The Development of an AIDS Mucosal Vaccine
Abstract
:1. Introduction
2. A Brief History of Mucosal Vaccines
3. HIV-1 infection in mucosal associated lymph tissues
5. Vector-based AIDS mucosal vaccine strategies
6. New strategies for the development of an HIV-1 mucosal vaccine
7. Summary and perspectives
Acknowledgments
References
- Holmgren, J.; Czerkinsky, C.; Lycke, N.; Svennerholm, A.M. Mucosal immunity: implications for vaccine development. Immunobiology 1992, 184, 157–179. [Google Scholar] [PubMed]
- Schneider, T.; Ullrich, R.; Zeitz, M. Gastrointestinal manifestations of HIV infection. Zeitschrift fuer Gastroenterologie 1994, 32, 174–181. [Google Scholar]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53. [Google Scholar] [CrossRef] [PubMed]
- Mestecky, J. Mucosal Immunology, 3rd edElsevier Academic Press: Burlington, MA, USA, 2005; p. 372. [Google Scholar]
- Brandtzaeg, P. Review article: Homing of mucosal immune cells--a possible connection between intestinal and articular inflammation. Aliment. Pharmacol. Ther. 1997, 11, 24–39. [Google Scholar] [PubMed]
- Kunkel, E.J.; Butcher, E.C. Plasma-cell homing. Nat. Rev. Immunol. 2003, 3, 822–829. [Google Scholar] [CrossRef]
- Paul, W.E. Fundamental Immunology, 5th edLippincott Williams & Wilkins: Philadelphia, PA, USA; London, UK, 2003; pp. 23–46. [Google Scholar]
- Paul, W.E. Fundamental Immunology, 6th edWolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; p. 1236. [Google Scholar]
- Sabin, A.B.; Ramos-Alvarez, M.; Alvarez-Amezquita, J.; Pelon, W.; Michaels, R.H.; Spigland, I.; Koch, M.A.; Barnes, J.M.; Rhim, J.S. Live, orally given poliovirus vaccine. Effects of rapid mass immunization on population under conditions of massive enteric infection with other viruses. JAMA 1960, 173, 1521–1526. [Google Scholar] [PubMed]
- Jin, H.; Lu, B.; Zhou, H.; Ma, C.; Zhao, J.; Yang, C.F.; Kemble, G.; Greenberg, H. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology 2003, 306, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Buonagurio, D.A.; Bechert, T.M.; Yang, C.F.; Shutyak, L.; D'Arco, G.A.; Kazachkov, Y.; Wang, H.P.; Rojas, E.A.; O'Neill, R.E.; Spaete, R.R.; Coelingh, K.L.; Zamb, T.J.; Sidhu, M.S.; Udem, S.A. Genetic stability of live, cold-adapted influenza virus components of the FluMist/CAIV-T vaccine throughout the manufacturing process. Vaccine 2006, 24, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.A.; Fukuda, K.; Cox, N.J.; Bridges, C.B. Using live, attenuated influenza vaccine for prevention and control of influenza: supplemental recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2003, 52, 1–8. [Google Scholar] [PubMed]
- Zhang, L.; He, T.; Huang, Y.; Chen, Z.; Guo, Y.; Wu, S.; Kunstman, K.J.; Brown, R.C.; Phair, J.P.; Neumann, A.U.; Ho, D.D.; Wolinsky, S.M. Chemokine coreceptor usage by diverse primary isolates of human immunodeficiency virus type 1. J. Virol. 1998, 72, 9307–9312. [Google Scholar] [PubMed]
- Chen, Z.; Zhou, P.; Ho, D.D.; Landau, N.R.; Marx, P.A. Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J. Virol. 1997, 71, 2705–2714. [Google Scholar] [PubMed]
- Veazey, R.; Lackner, A. The mucosal immune system and HIV-1 infection. AIDS Rev 2003, 5, 245–252. [Google Scholar] [PubMed]
