathog. 2009, 5, e1000481. [Google Scholar] [CrossRef]
- Carson, S.D. Coxsackievirus and adenovirus receptor (car) is modified and shed in membrane vesicles. Biochemistry 2004, 43, 8136–8142. [Google Scholar] [CrossRef]
- Adelman, M.K.; Schluter, S.F.; Marchalonis, J.J. The natural antibody repertoire of sharks and humans recognizes the potential universe of antigens. Protein J. 2004, 23, 103–118. [Google Scholar] [CrossRef]
- Camargo, M.M.; Nahum, L.A. Adapting to a changing world: Rag genomics and evolution. Hum. Genom. 2005, 2, 132–137. [Google Scholar] [CrossRef]
- Agrawal, A.; Eastman, Q.M.; Schatz, D.G. Transposition mediated by rag1 and rag2 and its implications for the evolution of the immune system. Nature 1998, 394, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Hiom, K.; Melek, M.; Gellert, M. DNA transposition by the rag1 and rag2 proteins: A possible source of oncogenic translocations. Cell 1998, 94, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Fugmann, S.D. The origins of the rag genes-from transposition to v(d)j recombination. Semin. Immunol. 2010, 22, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Okamura, K.; Yamaguchi, H.; Ototake, M.; Nakanishi, T.; Kurosawa, Y. Conservation and diversification of mhc class i and its related molecules in vertebrates. Immunol. Rev. 1999, 167, 81–100. [Google Scholar] [CrossRef]
- Xie, T.; Rowen, L.; Aguado, B.; Ahearn, M.E.; Madan, A.; Qin, S.; Campbell, R.D.; Hood, L. Analysis of the gene-dense major histocompatibility complex class iii region and its comparison to mouse. Genome Res. 2003, 13, 2621–2636. [Google Scholar] [CrossRef] [PubMed]
- Deakin, J.E.; Papenfuss, A.T.; Belov, K.; Cross, J.G.; Coggill, P.; Palmer, S.; Sims, S.; Speed, T.P.; Beck, S.; Graves, J.A. Evolution and comparative analysis of the mhc class iii inflammatory region. BMC Genom. 2006, 7, 281. [Google Scholar] [CrossRef]
- Andersson, G.; Svensson, A.C.; Setterblad, N.; Rask, L. Retroelements in the human mhc class ii region. Trends Genet. 1998, 14, 109–114. [Google Scholar] [CrossRef]
- Kulski, J.K.; Gaudieri, S.; Inoko, H.; Dawkins, R.L. Comparison between two human endogenous retrovirus (herv)-rich regions within the major histocompatibility complex. J. Mol. Evol. 1999, 48, 675–683. [Google Scholar] [CrossRef]
- Matsuo, M.Y.; Nonaka, M. Repetitive elements in the major histocompatibility complex (mhc) class i region of a teleost, medaka: Identification of novel transposable elements. Mech. Dev. 2004, 121, 771–777. [Google Scholar] [CrossRef]
- Gaudieri, S.; Kulski, J.K.; Balmer, L.; Giles, K.M.; Inoko, H.; Dawkins, R.L. Retroelements and segmental duplications in the generation of diversity within the mhc. DNA Seq. 1997, 8, 137–141. [Google Scholar] [CrossRef]
- Kulski, J.K.; Shiina, T.; Anzai, T.; Kohara, S.; Inoko, H. Comparative genomic analysis of the mhc: The evolution of class i duplication blocks, diversity and complexity from shark to man. Immunol. Rev. 2002, 190, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Kulski, J.K.; Anzai, T.; Inoko, H. Ervk9, transposons and the evolution of mhc class i duplicons within the alpha-block of the human and chimpanzee. Cytogenet Genome Res. 2005, 110, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Kulski, J.K.; Gaudieri, S.; Martin, A.; Dawkins, R.L. Coevolution of perb11 (mic) and hla class i genes with herv-16 and retroelements by extended genomic duplication. J. Mol. Evol. 1999, 49, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Kulski, J.K.; Gaudieri, S.; Dawkins, R.L. Using alu j elements as molecular clocks to trace the evolutionary relationships between duplicated hla class i genomic segments. J. Mol. Evol. 2000, 50, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Kulski, J.K.; Anzai, T.; Shiina, T.; Inoko, H. Rhesus macaque class i duplicon structures, organization, and evolution within the alpha block of the major histocompatibility complex. Mol. Biol. Evol. 2004, 21, 2079–2091. [Google Scholar] [CrossRef] [PubMed]
