Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis
Abstract
:1. Introduction
2. MMTV genome and proteins
3. MMTV in vivo infection
4. MMTV and Mammary Tumorigenesis
Mouse | Oncogene | Reference |
---|---|---|
Wild type | Wnt1/Wnt10b | [57] |
Wild type | Fgf3 | [58] |
Wild type | Fgf10 | [59] |
MMTV-Wnt1 | Fgf8 | [55] |
Wild type | Notch4 | [60] |
Wild type | int-5/aromatase | [61] |
MMTV-neu | Notch1 | [56] |
WAP-TGFβ | Wnt1/Wnt3 | [62] |
Wild type | eIF3e-p48 | [63] |
Wild type | Rspo2 | [64] |
Wild type | Rspo3 | [65,66] |
5. Conclusions and perspectives
Acknowledgements
References and Notes
- Coffin, J.M.; Hughes, S.H.; Varmus, H.E. Retroviruses; CSHL Press: Cold Spring Harbor, NY, USA, 1997. [Google Scholar]
- Bittner, J.J. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 1936, 84, 162. [Google Scholar] [CrossRef] [PubMed]
- Callahan, R.; Smith, G.H. The mouse as a model for mammary tumorigenesis: history and current aspects. J. Mammary Gland Biol. Neopl. 2008, 13, 269. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Maitra, U.; Johnston, D.; Lozano, M.; Dudley, J.P. The homeodomain protein CDP regulates mammary-specific gene transcription and tumorigenesis. Mol. Cell. Biol. 2004, 24, 4810–4823. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R. MMTV and the immune system. Adv. Pharm. 1997, 39, 21–46. [Google Scholar]
- Mink, S.; Hartig, E.; Jennewein, P.; Doppler, W.; Cato, A.C.B. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NF-1 and novel transcription-factor, mammary cell-activating factor. Mol. Cell. Biol. 1992, 11, 4906–4918. [Google Scholar]
- Wagner, K.U.; McAllister, K.; Ward, T.; Davis, B.; Wiseman, R.; Hennighausen, L. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res. 2001, 10, 545–553. [Google Scholar] [CrossRef]
- Choi, Y.C.; Henrard, D.H.; Lee, I.; Ross, S R. The mouse mammary tumor virus long terminal repeat directs expression in epithelial and lymphoid cells of different tissues in transgenic mice. J. Virol. 1987, 61, 3013–3019. [Google Scholar] [CrossRef]
- Reuss, F.U.; Coffin, J.M. The mouse mammary tumor virus transcription enhancers for hematopoietic progenitor and mammary gland cells share functional elements. J. Virol. 2000, 74, 8183–8187. [Google Scholar] [CrossRef]
- Leder, A.; Pattengale, P.K.; Kuo, A.; Stewart, T.A.; Leder, P. Consequences of widespread deregulation of the c-myc gene in transgenicmice: multiple neoplasms and normal development. Cell 1986, 45, 485–495. [Google Scholar] [CrossRef]
- Ball, J.K.; Diggelmann, H.; Dekaban, G.A.; Grossi, G.F.; Semmler, R.; Waight, P.A.; Fletcher, R. F. Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. J. Virol. 1988, 62, 2985–2993. [Google Scholar] [CrossRef]
- Mertz, J.A.; Mustafa, F.; Meyers, S.; Dudley, J.P. Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1. J. Virol. 2001, 75, 2174–2184. [Google Scholar] [CrossRef]
- Payne, S.L.; Elder, J.H. The role of retroviral dUTPases in replication and virulence. Curr. Protein Pept. Sci. 2001, 2, 381–388. [Google Scholar] [CrossRef]
- Ross, S.R.; Schofield, J.J.; Farr, C.J.; Bucan, M. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12386–12390. [Google Scholar] [CrossRef]
- Ponka, P.; Lok, C.N. The transferrin receptor: role in health and disease. Int. J. Biochem.Cell Biol. 1999, 31, 1111–1137. [Google Scholar] [CrossRef]
- Wang, E.; Obeng-Adjei, N.; Ying, Q.; Meertens, L.; Dragic, T.; Davey, R.A.; Ross, S.R. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells. Virol. 2008, 381, 230–240. [Google Scholar] [CrossRef]