- Li, Q.; Skinner, P.J.; Ha, S.J.; Duan, L.; Mattila, T.L.; Hage, A.; White, C.; Barber, D.L.; O'Mara, L.; Southern, P.J.; Reilly, C.S.; Carlis, J.V.; Miller, C.J.; Ahmed, R.; Haase, A.T. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science 2009, 323, 1726–1729. [Google Scholar] [CrossRef] [PubMed]
- Veazey, R.S.; DeMaria, M.; Chalifoux, L.V.; Shvetz, D.E.; Pauley, D.R.; Knight, H.L.; Rosenzweig, M.; Johnson, R.P.; Desrosiers, R.C.; Lackner, A.A. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998, 280, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Lackner, A.A.; Mohan, M.; Veazey, R.S. The gastrointestinal tract and AIDS pathogenesis. Gastroenterology 2009, 136, 1965–1978. [Google Scholar] [CrossRef] [PubMed]
- Harouse, J.M.; Gettie, A.; Tan, R.C.; Blanchard, J.; Cheng-Mayer, C. Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science 1999, 284, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, X.; Huang, Y.; Gettie, A.; Ba, L.; Blanchard, J.; Ho, D.D. CD4+ lymphocytopenia in acute infection of Asian macaques by a vaginally transmissible subtype-C, CCR5-tropic Simian/Human Immunodeficiency Virus (SHIV). J. Acquir. Immune Defic. Syndr. 2002, 30, 133–145. [Google Scholar] [PubMed]
- Brenchley, J.M.; Schacker, T.W.; Ruff, L.E.; Price, D.A.; Taylor, J.H.; Beilman, G.J.; Nguyen, P.L.; Khoruts, A.; Larson, M.; Haase, A.T.; Douek, D.C. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 2004, 200, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Mehandru, S.; Poles, M.A.; Tenner-Racz, K.; Horowitz, A.; Hurley, A.; Hogan, C.; Boden, D.; Racz, P.; Markowitz, M. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 2004, 200, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schuler, T.; Zupancic, M.; Wietgrefe, S.; Staskus, K.A.; Reimann, K.A.; Reinhart, T.A.; Rogan, M.; Cavert, W.; Miller, C.J.; Veazey, R.S.; Notermans, D.; Little, S.; Danner, S.A.; Richman, D.D.; Havlir, D.; Wong, J.; Jordan, H.L.; Schacker, T.W.; Racz, P.; Tenner-Racz, K.; Letvin, N.L.; Wolinsky, S.; Haase, A.T. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 1999, 286, 1353–1357. [Google Scholar] [CrossRef] [PubMed]
- Spira, A.I.; Marx, P.A.; Patterson, B.K.; Mahoney, J.; Koup, R.A.; Wolinsky, S.M.; Ho, D.D. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med. 1996, 183, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Baskin, G.B.; Marx, P.A. Estrogen protects against vaginal transmission of simian immunodeficiency virus. J. Infect. Dis. 2000, 182, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.J.; Li, Q.; Abel, K.; Kim, E.Y.; Ma, Z.M.; Wietgrefe, S.; La Franco-Scheuch, L.; Compton, L.; Duan, L.; Shore, M.D.; Zupancic, M.; Busch, M.; Carlis, J.; Wolinsky, S.; Haase, A.T. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J. Virol. 2005, 79, 9217–9127. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gonzalez, J.F.; Salazar, M.G.; Keele, B.F.; Learn, G.H.; Giorgi, E.E.; Li, H.; Decker, J.M.; Wang, S.; Baalwa, J.; Kraus, M.H.; Parrish, N.F.; Shaw, K.S.; Guffey, M.B.; Bar, K.J.; Davis, K.L.; Ochsenbauer-Jambor, C.; Kappes, J.C.; Saag, M.S.; Cohen, M.S.; Mulenga, J.; Derdeyn, C.A.; Allen, S.; Hunter, E.; Markowitz, M.; Hraber, P.; Perelson, A.S.; Bhattacharya, T.; Haynes, B.F.; Korber, B.T.; Hahn, B.H.; Shaw, G.M. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 2009, 206, 1273–1289. [Google Scholar] [CrossRef] [PubMed]
- Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; Wei, X.; Jiang, C.; Kirchherr, J.L.; Gao, F.; Anderson, J.A.; Ping, L.H.; Swanstrom, R.; Tomaras, G.D.; Blattner, W.A.; Goepfert, P.A.; Kilby, J.M.; Saag, M.S.; Delwart, E.L.; Busch, M.P.; Cohen, M.S.; Montefiori, D.C.; Haynes, B.F.; Gaschen, B.; Athreya, G.S.; Lee, H.Y.; Wood, N.; Seoighe, C.; Perelson, A.S.; Bhattacharya, T.; Korber, B.T.; Hahn, B.H.; Shaw, G.M. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 2008, 105, 7552–7557. [Google Scholar] [CrossRef]
- Mattapallil, J.J.; Douek, D.C.; Hill, B.; Nishimura, Y.; Martin, M.; Roederer, M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 2005, 434, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Duan, L.; Estes, J.D.; Ma, Z.M.; Rourke, T.; Wang, Y.; Reilly, C.; Carlis, J.; Miller, C.J.; Haase, A.T. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 2005, 434, 1148–1152. [Google Scholar] [PubMed]
- Alexander, R.; Mestecky, J. Neutralizing antibodies in mucosal secretions: IgG or IgA? Curr. HIV Res. 2007, 5, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Devito, C.; Hinkula, J.; Kaul, R.; Lopalco, L.; Bwayo, J.J.; Plummer, F.; Clerici, M.; Broliden, K. Mucosal and plasma IgA from HIV-exposed seronegative individuals neutralize a primary HIV-1 isolate. Aids 2000, 14, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Devito, C.; Hinkula, J.; Kaul, R.; Kimani, J.; Kiama, P.; Lopalco, L.; Barass, C.; Piconi, S.; Trabattoni, D.; Bwayo, J.J.; Plummer, F.; Clerici, M.; Broliden, K. Cross-clade HIV-1-specific neutralizing IgA in mucosal and systemic compartments of HIV-1-exposed, persistently seronegative subjects. J. Acquir. Immune Defic. Syndr. 2002, 30, 413–420. [Google Scholar] [PubMed]
- Broliden, K.; Hinkula, J.; Devito, C.; Kiama, P.; Kimani, J.; Trabbatoni, D.; Bwayo, J.J.; Clerici, M.; Plummer, F.; Kaul, R. Functional HIV-1 specific IgA antibodies in HIV-1 exposed, persistently IgG seronegative female sex workers. Immunol. Lett. 2001, 79, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Tudor, D.; Derrien, M.; Diomede, L.; Drillet, A.S.; Houimel, M.; Moog, C.; Reynes, J.M.; Lopalco, L.; Bomsel, M. HIV-1 gp41-specific monoclonal mucosal IgAs derived from highly exposed but IgG-seronegative individuals block HIV-1 epithelial transcytosis and neutralize CD4(+) cell infection: an IgA gene and functional analysis. Mucosal Immunol. 2009, 2, 412–426. [Google Scholar] [CrossRef]
- Dorrell, L.; Hessell, A.J.; Wang, M.; Whittle, H.; Sabally, S.; Rowland-Jones, S.; Burton, D.R.; Parren, P.W. Absence of specific mucosal antibody responses in HIV-exposed uninfected sex workers from the Gambia. Aids 2000, 14, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.A.; Alam, S.A.; Ackers, M.; Parekh, B.; Chen, H.Y.; Graham, P.; Gurwith, M.; Mayer, K.; Novak, R.M. Mucosal HIV-binding antibody and neutralizing activity in high-risk HIV-uninfected female participants in a trial of HIV-vaccine efficacy. J. Infect. Dis. 2007, 196, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Pastori, C.; Weiser, B.; Barassi, C.; Uberti-Foppa, C.; Ghezzi, S.; Longhi, R.; Calori, G.; Burger, H.; Kemal, K.; Poli, G.; Lazzarin, A.; Lopalco, L. Long-lasting CCR5 internalization by antibodies in a subset of long-term nonprogressors: a possible protective effect against disease progression. Blood 2006, 107, 4825–4833. [Google Scholar] [CrossRef] [PubMed]