- Doxiadis, G.G.; de Groot, N.; Bontrop, R.E. Impact of endogenous intronic retroviruses on major histocompatibility complex class II diversity and stability. J. Virol. 2008, 82, 6667–6677. [Google Scholar] [CrossRef] [PubMed]
- Kulski, J.K.; Dawkins, R.L. The p5 multicopy gene family in the mhc is related in sequence to human endogenous retroviruses HERV-L and HERV-16. Immunogenetics 1999, 49, 404–412. [Google Scholar] [CrossRef]
- Magor, B.G.; Magor, K.E. Evolution of effectors and receptors of innate immunity. Dev. Comp. Immunol. 2001, 25, 651–682. [Google Scholar] [CrossRef]
- Nehyba, J.; Hrdlickova, R.; Bose, H.R. Dynamic evolution of immune system regulators: The history of the interferon regulatory factor family. Mol. Biol. Evol. 2009, 26, 2539–2550. [Google Scholar] [CrossRef]
- Fox, B.A.; Sheppard, P.O.; O’Hara, P.J. The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family. PLoS One 2009, 4, e4933. [Google Scholar] [CrossRef]
- Robalino, J.; Bartlett, T.C.; Chapman, R.W.; Gross, P.S.; Browdy, C.L.; Warr, G.W. Double-stranded rna and antiviral immunity in marine shrimp: Inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev. Comp. Immunol. 2007, 31, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Tanaka-Taya, K.; Sashihara, J.; Kurahashi, H.; Amo, K.; Miyagawa, H.; Kondo, K.; Okada, S.; Yamanishi, K. Human herpesvirus 6 (hhv-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated hhv-6 DNA. J. Med. Virol. 2004, 73, 465–473. [Google Scholar] [CrossRef]
- Takemoto, M.; Imasawa, T.; Yamanishi, K.; Mori, Y. Role of dendritic cells infected with human herpesvirus 6 in virus transmission to cd4(+) t cells. Virology 2009, 385, 294–302. [Google Scholar] [CrossRef]
- Hansen, S.G.; Powers, C.J.; Richards, R.; Ventura, A.B.; Ford, J.C.; Siess, D.; Axthelm, M.K.; Nelson, J.A.; Jarvis, M.A.; Picker, L.J.; et al. Evasion of cd8+ t cells is critical for superinfection by cytomegalovirus. Science 2010, 328, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Klenerman, P.; Dunbar, P.R. Cmv and the art of memory maintenance. Immunity 2008, 29, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Lestou, V.S.; De Braekeleer, M.; Strehl, S.; Ott, G.; Gadner, H.; Ambros, P.F. Non-random integration of epstein-barr virus in lymphoblastoid cell lines. Gene. Chromosome. Canc. 1993, 8, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Hengel, H.; Koszinowski, U.H.; Conzelmann, K.K. Viruses know it all: New insights into ifn networks. Trends Immunol. 2005, 26, 396–401. [Google Scholar] [CrossRef]
- Vossen, M.T.; Westerhout, E.M.; Soderberg-Naucler, C.; Wiertz, E.J. Viral immune evasion: A masterpiece of evolution. Immunogenetics 2002, 54, 527–542. [Google Scholar] [CrossRef]
- McGeoch, D.J.; Rixon, F.J.; Davison, A.J. Topics in herpesvirus genomics and evolution. Virus Res. 2006, 117, 90–104. [Google Scholar] [CrossRef]
- van Cleef, K.W.; Smit, M.J.; Bruggeman, C.A.; Vink, C. Cytomegalovirus-encoded homologs of g protein-coupled receptors and chemokines. J. Clin. Virol. 2006, 35, 343–348. [Google Scholar] [CrossRef]
- Davis-Poynter, N.J.; Degli-Esposti, M.; Farrell, H.E. Murine cytomegalovirus homologues of cellular immunomodulatory genes. Intervirology 1999, 42, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Miller-Kittrell, M.; Sparer, T.E. Feeling manipulated: Cytomegalovirus immune manipulation. Virol. J. 2009, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.K.; Munks, M.W.; Koszinowski, U.H.; Hill, A.B. Coordinated function of murine cytomegalovirus genes completely inhibits ctl lysis. J. Immunol. 2006, 177, 3225–3234. [Google Scholar] [CrossRef] [PubMed]