- Schulman, H.M.; Ponka, P.; Wilczynska, A.; Gauthier, Y.; Shyamala, G. Transferrin receptor and ferritin levels during murine mammary gland development. Biochim. Biophys. Acta 1989, 1010, 1–6. [Google Scholar] [CrossRef]
- Futran, J.; Kemp, J.D.; Field, E.H.; Vora, A.; Ashman, R.F. Transferrin receptor synthesis is an early event in B cell activation. J. Immunol. 1989, 143, 787–792. [Google Scholar] [CrossRef]
- Brekelmans, P.; van Soest, P.; Voerman, J.; Platenburg, P.P.; Leenen, P.J.; van Ewijk, W. Transferrin receptor expression as a marker of immature cycling thymocytes in the mouse. Cell. Immunol. 1994, 159, 331–339. [Google Scholar] [CrossRef]
- Xu, L.; Wrona, T.J.; Dudley, J.P. Strain-specific expression of spliced MMTV RNAs containing the superantigen gene. Virol. 1997, 236, 54–65. [Google Scholar] [CrossRef]
- Reuss, F.U.; Coffin, J.M. Stimulation of mouse mammary tumor virus superantigen expression by an intragenic enhancer. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 9293–9297. [Google Scholar] [CrossRef]
- Arroyo, J.; Winchester, E.; McLellan, B.S.; Huber, B.T. Shared promoter elements between a viral superantigen and the major histocompatibility complex class II-associated invariant chain. J. Virol. 1997, 71, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Indik, S.; Gunzburg, W.H.; Salmons, B.; Rouault, F. A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virol. 2005, 337, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mertz, J.A.; Simper, M.S.; Lozano, M.M.; Payne, S.M.; Dudley, J.P. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J. Virol. 2005, 79, 14737–14747. [Google Scholar] [CrossRef] [PubMed]
- Mertz, J.A.; Lozano, M.M.; Dudley, J.P. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element. Retrovirol. 2009, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Mullner, M.; Salmons, B.; Gunzburg, W.H.; Indik, S. Identification of the Rem-responsive element of mouse mammary tumor virus. Nucleic Acids Res 2008, 36, 6284–6294. [Google Scholar] [CrossRef]
- Swanstrom, R.; Wills, J.W. Synthesis, assembly, and processing of viral proteins. In Retroviruses; Coffin, J.M., Hughes, S.M., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y., USA, 1997; pp. 263–334. [Google Scholar]
- St. George, J.A.; Cardiff, R.D.; Young, L.J.; Faulkin, L.J. Immunocytochemical distribution of mouse mammary tumor virus antigens in BALB/cfC3H mammary epithelium. J. Natl. Canc. Inst. 1979, 63, 813–820. [Google Scholar] [CrossRef]
- Golovkina, T.V.; Chervonsky, A.; Dudley, J.P.; Ross, S.R. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 1992, 69, 637–645. [Google Scholar] [CrossRef]
- Bentvelzen, P.; Hilgers, J. Murine mammary tumor virus. In Viral Oncology, Klein, G., Ed.; Raven Press: N.Y., USA, 1980; pp. 311–355. [Google Scholar]
- Baillie, G.J.; van de Lagemaat, L.N.; Baust, C.; Mager, D.L. Multiple groups of endogenous betaretroviruses in mice, rats and other mammals. J. Virol. 2004, 78, 5784–5798. [Google Scholar] [CrossRef]
- Kozak, C.; et al. A standardized nomenclature for endogenous mouse mammary tumor viruses. J. Virol. 1987, 61, 1651–1654. [Google Scholar] [CrossRef]
- Imai, S.; Okumoto, M.; Iwai, M.; Haga, S.; Mori, N.; Miyashita, N.; Moriwaki, K.; Hilgers, J.; Sarkar, N.H. Distribution of mouse mammary tumor virus in Asian wild mice. J. Virol. 1994, 68, 3437–3442. [Google Scholar] [CrossRef]
