Next Article in Journal
The “Connection” Between HIV Drug Resistance and RNase H
Next Article in Special Issue
Coronavirus Genomics and Bioinformatics Analysis
Previous Article in Journal
siRNA for Influenza Therapy
Previous Article in Special Issue
The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses
Article Menu

Export Article

Open AccessArticle
Viruses 2010, 2(7), 1458-1475;

The Genomic Diversity and Phylogenetic Relationship in the Family Iridoviridae

Trent University, Peterborough, ON, K9J 7B8, Canada
Author to whom correspondence should be addressed.
Received: 8 June 2010 / Revised: 12 July 2010 / Accepted: 13 July 2010 / Published: 15 July 2010
(This article belongs to the Special Issue Viral Genomics and Bioinformatics)
Full-Text   |   PDF [1244 KB, uploaded 12 May 2015]   |  


The Iridoviridae family are large viruses (~120-200 nm) that contain a linear double-stranded DNA genome. The genomic size of Iridoviridae family members range from 105,903 bases encoding 97 open reading frames (ORFs) for frog virus 3 to 212,482 bases encoding 211 ORFs for Chilo iridescent virus. The family Iridoviridae is currently subdivided into five genera: Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus. Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish. With such a diverse array of hosts, there is great diversity in gene content between different genera. To understand the origin of iridoviruses, we explored the phylogenetic relationship between individual iridoviruses and defined the core-set of genes shared by all members of the family. In order to further explore the evolutionary relationship between the Iridoviridae family repetitive sequences were identified and compared. Each genome was found to contain a set of unique repetitive sequences that could be used in future virus identification. Repeats common to more than one virus were also identified and changes in copy number between these repeats may provide a simple method to differentiate between very closely related virus strains. The results of this paper will be useful in identifying new iridoviruses and determining their relationship to other members of the family. View Full-Text
Keywords: Iridoviridae; evolution; repetitive sequences Iridoviridae; evolution; repetitive sequences

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Eaton, H.E.; Ring, B.A.; Brunetti, C.R. The Genomic Diversity and Phylogenetic Relationship in the Family Iridoviridae. Viruses 2010, 2, 1458-1475.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top