Development of Viral Vectors for Use in Cardiovascular Gene Therapy
Abstract
:Abbreviations
1. Introduction
2. Potential Targets for Cardiovascular Gene Therapy
2.1. Vascular Gene Therapy
Clinical application | Potential delivery method | Desired onset of gene expression | Desired duration of gene expression | Target cells | Possible vectors | Desirability for repeat dosing |
---|---|---|---|---|---|---|
In-stent restenosis | Intracoronary infusion/ bound to stent | Rapid | Weeks-Months | Vessel wall (SMC, EC) | Plasmids | +++ |
Adenovirus | ||||||
SVG degeneration | Ex vivo direct application | Rapid | Weeks-Months | Vessel wall (SMC, EC) | Adenovirus | ++ |
AAV | ||||||
Lentivirus Plasmids | ||||||
Heart failure | Intracoronary infusion; myocardial injection | Not important | Months-permanent | Cardiomyocytes | AAV Lentivirus | + |
Cardiac angiogenesis | Intracoronary infusion; myocardial injection | Not important | Weeks-months | Vessel wall (EC) | AAV | + |
Lentivirus Adenovirus | ||||||
Peripheral angiogenesis | Intra-arterial infusion; intramuscular injection | Not important | Weeks-months | Vessel wall (EC) | Plasmids Adenovirus | + |
AAV | ||||||
Lentivirus | ||||||
Hypercholesterolaemia | Intravenous | Not important | Permanent | Hepatocytes | AAV Lentivirus | - |
Adenovirus | ||||||
Biopacemaking | Myocardial injection; coated on pacing wires | Rapid | Permanent | Cardiomyocytes | Lentivirus AAV | - |
Plasmids |
2.1.1. Restenosis
2.1.2. Saphenous Vein Graft Degeneration
2.1.3. Angiogenesis
2.2. Myocardial Gene Therapy
Heart Failure
2.3. Other Targets
3. Virus Vectors for Cardiovascular Gene Transfer
3.1. Adenovirus
3.2. Adeno-Associated Virus (AAV)
3.3. Lentivirus
4. Transcriptional Targeting
5. The State of Clinical Cardiovascular Gene Therapy
5.1. Angiogenic Gene Therapy
5.2. Reduction of Neointima Formation
5.3. Gene Therapy for Heart Failure
6. Conclusions
References
- Nabel, E.G.; Plautz, G.; Boyce, F.M.; Stanley, J.C.; Nabel, G.J. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 1989, 244, 1342–1344. [Google Scholar] [PubMed]
- Williams, D.O.; Holubkov, R.; Yeh, W.; Bourassa, M.G.; Al-Bassam, M.; Block, P.C.; Coady, P.; Cohen, H.; Cowley, M.; Dorros, G.; Faxon, D.; Holmes, D.R.; Jacobs, A.; Kelsey, S.F.; King 3rd, S.B.; Myler, R.; Slater, J.; Stanek, V.; Vlachos, H.A.; Detre, K.M. Percutaneous coronary intervention in the current era compared with 1985â1986: The National Heart, Lung, and Blood Institute Registries. Circulation 2000, 102, 2945–2951. [Google Scholar] [PubMed]
- Byrne, R.A.; Iijima, R.; Mehilli, J.; Pinieck, S.; Bruskina, O.; Schomig, A.; Kastrati, A. Durability of antirestenotic efficacy in drug-eluting stents with and without permanent polymer. JACC Cardiovasc. Interv. 2009, 2, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Klugherz, B.D.; Song, C.; DeFelice, S.; Cui, X.; Lu, Z.; Connolly, J.; Hinson, J.T.; Wilensky, R.L.; Levy, R.J. Gene delivery to pig coronary arteries from stents carrying antibody-tethered adenovirus. Hum. Gene Ther. 2002, 13, 443–454. [Google Scholar] [PubMed]
- Sharif, F.; Hynes, S.O.; McMahon, J.; Cooney, R.; Conroy, S.; Dockery, P.; Duffy, G.; Daly, K.; Crowley, J.; Bartlett, J.S.; O'Brien, T. Gene-eluting stents: comparison of adenoviral and adeno- associated viral gene delivery to the blood vessel wall in vivo. Hum. Gene Ther. 2006, 17, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, I.; Alferiev, I.S.; Nyanguile, O.; Gaster, R.; Vohs, J.M.; Wong, G.S.; Felderman, H.; Chen, I.W.; Choi, H.; Wilensky, R.L.; Levy, R.J. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc. Natl. Acad. Sci. USA 2006, 103, 159–164. [Google Scholar] [CrossRef]
- Johnson, T.W.; Wu, Y.X.; Herdeg, C.; Baumbach, A.; Newby, A.C.; Karsch, K.R.; Oberhoff, M. Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, I.; Alferiev, I.; Bakay, M.; Stachelek, S. J.; Sobolewski, P.; Lai, M.; Choi, H.; Chen, I. W.; Levy, R. J. Local delivery of gene vectors from bare-metal stents by use of a biodegradable synthetic complex inhibits in-stent restenosis in rat carotid arteries. Circulation 2008, 117, 2096–2103. [Google Scholar] [CrossRef] [PubMed]
- Sharif, F.; Hynes, S.O.; Cooney, R.; Howard, L.; McMahon, J.; Daly, K.; Crowley, J.; Barry, F.; O'Brien, T. Gene-eluting Stents: Adenovirus-mediated Delivery of eNOS to the Blood Vessel Wall Accelerates Re-endothelialization and Inhibits Restenosis. Mol. Ther. 2008, 16, 1674–1680. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, R.G. Critical analysis of coronary artery bypass graft surgery: A 30-year journey. J. Am. Coll. Cardiol. 1998, 31, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Motwani, J.G.; Topol, E.J. Aortocoronary saphenous vein graft disease: Pathogenesis, predisposition, and prevention. Circulation 1998, 97, 916–931. [Google Scholar] [PubMed]
- Fitzgibbon, G.M.; Kafka, H.P.; Leach, A.J.; Keon, W.J.; Hooper, G.D.; Burton, J.R. Coronary bypass graft fate and patient outcome: Angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J. Am. Coll. Cardiol. 1996, 28, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Shuhaiber, J.H.; Evans, A.N.; Massad, M.G.; Geha, A.S. Mechanisms and future directions for prevention of vein graft failure in coronary bypass surgery. Eur. J. Cardiothorac. Surg. 2002, 22, 387–396. [Google Scholar] [CrossRef]