- Renegar, K.B.; Small Jr., P.A.; Boykins, L.G.; Wright, P.F. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 2004, 173, 1978–1986. [Google Scholar] [PubMed]
- Wolbank, S.; Kunert, R.; Stiegler, G.; Katinger, H. Characterization of human class-switched polymeric (immunoglobulin M [IgM] and IgA) anti-human immunodeficiency virus type 1 antibodies 2F5 and 2G12. J. Virol. 2003, 77, 4095–40103. [Google Scholar] [CrossRef] [PubMed]
- Hessell, A.J.; Poignard, P.; Hunter, M.; Hangartner, L.; Tehrani, D.M.; Bleeker, W.K.; Parren, P.W.; Marx, P.A.; Burton, D.R. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 2009, 15, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Hessell, A.J.; Rakasz, E.G.; Poignard, P.; Hangartner, L.; Landucci, G.; Forthal, D.N.; Koff, W.C.; Watkins, D.I.; Burton, D.R. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog. 2009, 5, e1000433:1–e1000433:9. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Bauer, D.E.; Tuttleton, S.E.; Lewin, S.; Gettie, A.; Blanchard, J.; Irwin, C.E.; Safrit, J.T.; Mittler, J.; Weinberger, L.; Kostrikis, L.G.; Zhang, L.; Perelson, A.S.; Ho, D.D. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 1999, 189, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.E.; Kuroda, M.J.; Santra, S.; Sasseville, V.G.; Simon, M.A.; Lifton, M.A.; Racz, P.; Tenner-Racz, K.; Dalesandro, M.; Scallon, B.J.; Ghrayeb, J.; Forman, M.A.; Montefiori, D.C.; Rieber, E.P.; Letvin, N.L.; Reimann, K.A. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999, 283, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Goonetilleke, N.; Liu, M.K.; Salazar-Gonzalez, J.F.; Ferrari, G.; Giorgi, E.; Ganusov, V.V.; Keele, B.F.; Learn, G.H.; Turnbull, E.L.; Salazar, M.G.; Weinhold, K.J.; Moore, S.; Letvin, N.; Haynes, B.F.; Cohen, M.S.; Hraber, P.; Bhattacharya, T.; Borrow, P.; Perelson, A.S.; Hahn, B.H.; Shaw, G.M.; Korber, B.T.; McMichael, A.J. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 2009, 206, 1253–1272. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.U.; Reynolds, M.R.; Fuller, D.H.; Vielhuber, K.; Shipley, T.; Fuller, J.T.; Kunstman, K.J.; Sutter, G.; Marthas, M.L.; Erfle, V.; Wolinsky, S.M.; Wang, C.; Allison, D.B.; Rud, E.W.; Wilson, N.; Montefiori, D.; Altman, J.D.; Watkins, D.I. Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239. J. Virol. 2003, 77, 13348–13360. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.T.; Chen, L.M.; Gillis, J.; Lin, K.C.; Harty, B.; Mazzara, G.P.; Donis, R.O.; Mansfield, K.G.; Lifson, J.D.; Desrosiers, R.C.; Galan, J.E.; Johnson, R.P. Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J. Virol. 2003, 77, 2400–2409. [Google Scholar] [CrossRef] [PubMed]
- Baig, J.; Levy, D.B.; McKay, P.F.; Schmitz, J.E.; Santra, S.; Subbramanian, R.A.; Kuroda, M.J.; Lifton, M.A.; Gorgone, D.A.; Wyatt, L.S.; Moss, B.; Huang, Y.; Chakrabarti, B.K.; Xu, L.; Kong, W.P.; Yang, Z.Y.; Mascola, J.R.; Nabel, G.J.; Carville, A.; Lackner, A.A.; Veazey, R.S.; Letvin, N.L. Elicitation of simian immunodeficiency virus-specific cytotoxic T lymphocytes in mucosal compartments of rhesus monkeys by systemic vaccination. J. Virol. 2002, 76, 11484–11490. [Google Scholar] [CrossRef] [PubMed]