- Brunovskis, P.; Kung, H.J. Retrotransposition and herpesvirus evolution. Virus Genes 1995, 11, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Becker, Y.; Asher, Y.; Bujanover, S.; Darai, G. The dynamic herpesvirus DNA genome: The case of mdv-1 and hsv-1. Acta Virologica 1999, 43, 81–89. [Google Scholar]
- Klein, J. Did viruses play a part in the origin of the adaptive immune system? Folia Biologica 2004, 50, 87–92. [Google Scholar]
- Hunter, P. The great leap forward. Major evolutionary jumps might be caused by changes in gene regulation rather than the emergence of new genes. EMBO Rep. 2008, 9, 608–611. [Google Scholar] [CrossRef]
- Zuckerkandl, E.; Cavalli, G. Combinatorial epigenetics, "junk DNA", and the evolution of complex organisms. Gene 2007, 390, 232–242. [Google Scholar] [CrossRef]
- Khodosevich, K.; Lebedev, Y.; Sverdlov, E. Endogenous retroviruses and human evolution. Comp. Funct. Genom. 2002, 3, 494–498. [Google Scholar] [CrossRef]
- Haygood, R.; Babbitt, C.C.; Fedrigo, O.; Wray, G.A. Contrasts between adaptive coding and noncoding changes during human evolution. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 7853–7857. [Google Scholar] [CrossRef]
- Buzdin, A.A. Functional analysis of retroviral endogenous inserts in the human genome evolution. Bioorganicheskaia Khimiia 2010, 36, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Gogvadze, E.; Stukacheva, E.; Buzdin, A.; Sverdlov, E. Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions. J. Virol. 2009, 83, 6098–6105. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.J.; Lock, W.M.; Mager, D.L. Endogenous retroviral ltrs as promoters for human genes: A critical assessment. Gene 2009, 448, 105–114. [Google Scholar] [CrossRef]
- Buzdin, A. Human-specific endogenous retroviruses. Sci. World J. 2007, 7, 1848–1868. [Google Scholar] [CrossRef]
- Jordan, I.K.; Rogozin, I.B.; Glazko, G.V.; Koonin, E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003, 19, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Oja, M.; Peltonen, J.; Blomberg, J.; Kaski, S. Methods for estimating human endogenous retrovirus activities from est databases. BMC Bioinformatics 2007, 8, S11. [Google Scholar] [CrossRef]
- Keightley, P.D.; Lercher, M.J.; Eyre-Walker, A. Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol. 2005, 3, e42. [Google Scholar] [CrossRef] [PubMed]
- Anzai, T.; Shiina, T.; Kimura, N.; Yanagiya, K.; Kohara, S.; Shigenari, A.; Yamagata, T.; Kulski, J.K.; Naruse, T.K.; Fujimori, Y.; et al. Comparative sequencing of human and chimpanzee mhc class i regions unveils insertions/deletions as the major path to genomic divergence. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7708–7713. [Google Scholar] [CrossRef]
- Steinhuber, S.; Brack, M.; Hunsmann, G.; Schwelberger, H.; Dierich, M.P.; Vogetseder, W. Distribution of human endogenous retrovirus herv-k genomes in humans and different primates. Hum. Genet. 1995, 96, 188–192. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2011 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villarreal, L.P. Viral Ancestors of Antiviral Systems. Viruses 2011, 3, 1933-1958. https://doi.org/10.3390/v3101933
Villarreal LP. Viral Ancestors of Antiviral Systems. Viruses. 2011; 3(10):1933-1958. https://doi.org/10.3390/v3101933
Chicago/Turabian StyleVillarreal, Luis P. 2011. "Viral Ancestors of Antiviral Systems" Viruses 3, no. 10: 1933-1958. https://doi.org/10.3390/v3101933