- Lopes, R.D.; Hafley, G.E.; Allen, K.B.; Ferguson, T.B.; Peterson, E.D.; Harrington, R.A.; Mehta, R. H.; Gibson, C.M.; Mack, M.J.; Kouchoukos, N.T.; Califf, R. M.; Alexander, J.H. Endoscopic versus Open Vein-Graft Harvesting in Coronary-Artery Bypass Surgery. N. Engl. J. Med. 2009, 361, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.L.; Chiasson, D.A.; Gotlieb, A.I. Stranger in a strange land: The pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Prog. Cardiovasc. Dis. 1991, 34, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.J.; Angelini, G.D. The biology of saphenous vein graft occlusion: Etiology and strategies for prevention. Curr. Opin. Cardiol. 1994, 9, 641–649. [Google Scholar] [CrossRef]
- Davis, K.B.; Chaitman, B.; Ryan, T.; Bittner, V.; Kennedy, J.W. Comparison of 15-year survival for men and women after initial medical or surgical treatment for coronary artery disease: A CASS registry study. Coronary Artery Surgery Study. J. Am. Coll. Cardiol. 1995, 25, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Campeau, L.; Hunninghake, D.B.; Knatterud, G.L.; White, C.W.; Domanski, M.; Forman, S.A.; Forrester, J.S.; Geller, N.L.; Gobel, F.L.; Herd, J.A.; Hoogwerf, B.J.; Rosenberg, Y. Aggressive cholesterol lowering delays saphenous vein graft atherosclerosis in women, the elderly, and patients with associated risk factors NHLBI post coronary artery bypass graft clinical trial. Post CABG Trial Investigators. Circulation 1999, 99, 3241–3247. [Google Scholar] [PubMed]
- Tse, H.F.; Xue, T.; Lau, C.P.; Siu, C.W.; Wang, K.; Zhang, Q.Y.; Tomaselli, G.F.; Akar, F.G.; Li, R.A. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 2006, 114, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Yoshimitsu, M.; Higuchi, K.; Dawood, F.; Rasaiah, V.I.; Ayach, B.; Chen, M.; Liu, P.; Medin, J.A. Correction of cardiac abnormalities in fabry mice by direct intraventricular injection of a recombinant lentiviral vector that engineers expression of alpha-galactosidase A. Circ. J. 2006, 70, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.; Adams, R.; Carnethon, M.; De Simone, G.; Ferguson, T.B.; Flegal, K.; Ford, E.; Furie, K.; Go, A.; Greenlund, K.; Haase, N.; Hailpern, S.; Ho, M.; Howard, V.; Kissela, B.; Kittner, S.; Lackland, D.; Lisabeth, L.; Marelli, A.; McDermott, M.; Meigs, J.; Mozaffarian, D.; Nichol, G.; O'Donnell, C.; Roger, V.; Rosamond, W.; Sacco, R.; Sorlie, P.; Stafford, R.; Steinberger, J.; Thom, T.; Wasserthiel-Smoller, S.; Wong, N.; Wylie-Rosett, J.; Hong, Y. Heart disease and stroke statistics--2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G.; Daubert, J.C.; Erdmann, E.; Freemantle, N.; Gras, D.; Kappenberger, L.; Tavazzi, L. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 2005, 352, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Luk, A.; Ahn, E.; Soor, G.S.; Butany, J. Dilated cardiomyopathy: A review. J. Clin. Pathol. 2009, 62, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Vinge, L.E.; Raake, P.W.; Koch, W.J. Gene therapy in heart failure. Circ. Res. 2008, 102, 1458–1470. [Google Scholar] [CrossRef] [PubMed]
- Birks, E.J.; Tansley, P.D.; Hardy, J.; George, R.S.; Bowles, C.T.; Burke, M.; Banner, N.R.; Khaghani, A.; Yacoub, M.H. Left Ventricular Assist Device and Drug Therapy for the Reversal of Heart Failure. N. Engl. J. Med. 2006, 355, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Muller, O.J.; Katus, H.A.; Bekeredjian, R. Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc. Res. 2007, 73, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Pacak, C.A.; Mah, C.S.; Thattaliyath, B.D.; Conlon, T.J.; Lewis, M.A.; Cloutier, D.E.; Zolotukhin, I.; Tarantal, A.F.; Byrne, B.J. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ. Res. 2006, 99, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Prescott, M.F.; Liu, P.X.; Chen, Z.H.; Liau, G.; Gordon, E.M.; Hall, F.L. Long term inhibition of neointima formation in balloon-injured rat arteries by intraluminal instillation of a matrix-targeted retroviral vector bearing a cytocidal mutant cyclin G1 construct. Int. J. Mol. Med. 2001, 8, 19–30. [Google Scholar] [PubMed]
- Masaki, I.; Yonemitsu, Y.; Komori, K.; Ueno, H.; Nakashima, Y.; Nakagawa, K.; Fukumura, M.; Kato, A.; Hasan, M.K.; Nagai, Y.; Sugimachi, K.; Hasegawa, M.; Sueishi, K. Recombinant Sendai virus-mediated gene transfer to vasculature: A new class of efficient gene transfer vector to the vascular system. FASEB J. 2001, 15, 1294–1296. [Google Scholar] [PubMed]
- Roks, A.J.; Henning, R.H.; Buikema, H.; Pinto, Y.M.; Kraak, M.J.; Tio, R.A.; de Zeeuw, D.; Haisma, H.J.; Wilschut, J.; van Gilst, W.H. Recombinant Semliki Forest virus as a vector system for fast and selective in vivo gene delivery into balloon-injured rat aorta. Gene. Ther. 2002, 9, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Loot, A.E.; Roks, A.J.; Westermann, D.; Orzechowski, H.D.; Tschope, C.; Wilschut, J.C.; Tio, R.A.; van Gilst, W.H.; Henning, R.H. Cardiac overexpression of human VEGF(165) by recombinant Semliki Forest virus leads to adverse effects in pressure-induced heart failure. Neth. Heart J. 2007, 15, 335–341. [Google Scholar] [PubMed]
- Miyatake, S.I.; Yukawa, H.; Toda, H.; Matsuoka, N.; Takahashi, R.; Hashimoto, N. Inhibition of rat vascular smooth muscle cell proliferation in vitro and in vivo by recombinant replication-competent herpes simplex virus. Stroke 1999, 30, 2431–2438. [Google Scholar] [PubMed]
- Hu, Y.C. Baculovirus vectors for gene therapy. Adv. Virus Res. 2006, 68, 287–320. [Google Scholar] [CrossRef] [PubMed]
- Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; Ward, T.G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med. 1953, 84, 570–573. [Google Scholar] [PubMed]