- Callahan, R.; Smith, G.H. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 2000, 19, 992–1001. [Google Scholar] [CrossRef]
- Golovkina, T.V.; Piazzon, I.; Nepomnaschy, I.; Buggiano, V.; de Olano Vela, M.; Ross, S.R. Generation of a tumorigenic milk-borne mouse mammary tumor virus by recombination between endogenous and exogenous viruses. J. Virol. 1997, 71, 3895–3903. [Google Scholar] [CrossRef]
- Nandi, S.; McGrath, C.M. Mammary neoplasia in mice. Adv. Canc. Res. 1973, 17, 353–414. [Google Scholar]
- Ross, S.R. MMTV infectious cycle and the contribution of virus-encoded proteins to transformation of mammary tissue. J. Mammary Gland Biol. Neopl. 2008, 13, 299–307. [Google Scholar] [CrossRef]
- Golovkina, T.V.; Dudley, J.P.; Ross, S.R. Superantigen activity is need for mouse mammary tumor virus spread within the mammary gland. J. Immunol. 1998, 161, 2375–2382. [Google Scholar] [CrossRef]
- Finke, D.; Acha-Orbea, H. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur. J. Immunol. 2001, 31, 2603–2611. [Google Scholar] [CrossRef]
- Ignatowicz, L.; Kappler, J.; Marrack, P. The effects of chronic infection with a superantigen-producing virus. J. Exp. Med. 1992, 175, 917–923. [Google Scholar] [CrossRef]
- Golovkina, T.V.; Prescott, J.A.; Ross, S.R. Mouse mammary tumor virus-induced tumorigenesis in sag transgenic mice: a laboratory model of natural selection. J. Virol. 1993, 67, 7690–7694. [Google Scholar] [CrossRef]
- Launois, P.; Maillard, I.; Pingel, S.; Swihart, K.G.; Xenarios, I.; Acha-Orbea, H.; Diggelmann, H.; Locksley, R.M.; MacDonald, H.R.; Louis, J.A. IL-4 rapidly produced by V beta 4 V alpha 8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 1997, 6, 541–549. [Google Scholar] [CrossRef]
- Okeoma, C.M.; Ross, S.R. Genetics of host resistance to retroviruses and cancer. In Retroviruses and Insights into Cancer; Dudley, J.P., Ed.; Springer Science and Business Media: N.Y., USA, 2010; in press. [Google Scholar]
- Okeoma, C.M.; Lovsin, N.; Peterlin, B.M.; Ross, S.R. APOBEC3 inhibits mouse mammary tumor virus replication in vivo. Nature 2007, 445, 927–930. [Google Scholar] [CrossRef]
- Takeda, E.; Tsuji-Kawahara, S.; Sakamoto, M.; Langlois, M.A.; Neuberger, M.S.; Rada, C.; Miyazawa, M. Mouse APOBEC3 restricts Friend leukemia virus infection and pathogenesis in vivo. J. Virol. 2008, 82, 10998–11008. [Google Scholar] [CrossRef] [PubMed]
- Okeoma, C.M.; Petersen, J.; Ross, S.R. Expression of murine APOBEC3 alleles in different mouse strains and their effect on mouse mammary tumor virus infection. J. Virol. 2009, 83, 3029–3038. [Google Scholar] [CrossRef] [PubMed]
- Callahan, R.; Smith, G.H. Common integration sites for MMTV in viral induced mouse mammary tumors. J. Mammary Gland Biol. Neopl. 2008, 13, 309–321. [Google Scholar] [CrossRef]
- Katz, E.; Lareef, M.H.; Rassa, J.C.; Grande, S.M.; King, L.B.; Russo, J.; Ross, S.R.; Monroe, J.G. MMTV Env encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. J. Exp. Med. 2005, 201, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R.; Schmidt, J.W.; Katz, E.; Cappelli, L.; Hultine, S.; Gimmotty, P.; Monroe, J.G. An immunoreceptor tyrosine activation motif in the Mouse Mammary Tumor Virus envelope protein plays a role in virus-induced mammary tumors. J. Virol. 2006, 80, 9000–9008. [Google Scholar] [CrossRef]
- Kordon, E.C.; Smith, G.H. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998, 125, 1921–1930. [Google Scholar] [CrossRef]