- Stevceva, L.; Alvarez, X.; Lackner, A.A.; Tryniszewska, E.; Kelsall, B.; Nacsa, J.; Tartaglia, J.; Strober, W.; Franchini, G. Both mucosal and systemic routes of immunization with the live, attenuated NYVAC/simian immunodeficiency virus SIV(gpe) recombinant vaccine result in gag-specific CD8(+) T-cell responses in mucosal tissues of macaques. J. Virol. 2002, 76, 11659–11676. [Google Scholar] [CrossRef] [PubMed]
- Kaul, R.; Plummer, F.A.; Kimani, J.; Dong, T.; Kiama, P.; Rostron, T.; Njagi, E.; MacDonald, K.S.; Bwayo, J.J.; McMichael, A.J.; Rowland-Jones, S.L. HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J. Immunol. 2000, 164, 1602–1611. [Google Scholar] [PubMed]
- Ibarrondo, F.J.; Anton, P.A.; Fuerst, M.; Ng, H.L.; Wong, J.T.; Matud, J.; Elliott, J.; Shih, R.; Hausner, M.A.; Price, C.; Hultin, L.E.; Hultin, P.M.; Jamieson, B.D.; Yang, O.O. Parallel human immunodeficiency virus type 1-specific CD8+ T-lymphocyte responses in blood and mucosa during chronic infection. J. Virol. 2005, 79, 4289–4297. [Google Scholar] [CrossRef] [PubMed]
- Bourinbaiar, A.S.; Metadilogkul, O.; Jirathitikal, V. Mucosal AIDS vaccines. Viral Immunol. 2003, 16, 427–445. [Google Scholar] [PubMed]
- Jiang, J.Q.; Patrick, A.; Moss, R.B.; Rosenthal, K.L. CD8+ T-cell-mediated cross-clade protection in the genital tract following intranasal immunization with inactivated human immunodeficiency virus antigen plus CpG oligodeoxynucleotides. J. Virol. 2005, 79, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.I. New strategies for using mucosal vaccination to achieve more effective immunization. Vaccine 1994, 12, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Kyd, J.M.; Cripps, A.W. Killed whole bacterial cells, a mucosal delivery system for the induction of immunity in the respiratory tract and middle ear: an overview. Vaccine 1999, 17, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Kyd, J.; Cripps, A. Identifying vaccine antigens and assessing delivery systems for the prevention of bacterial infections. J. Biotechnol. 2000, 83, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Cripps, A.W.; Kyd, J.M.; Foxwell, A.R. Vaccines and mucosal immunisation. Vaccine 2001, 19, 2513–2515. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Makitalo, B.; Thorstensson, R.; Norley, S.; Binninger-Schinzel, D.; Cranage, M.; Rud, E.; Biberfeld, G.; Putkonen, P. Live attenuated simian immunodeficiency virus (SIV)mac in macaques can induce protection against mucosal infection with SIVsm. AIDS (London, England) 1998, 12, 2261–2270. [Google Scholar] [PubMed]
- Cromwell, M.A.; Veazey, R.S.; Altman, J.D.; Mansfield, K.G.; Glickman, R.; Allen, T.M.; Watkins, D.I.; Lackner, A.A.; Johnson, R.P. Induction of mucosal homing virus-specific CD8(+) T lymphocytes by attenuated simian immunodeficiency virus. J. Virol. 2000, 74, 8762–8766. [Google Scholar] [CrossRef] [PubMed]
- Tenner-Racz, K.; Stahl Hennig, C.; Uberla, K.; Stoiber, H.; Ignatius, R.; Heeney, J.; Steinman, R.M.; Racz, P. Early protection against pathogenic virus infection at a mucosal challenge site after vaccination with attenuated simian immunodeficiency virus. Proc. Natl. Acad. Sci. USA 2004, 101, 3017–3022. [Google Scholar] [CrossRef]