- Volpers, C.; Kochanek, S. Adenoviral vectors for gene transfer and therapy. J. Gene. Med. 2004, 6, 164–171. [Google Scholar] [CrossRef]
- Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields' virology. Wolters Kluwer Health/Lippincott Williams & Wi. 2007; Wilkins: Philadelphia. [Google Scholar]
- Andreoletti, L.; Leveque, N.; Boulagnon, C.; Brasselet, C.; Fornes, P. Viral causes of human myocarditis. Arch. Cardiovasc. Dis. 2009, 102, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, A.K.; Machado, H.B.; Herschman, H.R. The influence of innate and pre-existing immunity on adenovirus therapy. J. Cell Biochem. 2009, 108, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.K.; Barry, M.A. Current advances and future challenges in Adenoviral vector biology and targeting. Curr. Gene. Ther. 2007, 7, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Philipson, L.; Pettersson, R.F. The coxsackie-adenovirus receptor--a new receptor in the immunoglobulin family involved in cell adhesion. Curr. Top. Microbiol. Immunol. 2004, 273, 87–111. [Google Scholar] [PubMed]
- Noutsias, M.; Fechner, H.; de Jonge, H.; Wang, X.; Dekkers, D.; Houtsmuller, A.B.; Pauschinger, M.; Bergelson, J.; Warraich, R.; Yacoub, M.; Hetzer, R.; Lamers, J.; Schultheiss, H.P.; Poller, W. Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: Implications for cardiotropic viral infections. Circulation 2001, 104, 275–280. [Google Scholar] [PubMed]
- Krom, Y.D.; Gras, J.C.; Frants, R.R.; Havekes, L.M.; van Berkel, T.J.; Biessen, E.A.; van Dijk, K.W. Efficient targeting of adenoviral vectors to integrin positive vascular cells utilizing a CAR-cyclic RGD linker protein. Biochem. Biophys. Res. Commun. 2005, 338, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Shayakhmetov, D.M.; Gaggar, A.; Ni, S.; Li, Z.Y.; Lieber, A. Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J. Virol. 2005, 79, 7478–7491. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.L.; Waddington, S.N.; Nicol, C.G.; Shayakhmetov, D.M.; Buckley, S.M.; Denby, L.; Kemball-Cook, G.; Ni, S.; Lieber, A.; McVey, J.H.; Nicklin, S.A.; Baker, A.H. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006, 108, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- White, K.; Nicklin, S.A.; Baker, A.H. Novel vectors for in vivo gene delivery to vascular tissue. Expert Opin. Biol. Ther. 2007, 7, 809–821. [Google Scholar] [CrossRef]
- Trotman, L.C.; Mosberger, N.; Fornerod, M.; Stidwill, R.P.; Greber, U.F. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat. Cell Biol. 2001, 3, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Tao, N.; Gao, G.P.; Parr, M.; Johnston, J.; Baradet, T.; Wilson, J.M.; Barsoum, J.; Fawell, S.E. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol. Ther. 2001, 3, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lemarchand, P.; Jones, M.; Yamada, I.; Crystal, R.G. In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ. Res. 1993, 72, 1132–1138. [Google Scholar] [PubMed]
- Gruchala, M.; Bhardwaj, S.; Pajusola, K.; Roy, H.; Rissanen, T.T.; Kokina, I.; Kholova, I.; Markkanen, J.E.; Rutanen, J.; Heikura, T.; Alitalo, K.; Bueler, H.; Yla-Herttuala, S. Gene transfer into rabbit arteries with adeno-associated virus and adenovirus vectors. J. Gene. Med. 2004, 6, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kay, M.A.; Finegold, M.; Stratford-Perricaudet, L.D.; Woo, S.L. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene. Ther. 1993, 4, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Sasano, T.; Kikuchi, K.; McDonald, A.D.; Lai, S.; Donahue, J.K. Targeted high-efficiency, homogeneous myocardial gene transfer. J. Mol. Cell Cardiol. 2007, 42, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.S.; Channon, K.; Neplioueva, V.; Wang, Q.; Finer, M.; Tsui, L.; George, S.E.; McArthur, J. Improved adenoviral vector for vascular gene therapy: Beneficial effects on vascular function and inflammation. Circ. Res. 2001, 88, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Schneider, D.B.; Driscoll, R.M.; Vassalli, G.; Sassani, A.B.; Dichek, D.A. Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1452–1458. [Google Scholar] [PubMed]
- Palmer, D.J.; Ng, P. Helper-dependent adenoviral vectors for gene therapy. Hum. Gene. Ther. 2005, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Schiedner, G.; Morral, N.; Parks, R.J.; Wu, Y.; Koopmans, S.C.; Langston, C.; Graham, F.L.; Beaudet, A.L.; Kochanek, S. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. 1998, 18, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Belalcazar, L.M.; Merched, A.; Carr, B.; Oka, K.; Chen, K.H.; Pastore, L.; Beaudet, A.; Chan, L. Long-term stable expression of human apolipoprotein A-I mediated by helper-dependent adenovirus gene transfer inhibits atherosclerosis progression and remodels atherosclerotic plaques in a mouse model of familial hypercholesterolemia. Circulation 2003, 107, 2726–2732. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Graf, S.; Massey, P.G.; Dichek, D.A. Improved vascular gene transfer with a helper-dependent adenoviral vector. Circulation 2004, 110, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Fleury, S.; Driscoll, R.; Simeoni, E.; Dudler, J.; von Segesser, L.K.; Kappenberger, L.; Vassalli, G. Helper-dependent adenovirus vectors devoid of all viral genes cause less myocardial inflammation compared with first-generation adenovirus vectors. Basic. Res. Cardiol. 2004, 99, 247–256. [Google Scholar] [PubMed]