- Cardiff, R.D.; Anver, M.R.; Gusterson, B.A.; Hennighausen, L.; Jensen, R.A.; Merino, M.J.; Rehm, S.; Russo, J.; Tavassoli, F.A.; Wakefield, L.M.; Ward, J.M.; Green, J.E. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 2000, 19, 968–988. [Google Scholar] [CrossRef]
- Buggiano, V.; Levy, C.S.; Gattelli, A.; Cirio, M. C.; Marfil, M.; Nepomnaschy, I.; Piazzon, I.; Helguero, L.; Vanzulli, S.; Kordon, E.C. Origin and progression of pregnancy-dependent mammary tumors induced by new mouse mammary tumor virus variants. Breast Canc. Res. Treat. 2002, 75, 191–202. [Google Scholar] [CrossRef]
- Kwan, H.; Pecenka, V.; Tsukamoto, A.; Parslow, T.G.; Guzman, R.; Lin, T.P.; Muller, W.J.; Lee, F.S.; Leder, P.; Varmus, H.E. Transgenes expressing the Wnt1 and int2 protooncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol. Cell. Biol. 1992, 12, 147–154. [Google Scholar]
- Shackleford, G.M.; MacArthur, C.A.; Kwan, H.C.; Varmus, H.E. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt1 transgenic mice by insertional activation of int2/Fgf3 and hst/Fgf4. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 740–744. [Google Scholar] [CrossRef]
- MacArthur, C.A.; Shankar, D.B.; Shackleford, G.M. Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. J. Virol. 1995, 69, 2501–2507. [Google Scholar] [CrossRef]
- Dievart, A.; Beaulieu, N.; Jolicoeur, P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 1999, 18, 5973–59781. [Google Scholar] [CrossRef]
- Nusse, R.; Van Ooyen, A.; Cox, D.; Fung, Y.K.T.; Varmus, H.E. Mode of proviral activation of a putative mammary oncogene (int 1) on mouse chromosome 15. Nature 1984, 307, 131–136. [Google Scholar] [CrossRef]
- Dickson, C.; Smith, R.; Brookes, S.; Peters, G. Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 1984, 37, 529–536. [Google Scholar] [CrossRef]
- Theodorou, V.; Boer, M.; Weigelt, B.; Jonkers, J.; van der Valk, M.; Hilkens, J. Fgf10 is an oncogene activated by MMTV insertional mutagenesis in mouse mammary tumors and overexpressed in a subset of human breast carcinomas. Oncogene 2004, 23, 6047–6055. [Google Scholar] [CrossRef]
- Gallahan, D.; Callahan, R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 1997, 14, 1883–1890. [Google Scholar] [CrossRef]
- Durgam, V.R.; Tekmal, R.R. The nature and expression of int-5, a novel MMTV integration locus gene in carcinogen-induced mammary tumors. Canc. Lett. 1994, 87, 179–1786. [Google Scholar] [CrossRef]
- Schroeder, J.A.; Troyer, K.L.; Lee, D.C. Cooperative induction of mammary tumorigenesis by TGFalpha and Wnts. Oncogene 2000, 19, 3193–3199. [Google Scholar] [CrossRef]
- Marchetti, A.; Buttitta, F.; Miyazaki, S.; Gallahan, D.; Smith, G.H.; Callahan, R. Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J. Virol. 1995, 69, 1932–1938. [Google Scholar] [CrossRef]
- Lowther, W.; Wiley, K.; Smith, G.H.; Callahan, R. A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. J. Virol. 2005, 79, 10093–10096. [Google Scholar] [CrossRef]
- Gattelli, A.; Zimberlin, M.N.; Meiss, R.P.; Castilla, L.H.; Kordon, E.C. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines. J. Virol. 2006, 80, 11409–11415. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, V.; Kimm, M.A.; Boer, M.; Wessels, L.; Theelen, W.; Jonkers, J.; Hilkens, J. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat. Genet. 2007, 39, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hively, W.P.; Varmus, H.E. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 2000, 19. 19, 1002–1009. [Google Scholar] [CrossRef]