- Kent, S.J.; Dale, C.J.; Ranasinghe, C.; Stratov, I.; De Rose, R.; Chea, S.; Montefiori, D.C.; Thomson, S.; Ramshaw, I.A.; Coupar, B.E.; Boyle, D.B.; Law, M.; Wilson, K.M.; Ramsay, A.J. Mucosally-administered human-simian immunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccines reduce acute phase viral replication in macaques following vaginal challenge with CCR5-tropic SHIVSF162P3. Vaccine 2005, 23, 5009–5021. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, M.M.; Perez-Jimenez, E.; Najera, J.L.; Esteban, M. Induction of HIV immunity in the genital tract after intranasal delivery of a MVA vector: enhanced immunogenicity after DNA prime-modified vaccinia virus Ankara boost immunization schedule. J. Immunol. 2004, 172, 6209–6220. [Google Scholar] [PubMed]
- Wang, S.W.; Bertley, F.M.; Kozlowski, P.A.; Herrmann, L.; Manson, K.; Mazzara, G.; Piatak, M.; Johnson, R.P.; Carville, A.; Mansfield, K.; Aldovini, A. An SHIV DNA/MVA rectal vaccination in macaques provides systemic and mucosal virus-specific responses and protection against AIDS. AIDS Res. Hum. Retroviruses 2004, 20, 846–859. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, L.; Qin, C.; Ba, L.; Yi, C.E.; Zhang, F.; Wei, Q.; He, T.; Yu, W.; Yu, J.; Gao, H.; Tu, X.; Gettie, A.; Farzan, M.; Yuen, K.Y.; Ho, D.D. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 2005, 79, 2678–2688. [Google Scholar] [CrossRef] [PubMed]
- Bisht, H.; Roberts, A.; Vogel, L.; Bukreyev, A.; Collins, P.L.; Murphy, B.R.; Subbarao, K.; Moss, B. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl. Acad. Sci. USA 2004, 101, 6641–6646. [Google Scholar] [CrossRef]
- Degano, P.; Schneider, J.; Hannan, C.M.; Gilbert, S.C.; Hill, A.V. Gene gun intradermal DNA immunization followed by boosting with modified vaccinia virus Ankara: enhanced CD8+ T cell immunogenicity and protective efficacy in the influenza and malaria models. Vaccine 1999, 18, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Sutter, G.; Wyatt, L.S.; Foley, P.L.; Bennink, J.R.; Moss, B. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 1994, 12, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, W.; Suezer, Y.; Sutter, G.; Openshaw, P.J. Protective and disease-enhancing immune responses induced by recombinant modified vaccinia Ankara (MVA) expressing respiratory syncytial virus proteins. Vaccine 2004, 23, 215–221. [Google Scholar] [CrossRef] [PubMed]
- de Waal, L.; Wyatt, L.S.; Yuksel, S.; van Amerongen, G.; Moss, B.; Niesters, H.G.; Osterhaus, A.D.; de Swart, R.L. Vaccination of infant macaques with a recombinant modified vaccinia virus Ankara expressing the respiratory syncytial virus F and G genes does not predispose for immunopathology. Vaccine 2004, 22, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.S.; Whitehead, S.S.; Venanzi, K.A.; Murphy, B.R.; Moss, B. Priming and boosting immunity to respiratory syncytial virus by recombinant replication-defective vaccinia virus MVA. Vaccine 1999, 18, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Staats, H.F.; Bradney, C.P.; Gwinn, W.M.; Jackson, S.S.; Sempowski, G.D.; Liao, H.X.; Letvin, N.L.; Haynes, B.F. Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J. Immunol. 2001, 167, 5386–5394. [Google Scholar] [PubMed]
- Bertley, F.M.; Kozlowski, P.A.; Wang, S.W.; Chappelle, J.; Patel, J.; Sonuyi, O.; Mazzara, G.; Montefiori, D.; Carville, A.; Mansfield, K.G.; Aldovini, A. Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. J. Immunol. 2004, 172, 3745–3757. [Google Scholar] [PubMed]