- Schillinger, K.J.; Tsai, S.Y.; Taffet, G.E.; Reddy, A.K.; Marian, A.J.; Entman, M.L.; Oka, K.; Chan, L.; O'Malley, B.W. Regulatable atrial natriuretic peptide gene therapy for hypertension. Proc. Natl. Acad. Sci. USA 2005, 102, 13789–13794. [Google Scholar] [CrossRef]
- Lee, J.U.; Shin, J.; Song, W.; Kim, H.; Lee, S.; Jang, S.J.; Wong, S.C.; Edelberg, J.E.; Liau, G.; Hong, M.K. A novel adenoviral gutless vector encoding sphingosine kinase promotes arteriogenesis and improves perfusion in a rabbit hindlimb ischemia model. Coron. Artery Dis. 2005, 16, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Muruve, D.A.; Cotter, M.J.; Zaiss, A.K.; White, L.R.; Liu, Q.; Chan, T.; Clark, S.A.; Ross, P.J.; Meulenbroek, R.A.; Maelandsmo, G.M.; Parks, R.J. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J. Virol. 2004, 78, 5966–5972. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, X.; Yang, Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J. Virol. 2007, 81, 3170–3180. [Google Scholar] [CrossRef] [PubMed]
- Iacobelli-Martinez, M.; Nemerow, G.R. Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. J. Virol. 2007, 81, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Mok, H.; Palmer, D.J.; Ng, P.; Barry, M.A. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol. Ther. 2005, 11, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, S.C.; Rollence, M.; Marshall-Neff, J.; McClelland, A. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. J. Virol. 1997, 71, 4782–4790. [Google Scholar] [PubMed]
- Su, E.J.; Stevenson, S.C.; Rollence, M.; Marshall-Neff, J.; Liau, G. A genetically modified adenoviral vector exhibits enhanced gene transfer of human smooth muscle cells. J. Vasc. Res. 2001, 38, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Havenga, M.J.; Lemckert, A.A.; Grimbergen, J.M.; Vogels, R.; Huisman, L.G.; Valerio, D.; Bout, A.; Quax, P.H. Improved adenovirus vectors for infection of cardiovascular tissues. J. Virol. 2001, 75, 3335–3342. [Google Scholar] [CrossRef] [PubMed]
- Denby, L.; Work, L.M.; Graham, D.; Hsu, C.; von Seggern, D.J.; Nicklin, S.A.; Baker, A.H. Adenoviral serotype 5 vectors pseudotyped with fibers from subgroup D show modified tropism in vitro and in vivo. Hum. Gene. Ther. 2004, 15, 1054–1064. [Google Scholar] [PubMed]
- Mercier, G.T.; Campbell, J.A.; Chappell, J.D.; Stehle, T.; Dermody, T.S.; Barry, M.A. A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc. Natl. Acad. Sci. USA 2004, 101, 6188–6193. [Google Scholar] [CrossRef]
- Noureddini, S.C.; Krendelshchikov, A.; Simonenko, V.; Hedley, S.J.; Douglas, J.T.; Curiel, D.T.; Korokhov, N. Generation and selection of targeted adenoviruses embodying optimized vector properties. Virus Res. 2006, 116, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Jakubczak, J.L.; Rollence, M.L.; Stewart, D.A.; Jafari, J.D.; Von Seggern, D.J.; Nemerow, G.R.; Stevenson, S.C.; Hallenbeck, P.L. Adenovirus type 5 viral particles pseudotyped with mutagenized fiber proteins show diminished infectivity of coxsackie B-adenovirus receptor-bearing cells. J. Virol. 2001, 75, 2972–2981. [Google Scholar] [CrossRef] [PubMed]
- Nicol, C.G.; Graham, D.; Miller, W.H.; White, S.J.; Smith, T.A.; Nicklin, S.A.; Stevenson, S.C.; Baker, A.H. Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol. Ther. 2004, 10, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Kritz, A.B.; Nicol, C.G.; Dishart, K.L.; Nelson, R.; Holbeck, S.; Von Seggern, D.J.; Work, L.M.; McVey, J.H.; Nicklin, S.A.; Baker, A.H. Adenovirus 5 fibers mutated at the putative HSPG-binding site show restricted retargeting with targeting peptides in the HI loop. Mol. Ther. 2007, 15, 741–749. [Google Scholar] [PubMed]
- Hay, C.M.; De Leon, H.; Jafari, J.D.; Jakubczak, J.L.; Mech, C.A.; Hallenbeck, P.L.; Powell, S.K.; Liau, G.; Stevenson, S.C. Enhanced gene transfer to rabbit jugular veins by an adenovirus containing a cyclic RGD motif in the HI loop of the fiber knob. J. Vasc. Res. 2001, 38, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Work, L.M.; Reynolds, P.N.; Baker, A.H. Improved gene delivery to human saphenous vein cells and tissue using a peptide-modified adenoviral vector. Genet. Vaccines Ther. 2004, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Work, L.M.; Nicklin, S.A.; Brain, N.J.; Dishart, K.L.; Von Seggern, D.J.; Hallek, M.; Buning, H.; Baker, A.H. Development of efficient viral vectors selective for vascular smooth muscle cells. Mol. Ther. 2004, 9, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Nicol, C.G.; Denby, L.; Lopez-Franco, O.; Masson, R.; Halliday, C.A.; Nicklin, S.A.; Kritz, A.; Work, L.M.; Baker, A.H. Use of in vivo phage display to engineer novel adenoviruses for targeted delivery to the cardiac vasculature. FEBS Lett. 2009, 583, 2100–2107. [Google Scholar] [CrossRef] [PubMed]
- Ogawara, K.; Rots, M.G.; Kok, R.J.; Moorlag, H.E.; Van Loenen, A.M.; Meijer, D.K.; Haisma, H.J.; Molema, G. A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum. Gene. Ther. 2004, 15, 433–443. [Google Scholar] [PubMed]
- Reynolds, P.N.; Nicklin, S.A.; Kaliberova, L.; Boatman, B.G.; Grizzle, W.E.; Balyasnikova, I.V.; Baker, A.H.; Danilov, S.M.; Curiel, D.T. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat. Biotechnol. 2001, 19, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, P.N.; Zinn, K.R.; Gavrilyuk, V.D.; Balyasnikova, I.V.; Rogers, B.E.; Buchsbaum, D.J.; Wang, M.H.; Miletich, D.J.; Grizzle, W.E.; Douglas, J.T.; Danilov, S.M.; Curiel, D.T. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2000, 2, 562–578. [Google Scholar] [CrossRef]