- Li, Y.; Welm, B.; Podsypanina, K.; Huang, S.; Chamorro, M.; Zhang, X.; Rowlands, T.; Egeblad, M.; Cowin, P.; Werb, Z.; Tan, L.K.; Rosen, J.M.; Varmus, H.E. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 15853–15858. [Google Scholar] [CrossRef] [PubMed]
- Meyers, S.L.; Dudley, J.P. Sequence analysis of the int-2/fgf-3 gene in aggressive human breast carcinomas. Mol. Carc. 1992, 6, 243–251. [Google Scholar] [CrossRef]
- Voisset, C.; Weiss, R.A.; Griffiths, D.J. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol. Mol. Biol. Rev. 2008, 72, 157–196. [Google Scholar] [CrossRef]
- Goedert, J.J.; Rabkin, C.S.; Ross, S.R. Prevalence of serologic reactivity against four strains of mouse mammary tumor virus among U.S. women with breast cancer. Br. J. Canc. 2006, 94, 548–551. [Google Scholar] [CrossRef]
- Ono, M.; Yasunaga, T.; Miyata, T.; Ushikubo, H. Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J. Virol. 1986, 60, 589–598. [Google Scholar] [CrossRef]
- Wang, Y.; Holland, J.F.; Bleiweiss, I.J.; Melana, S.; Liu, X.; Pelisson, I.; Cantarella, A.; Stellrecht, K.; Mani, S.; Pogo, B.G. Detection of mammary tumor virus ENV gene-like sequences in human breast cancer. Canc.Res. 1995, 35, 5173–5179. [Google Scholar]
- Ford, C.E.; Tran, D.; Deng, Y.; Ta, V. T.; Rawlinson, W.D.; Lawson, J.S. Mouse mammary tumor virus-like gene sequences in breast tumors of Australian and Vietnamese women. Clin. Canc. Res. 2003, 9, 1118–1120. [Google Scholar]
- Mant, C.; Gillett, C.; D'Arrigo, C.; Cason, J. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies. Virol. 2004, 318, 393–404. [Google Scholar] [CrossRef]
- Bindra, A.; Muradrasoli, S.; Kisekka, R.; Nordgren, H.; Warnberg, F.; Blomberg, J. Search for DNA of exogenous mouse mammary tumor virus-related virus in human breast cancer samples. J. Gen. Virol. 2007, 88, 1806–1809. [Google Scholar] [CrossRef]
- Frank, O.; Verbeke, C.; Schwarz, N.; Mayer, J.; Fabarius, A.; Hehlmann, R.; Leib-Mosch, C.; Seifarth, W. Variable transcriptional activity of endogenous retroviruses in human breast cancer. J. Virol. 2008, 82, 1808–1818. [Google Scholar] [CrossRef]
- Park, D.J.; Southey, M.C.; Giles, G.G.; Hopper, J.L. No evidence of MMTV-like env sequences in specimens from the Australian Breast Cancer Family Study. Breast Canc. Res. Treat. 2010. [Google Scholar] [CrossRef] [PubMed]
- Indik, S.; Gunzburg, W.H.; Salmons, B.; Rouault, F. Mouse mammary tumor virus infects human cells. Canc. Res. 2005, 65, 6651–6659. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Dubois-Marshall, S.; Sims, A.H.; Faratian, D.; Li, J.; Smith, E.S.; Quinn, J.A.; Edward, M.; Meehan, R.R.; Evans, E.E.; Langdon, S.P.; Harrison, D.J. A gene on the HER2 amplicon, C35, is an oncogene in breast cancer whose actions are prevented by inhibition of Syk. Br. J. Canc. 2010, 103, 401–410. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ross, S.R. Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis. Viruses 2010, 2, 2000-2012. https://doi.org/10.3390/v2092000
Ross SR. Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis. Viruses. 2010; 2(9):2000-2012. https://doi.org/10.3390/v2092000
Chicago/Turabian StyleRoss, Susan R. 2010. "Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis" Viruses 2, no. 9: 2000-2012. https://doi.org/10.3390/v2092000
APA StyleRoss, S. R. (2010). Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis. Viruses, 2(9), 2000-2012. https://doi.org/10.3390/v2092000