- Makitalo, B.; Lundholm, P.; Hinkula, J.; Nilsson, C.; Karlen, K.; Morner, A.; Sutter, G.; Erfle, V.; Heeney, J.L.; Wahren, B.; Biberfeld, G.; Thorstensson, R. Enhanced cellular immunity and systemic control of SHIV infection by combined parenteral and mucosal administration of a DNA prime MVA boost vaccine regimen. J. Gen. Virol. 2004, 85, 2407–2419. [Google Scholar] [CrossRef] [PubMed]
- Amara, R.R.; Villinger, F.; Altman, J.D.; Lydy, S.L.; O'Neil, S.P.; Staprans, S.I.; Montefiori, D.C.; Xu, Y.; Herndon, J.G.; Wyatt, L.S.; Candido, M.A.; Kozyr, N.L.; Earl, P.L.; Smith, J.M.; Ma, H.L.; Grimm, B.D.; Hulsey, M.L.; Miller, J.; McClure, H.M.; McNicholl, J.M.; Moss, B.; Robinson, H.L. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001, 292, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Kotton, C.N.; Lankowski, A.J.; Scott, N.; Sisul, D.; Chen, L.M.; Raschke, K.; Borders, G.; Boaz, M.; Spentzou, A.; Galan, J.E.; Hohmann, E.L. Safety and immunogenicity of attenuated Salmonella enterica serovar Typhimurium delivering an HIV-1 Gag antigen via the Salmonella Type III secretion system. Vaccine 2006, 24, 6216–6224. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.K. Live-attenuated Salmonella as a prototype vaccine vector for passenger immunogens in humans: are we there yet? Expert Rev. Vaccines 2007, 6, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lu, B.; Yu, W.; Fang, Q.; Liu, L.; Zhuang, K.; Shen, T.; Wang, H.; Tian, P.; Zhang, L.; Chen, Z. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination. PLoS One 2009, 4, e4180:1–e4180:9. [Google Scholar]
- Mitchell, E.A.; Bergmeier, L.A.; Doyle, C.; Brookes, R.; Hussain, L.A.; Wang, Y.; Lehner, T. Homing of mononuclear cells from iliac lymph nodes to the genital and rectal mucosa in non-human primates. Eur. J. Immunol. 1998, 28, 3066–3074. [Google Scholar] [CrossRef] [PubMed]
- Belyakov, I.M.; Hammond, S.A.; Ahlers, J.D.; Glenn, G.M.; Berzofsky, J.A. Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J. Clin. Invest. 2004, 113, 998–1007. [Google Scholar] [PubMed]
- Yu, W.; Fang, Q.; Zhu, W.; Wang, H.; Tien, P.; Zhang, L.; Chen, Z. One time intranasal vaccination with a modified vaccinia Tiantan strain MVTTZCI protects animals against pathogenic viral challenge. Vaccine 2009. [Google Scholar]
- Liu, J.; O'Brien, K.L.; Lynch, D.M.; Simmons, N.L.; La Porte, A.; Riggs, A.M.; Abbink, P.; Coffey, R.T.; Grandpre, L.E.; Seaman, M.S.; Landucci, G.; Forthal, D.N.; Montefiori, D.C.; Carville, A.; Mansfield, K.G.; Havenga, M.J.; Pau, M.G.; Goudsmit, J.; Barouch, D.H. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009, 457, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; Benenson, M.; Gurunathan, S.; Tartaglia, J.; McNeil, J.G.; Francis, D.P.; Stablein, D.; Birx, D.L.; Chunsuttiwat, S.; Khamboonruang, C.; Thongcharoen, P.; Robb, M.L.; Michael, N.L.; Kunasol, P.; Kim, J.H. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Share and Cite
Tang, X.; Chen, Z. The Development of an AIDS Mucosal Vaccine. Viruses 2010, 2, 283-297. https://doi.org/10.3390/v2010283
Tang X, Chen Z. The Development of an AIDS Mucosal Vaccine. Viruses. 2010; 2(1):283-297. https://doi.org/10.3390/v2010283
Chicago/Turabian StyleTang, Xian, and Zhiwei Chen. 2010. "The Development of an AIDS Mucosal Vaccine" Viruses 2, no. 1: 283-297. https://doi.org/10.3390/v2010283
APA StyleTang, X., & Chen, Z. (2010). The Development of an AIDS Mucosal Vaccine. Viruses, 2(1), 283-297. https://doi.org/10.3390/v2010283