- Miller, W.H.; Brosnan, M.J.; Graham, D.; Nicol, C.G.; Morecroft, I.; Channon, K.M.; Danilov, S.M.; Reynolds, P.N.; Baker, A.H.; Dominiczak, A.F. Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats. Mol. Ther. 2005, 12, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Samulski, R.J.; Berns, K.I.; Tan, M.; Muzyczka, N. Cloning of adeno-associated virus into pBR322: Rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl. Acad. Sci. USA 1982, 79, 2077–2081. [Google Scholar] [CrossRef]
- Wu, Z.; Asokan, A.; Samulski, R.J. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol. Ther. 2006, 14, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Voutetakis, A.; Afione, S.; Zheng, C.; Mandikian, D.; Chiorini, J.A. Adeno-associated virus type 12 (AAV12): A novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J. Virol. 2008, 82, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Vandenberghe, L.H.; Alvira, M.R.; Lu, Y.; Calcedo, R.; Zhou, X.; Wilson, J.M. Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. 2004, 78, 6381–6388. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.C.; Choi, V.W.; Samulski, R.J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 2006, 1, 1412–1428. [Google Scholar] [CrossRef] [PubMed]
- McCarty, D.M.; Young, S.M.; Samulski, R.J. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 2004, 38, 819–845. [Google Scholar] [CrossRef] [PubMed]
- Choi, V.W.; McCarty, D.M.; Samulski, R.J. Host cell DNA repair pathways in adeno-associated viral genome processing. J. Virol. 2006, 80, 10346–10356. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Pierce, G.F.; Ozelo, M.C.; de Paula, E.V.; Vargas, J.A.; Smith, P.; Sommer, J.; Luk, A.; Manno, C.S.; High, K.A.; Arruda, V.R. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol. Ther. 2006, 14, 452–455. [Google Scholar] [CrossRef] [PubMed]
- McCarty, D.M. Self-complementary AAV vectors; advances and applications. Mol. Ther. 2008, 16, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Appleby, C.E.; Kingston, P.A. Gene therapy for restenosis--what now, what next? Curr. Gene. Ther. 2004, 4, 153–182. [Google Scholar] [CrossRef] [PubMed]
- McCarty, D.M.; Fu, H.; Monahan, P.E.; Toulson, C.E.; Naik, P.; Samulski, R.J. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene. Ther. 2003, 10, 2112–2118. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, H.I.; Li, J.; Sun, L.; Zhang, J.; Xiao, X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene. Ther. 2003, 10, 2105–2111. [Google Scholar] [CrossRef] [PubMed]
- Fabb, S.A.; Wells, D.J.; Serpente, P.; Dickson, G. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum. Mol. Genet. 2002, 11, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, A.K.; Muruve, D.A. Immunity to adeno-associated virus vectors in animals and humans: A continued challenge. Gene. Ther. 2008, 15, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Summerford, C.; Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 1998, 72, 1438–1445. [Google Scholar] [PubMed]
- Kern, A.; Schmidt, K.; Leder, C.; Muller, O.J.; Wobus, C.E.; Bettinger, K.; Von der Lieth, C.W.; King, J.A.; Kleinschmidt, J.A. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J. Virol. 2003, 77, 11072–11081. [Google Scholar] [CrossRef] [PubMed]
- Muller, O.J.; Leuchs, B.; Pleger, S.T.; Grimm, D.; Franz, W.M.; Katus, H.A.; Kleinschmidt, J.A. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc. Res. 2006, 70, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Denby, L.; Nicklin, S.A.; Baker, A.H. Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene. Ther. 2005, 12, 1534–1538. [Google Scholar] [CrossRef] [PubMed]
- Dishart, K.L.; Denby, L.; George, S.J.; Nicklin, S.A.; Yendluri, S.; Tuerk, M.J.; Kelley, M.P.; Donahue, B.A.; Newby, A.C.; Harding, T.; Baker, A.H. Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: Implications for gene therapy. J. Mol. Cell Cardiol. 2003, 35, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Ramirez Correa, G.A.; Zacchigna, S.; Arsic, N.; Zentilin, L.; Salvi, A.; Sinagra, G.; Giacca, M. Potent inhibition of arterial intimal hyperplasia by TIMP1 gene transfer using AAV vectors. Mol. Ther. 2004, 9, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Palomeque, J.; Chemaly, E.R.; Colosi, P.; Wellman, J.A.; Zhou, S.; Del Monte, F.; Hajjar, R.J. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene. Ther. 2007, 14, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Kido, M.; Lee, D.V.; Rabinowitz, J.E.; Samulski, R.J.; Jamieson, S.W.; Weitzman, M.D.; Thistlethwaite, P.A. Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol. Ther. 2004, 10, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Bish, L.T.; Morine, K.; Sleeper, M.M.; Sanmiguel, J.; Wu, D.; Gao, G.; Wilson, J.M.; Sweeney, L. AAV9 Provides Global Cardiac Gene Transfer Superior to AAV1, AAV6, AAV7, and AAV8 in the Mouse and Rat. Hum. Gene. Ther. 2008, 19, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- De Rijck, J.; Vandekerckhove, L.; Christ, F.; Debyser, Z. Lentiviral nuclear import: A complex interplay between virus and host. Bioessays 2007, 29, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, H.; Blomer, U.; Takahashi, M.; Gage, F.H.; Verma, I.M. Development of a self-inactivating lentivirus vector. J. Virol. 1998, 72, 8150–8157. [Google Scholar] [PubMed]
- Cronin, J.; Zhang, X.Y.; Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene. Ther. 2005, 5, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Cefai, D.; Simeoni, E.; Ludunge, K.M.; Driscoll, R.; von Segesser, L.K.; Kappenberger, L.; Vassalli, G. Multiply attenuated, self-inactivating lentiviral vectors efficiently transduce human coronary artery cells in vitro and rat arteries in vivo. J. Mol. Cell Cardiol. 2005, 38, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Bonci, D.; Cittadini, A.; Latronico, M.V.; Borello, U.; Aycock, J.K.; Drusco, A.; Innocenzi, A.; Follenzi, A.; Lavitrano, M.; Monti, M.G.; Ross, J.; Naldini, L.; Peschle, C.; Cossu, G.; Condorelli, G. 'Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene. Ther. 2003, 10, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Haessler, M.; Lemos, J.A.; Arsenault, J.R.; Aguirre, J.E.; Gilbert, J.R.; Bowler, R.P.; Park, F. Targeting vascular injury using Hantavirus-pseudotyped lentiviral vectors. Mol. Ther. 2006, 13, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Conklin, L.D.; McAninch, R.E.; Schulz, D.; Kaluza, G.L.; LeMaire, S.A.; Coselli, J.S.; Raizner, A.E.; Sutton, R.E. HIV-based vectors and angiogenesis following rabbit hindlimb ischemia. J. Surg. Res. 2005, 123, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Kankkonen, H.M.; Vahakangas, E.; Marr, R.A.; Pakkanen, T.; Laurema, A.; Leppanen, P.; Jalkanen, J.; Verma, I.M.; Yla-Herttuala, S. Long-term lowering of plasma cholesterol levels in LDL-receptor-deficient WHHL rabbits by gene therapy. Mol. Ther. 2004, 9, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey-Abina, S.; Von Kalle, C.; Schmidt, M.; McCormack, M.P.; Wulffraat, N.; Leboulch, P.; Lim, A.; Osborne, C.S.; Pawliuk, R.; Morillon, E.; Sorensen, R.; Forster, A.; Fraser, P.; Cohen, J.I.; de Saint Basile, G.; Alexander, I.; Wintergerst, U.; Frebourg, T.; Aurias, A.; Stoppa-Lyonnet, D.; Romana, S.; Radford-Weiss, I.; Gross, F.; Valensi, F.; Delabesse, E.; Macintyre, E.; Sigaux, F.; Soulier, J.; Leiva, L.E.; Wissler, M.; Prinz, C.; Rabbitts, T.H.; Le Deist, F.; Fischer, A.; Cavazzana-Calvo, M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 302, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Howe, S.J.; Mansour, M.R.; Schwarzwaelder, K.; Bartholomae, C.; Hubank, M.; Kempski, H.; Brugman, M.H.; Pike-Overzet, K.; Chatters, S.J.; de Ridder, D.; Gilmour, K.C.; Adams, S.; Thornhill, S.I.; Parsley, K.L.; Staal, F.J.; Gale, R.E.; Linch, D.C.; Bayford, J.; Brown, L.; Quaye, M.; Kinnon, C.; Ancliff, P.; Webb, D.K.; Schmidt, M.; von Kalle, C.; Gaspar, H.B.; Thrasher, A.J. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 2008, 118, 3143–3150. [Google Scholar] [CrossRef] [PubMed]
- Philippe, S.; Sarkis, C.; Barkats, M.; Mammeri, H.; Ladroue, C.; Petit, C.; Mallet, J.; Serguera, C. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 17684–17689. [Google Scholar] [CrossRef]
- Yanez-Munoz, R.J.; Balaggan, K.S.; MacNeil, A.; Howe, S.J.; Schmidt, M.; Smith, A.J.; Buch, P.; MacLaren, R.E.; Anderson, P.N.; Barker, S.E.; Duran, Y.; Bartholomae, C.; von Kalle, C.; Heckenlively, J.R.; Kinnon, C.; Ali, R.R.; Thrasher, A.J. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 2006, 12, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Apolonia, L.; Waddington, S.N.; Fernandes, C.; Ward, N.J.; Bouma, G.; Blundell, M.P.; Thrasher, A.J.; Collins, M.K.; Philpott, N.J. Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol. Ther. 2007, 15, 1947–1954. [Google Scholar] [CrossRef] [PubMed]
- Bayer, M.; Kantor, B.; Cockrell, A.; Ma, H.; Zeithaml, B.; Li, X.; McCown, T.; Kafri, T. A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector. Mol. Ther. 2008, 16, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.K.; Ranjzad, P.; Driessen, A.; Appleby, C.E.; Heagerty, A.M.; Kingston, P.A. Beta-adrenoceptor blockade markedly attenuates transgene expression from cytomegalovirus promoters within the cardiovascular system. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2267–2274. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.R.; Harkins, R.N.; Wang, P.; Qian, H.S.; Liu, P.; Rubanyi, G.M. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J. Gene. Med. 2004, 6, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Cordier, L.; Gao, G.P.; Hack, A.A.; McNally, E.M.; Wilson, J.M.; Chirmule, N.; Sweeney, H.L. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum. Gene. Ther. 2001, 12, 205–215. [Google Scholar] [PubMed]
- Morishita, K.; Johnson, D.E.; Williams, L.T. A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J. Biol. Chem. 1995, 270, 27948–27953. [Google Scholar] [CrossRef] [PubMed]
- Cowan, P.J.; Shinkel, T.A.; Witort, E.J.; Barlow, H.; Pearse, M.J.; d'Apice, A.J. Targeting gene expression to endothelial cells in transgenic mice using the human intercellular adhesion molecule 2 promoter. Transplantation 1996, 62, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Hegen, A.; Koidl, S.; Weindel, K.; Marme, D.; Augustin, H.G.; Fiedler, U. Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Cowan, P.J.; Shinkel, T.A.; Fisicaro, N.; Godwin, J.W.; Bernabeu, C.; Almendro, N.; Rius, C.; Lonie, A.J.; Nottle, M.B.; Wigley, P.L.; Paizis, K.; Pearse, M.J.; d'Apice, A.J. Targeting gene expression to endothelium in transgenic animals: A comparison of the human ICAM-2, PECAM-1 and endoglin promoters. Xenotransplantation 2003, 10, 223–231. [Google Scholar] [CrossRef] [PubMed]
- White, S.J.; Papadakis, E.D.; Rogers, C.A.; Johnson, J.L.; Biessen, E.A.; Newby, A.C. In vitro and in vivo analysis of expression cassettes designed for vascular gene transfer. Gene. Ther. 2008, 15, 340–346. [Google Scholar] [PubMed]
- Kim, S.; Lin, H.; Barr, E.; Chu, L.; Leiden, J.M.; Parmacek, M.S. Transcriptional targeting of replication-defective adenovirus transgene expression to smooth muscle cells in vivo. J. Clin. Invest. 1997, 100, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Keogh, M.C.; Chen, D.; Schmitt, J.F.; Dennehy, U.; Kakkar, V.V.; Lemoine, N.R. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements. Gene. Ther. 1999, 6, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Akyurek, L.M.; Yang, Z.Y.; Aoki, K.; San, H.; Nabel, G.J.; Parmacek, M.S.; Nabel, E.G. SM22alpha promoter targets gene expression to vascular smooth muscle cells in vitro and in vivo. Mol. Med. 2000, 6, 983–991. [Google Scholar] [PubMed]
- Kallmeier, R.C.; Somasundaram, C.; Babij, P. A novel smooth muscle-specific enhancer regulates transcription of the smooth muscle myosin heavy chain gene in vascular smooth muscle cells. J. Biol. Chem. 1995, 270, 30949–30957. [Google Scholar] [CrossRef] [PubMed]
- Ribault, S.; Neuville, P.; Mechine-Neuville, A.; Auge, F.; Parlakian, A.; Gabbiani, G.; Paulin, D.; Calenda, V. Chimeric smooth muscle-specific enhancer/promoters: Valuable tools for adenovirus-mediated cardiovascular gene therapy. Circ. Res. 2001, 88, 468–475. [Google Scholar] [PubMed]
- Wamhoff, B.R.; Hoofnagle, M.H.; Burns, A.; Sinha, S.; McDonald, O.G.; Owens, G.K. A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ. Res. 2004, 95, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, J.A.; Wamhoff, B.R.; McDonald, O.G.; Sinha, S.; Yoshida, T.; Owens, G.K. 5' CArG degeneracy in smooth muscle {alpha}-actin is required for injury-induced gene suppression in vivo. J. Clin. Invest. 2005, 115, 418–427. [Google Scholar] [PubMed]
- Rothmann, T.; Katus, H.A.; Hartong, R.; Perricaudet, M.; Franz, W.M. Heart muscle-specific gene expression using replication defective recombinant adenovirus. Gene. Ther. 1996, 3, 919–926. [Google Scholar] [PubMed]
- Franz, W.M.; Rothmann, T.; Frey, N.; Katus, H.A. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc. Res. 1997, 35, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Griscelli, F.; Gilardi-Hebenstreit, P.; Hanania, N.; Franz, W.M.; Opolon, P.; Perricaudet, M.; Ragot, T. Heart-specific targeting of beta-galactosidase by the ventricle-specific cardiac myosin light chain 2 promoter using adenovirus vectors. Hum. Gene. Ther. 1998, 9, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Champion, H.C.; Georgakopoulos, D.; Haldar, S.; Wang, L.; Wang, Y.; Kass, D.A. Robust adenoviral and adeno-associated viral gene transfer to the in vivo murine heart: Application to study of phospholamban physiology. Circulation 2003, 108, 2790–2797. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.I.; Tang, Y.; Schmidt-Ott, K.; Qian, K.; Kagiyama, S. Vigilant vector: Heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 2002, 39, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Joho, S.; Huang, Y.; Barcena, A.; Arakawa-Hoyt, J.; Grossman, W.; Kan, Y.W. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc. Natl. Acad. Sci. USA 2004, 101, 16280–16285. [Google Scholar] [CrossRef]
- LaPointe, M.C.; Yang, X.P.; Carretero, O.A.; He, Q. Left ventricular targeting of reporter gene expression in vivo by human BNP promoter in an adenoviral vector. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, 1439–1445. [Google Scholar]
- Pachori, A.S.; Melo, L.G.; Hart, M.L.; Noiseux, N.; Zhang, L.; Morello, F.; Solomon, S.D.; Stahl, G.L.; Pratt, R.E.; Dzau, V.J. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury. Proc. Natl. Acad. Sci. USA 2004, 101, 12282–12287. [Google Scholar] [CrossRef]
- Rissanen, T.T.; Yla-Herttuala, S. Current status of cardiovascular gene therapy. Mol. Ther. 2007, 15, 1233–1247. [Google Scholar] [CrossRef] [PubMed]
- Makinen, K.; Manninen, H.; Hedman, M.; Matsi, P.; Mussalo, H.; Alhava, E.; Yla-Herttuala, S. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: A randomized, placebo-controlled, double-blinded phase II study. Mol. Ther. 2002, 6, 127–133. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Mohler, E.R.; Lederman, R.J.; Mendelsohn, F.O.; Saucedo, J.F.; Goldman, C.K.; Blebea, J.; Macko, J.; Kessler, P.D.; Rasmussen, H.S.; Annex, B.H. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: A phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003, 108, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Grines, C.L.; Watkins, M.W.; Mahmarian, J.J.; Iskandrian, A.E.; Rade, J.J.; Marrott, P.; Pratt, C.; Kleiman, N. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll. Cardiol. 2003, 42, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Hedman, M.; Hartikainen, J.; Syvanne, M.; Stjernvall, J.; Hedman, A.; Kivela, A.; Vanninen, E.; Mussalo, H.; Kauppila, E.; Simula, S.; Narvanen, O.; Rantala, A.; Peuhkurinen, K.; Nieminen, M.S.; Laakso, M.; Yla-Herttuala, S. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003, 107, 2677–2683. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.D.; Grines, C.L.; Watkins, M.W.; Dib, N.; Barbeau, G.; Moreadith, R.; Andrasfay, T.; Engler, R.L. Effects of Ad5FGF-4 in patients with angina: An analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol. 2007, 50, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Rosengart, T.K.; Lee, L.Y.; Patel, S.R.; Sanborn, T.A.; Parikh, M.; Bergman, G.W.; Hachamovitch, R.; Szulc, M.; Kligfield, P.D.; Okin, P.M.; Hahn, R.T.; Devereux, R.B.; Post, M.R.; Hackett, N.R.; Foster, T.; Grasso, T.M.; Lesser, M.L.; Isom, O.W.; Crystal, R.G. Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999, 100, 468–474. [Google Scholar] [PubMed]
- Stewart, D.J.; Hilton, J.D.; Arnold, J.M.; Gregoire, J.; Rivard, A.; Archer, S.L.; Charbonneau, F.; Cohen, E.; Curtis, M.; Buller, C.E.; Mendelsohn, F.O.; Dib, N.; Page, P.; Ducas, J.; Plante, S.; Sullivan, J.; Macko, J.; Rasmussen, C.; Kessler, P.D.; Rasmussen, H.S. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: A phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene. Ther. 2006, 13, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Sharif, F.; Hynes, S.O.; Cooney, R.; Howard, L.; McMahon, J.; Daly, K.; Crowley, J.; Barry, F.; O'Brien, T. Gene-eluting Stents: Adenovirus-mediated Delivery of eNOS to the Blood Vessel Wall Accelerates Re-endothelialization and Inhibits Restenosis. Mol. Ther. 2008, 10, 1674–1680. [Google Scholar] [CrossRef]
- Walter, D.H.; Cejna, M.; Diaz-Sandoval, L.; Willis, S.; Kirkwood, L.; Stratford, P. W.; Tietz, A.B.; Kirchmair, R.; Silver, M.; Curry, C.; Wecker, A.; Yoon, Y.S.; Heidenreich, R.; Hanley, A.; Kearney, M.; Tio, F.O.; Kuenzler, P.; Isner, J.M.; Losordo, D.W. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: An alternative strategy for inhibition of restenosis. Circulation 2004, 110, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Chiu-Pinheiro, C.K.; O'Brien, T.; Katusic, Z.S.; Bonilla, L.F.; Hamner, C.E.; Schaff, H.V. Gene transfer to coronary artery bypass conduits. Ann. Thorac. Surg. 2002, 74, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- George, S.J.; Channon, K.M.; Baker, A.H. Gene therapy and coronary artery bypass grafting: Current perspectives. Curr. Opin. Mol. Ther. 2006, 8, 288–294. [Google Scholar] [PubMed]
- Bhardwaj, S.; Roy, H.; Yla-Herttuala, S. Gene therapy to prevent occlusion of venous bypass grafts. Expert Rev. Cardiovasc. Ther. 2008, 6, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.H.; Hafley, G.; Harrington, R.A.; Peterson, E.D.; Ferguson, T.B.; Lorenz, T.J.; Goyal, A.; Gibson, M.; Mack, M.J.; Gennevois, D.; Califf, R.M.; Kouchoukos, N.T. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: A randomized controlled trial. JAMA 2005, 294, 2446–2454. [Google Scholar] [CrossRef] [PubMed]
- Kilian, E.G.; Eifert, S.; Beiras-Fernandez, A.; Daebritz, S.; Reichenspurner, H.; Reichart, B. Adeno-associated virus-mediated gene transfer in a rabbit vein graft model. Circ. J. 2008, 72, 1700–1704. [Google Scholar] [CrossRef] [PubMed]
- Eefting, D.; Bot, I.; de Vries, M.R.; Schepers, A.; van Bockel, J.H.; Van Berkel, T.J.; Biessen, E.A.; Quax, P.H. Local lentiviral short hairpin RNA silencing of CCR2 inhibits vein graft thickening in hypercholesterolemic apolipoprotein E3-Leiden mice. J. Vasc. Surg. 2009, 50, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Irvine, S.A.; Meng, Q.H.; Afzal, F.; Ho, J.; Wong, J.B.; Hailes, H.C.; Tabor, A.B.; McEwan, J.R.; Hart, S.L. Receptor-targeted nanocomplexes optimized for gene transfer to primary vascular cells and explant cultures of rabbit aorta. Mol. Ther. 2008, 16, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Sato, M.; Hajjar, R.J.; Samulski, R.J.; Harding, S.E. Gene therapy: Targeting the myocardium. Heart 2008, 94, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, U.; Hajjar, R.J.; Helm, P.A.; Kim, C.S.; Doye, A.A.; Gwathmey, J. K. Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J. Mol. Cell Cardiol. 1998, 30, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, M.I.; del Monte, F.; Schmidt, U.; DiSalvo, T.S.; Kang, Z.B.; Matsui, T.; Guerrero, J.L.; Gwathmey, J.K.; Rosenzweig, A.; Hajjar, R.J. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. USA 2000, 97, 793–798. [Google Scholar] [CrossRef]
- Hajjar, R.J.; Zsebo, K.; Deckelbaum, L.; Thompson, C.; Rudy, J.; Yaroshinsky, A.; Ly, H.; Kawase, Y.; Wagner, K.; Borow, K.; Jaski, B.; London, B.; Greenberg, B.; Pauly, D.F.; Patten, R.; Starling, R.; Mancini, D.; Jessup, M. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J. Card. Fail 2008, 14, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Escoubet, B.; Prunier, F.; Amour, J.; Simonides, W.S.; Vivien, B.; Lenoir, C.; Heimburger, M.; Choqueux, C.; Gellen, B.; Riou, B.; Michel, J.B.; Franz, W.M.; Mercadier, J.J. Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmias. Circulation 2004, 109, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F. Gene therapy. JAMA 1981, 246, 2737–2739. [Google Scholar] [PubMed]
- Wang, T.; Li, H.; Zhao, C.; Chen, C.; Li, J.; Chao, J.; Chao, L.; Xiao, X.; Wang, D.W. Recombinant adeno-associated virus-mediated kallikrein gene therapy reduces hypertension and attenuates its cardiovascular injuries. Gene. Ther. 2004, 11, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Share and Cite
Williams, P.D.; Ranjzad, P.; Kakar, S.J.; Kingston, P.A. Development of Viral Vectors for Use in Cardiovascular Gene Therapy. Viruses 2010, 2, 334-371. https://doi.org/10.3390/v2020334
Williams PD, Ranjzad P, Kakar SJ, Kingston PA. Development of Viral Vectors for Use in Cardiovascular Gene Therapy. Viruses. 2010; 2(2):334-371. https://doi.org/10.3390/v2020334
Chicago/Turabian StyleWilliams, Paul D., Parisa Ranjzad, Salik J. Kakar, and Paul A. Kingston. 2010. "Development of Viral Vectors for Use in Cardiovascular Gene Therapy" Viruses 2, no. 2: 334-371. https://doi.org/10.3390/v2020334
APA StyleWilliams, P. D., Ranjzad, P., Kakar, S. J., & Kingston, P. A. (2010). Development of Viral Vectors for Use in Cardiovascular Gene Therapy. Viruses, 2(2), 334-371. https://doi.org/10.3390/v2020334