GFP-Tagged Erns in Bungowannah Pestivirus: A Tool for Viral Tracking and Functional Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Parental Virus
2.2. Bacterial Cloning of pCI GFP-BVDV ncp7 Erns
2.3. Generation of cDNA Fragments and In-Yeast Homologous Recombination for Virus Production
2.4. Virus Rescue and Propagation
2.5. Virus Growth Kinetics and RT-qPCR
2.6. Mass Spectrometry Sample Preparation and Analysis
2.7. Western Blot
2.8. Fluorescence Microscopy
2.9. Ultrafiltration, Quantification of Soluble Erns and RNase Activity Assay
3. Results
3.1. Design of GFP-ncp7 Erns Bungowannah Pestivirus
3.2. Stability of GFP Expression and Replication Kinetics
3.3. Tropism of GFP-Tagged BuPV
3.4. GFP Is Attached to BVDV ncp7 Erns
3.5. GFP-ncp7 Erns Function Is Still Maintained
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postler, T.S.; Beer, M.; Blitvich, B.J.; Bukh, J.; De Lamballerie, X.; Drexler, J.F.; Imrie, A.; Kapoor, A.; Karganova, G.G.; Lemey, P. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch. Virol. 2023, 168, 224. [Google Scholar] [CrossRef] [PubMed]
- Houe, H. Economic impact of BVDV infection in dairies. Biologicals 2003, 31, 137–143. [Google Scholar] [CrossRef]
- Rodning, S.P.; Givens, M.D.; Marley, M.S.D.; Zhang, Y.; Riddell, K.P.; Galik, P.K.; Hathcock, T.L.; Gard, J.A.; Prevatt, J.W.; Owsley, W.F. Reproductive and economic impact following controlled introduction of cattle persistently infected with bovine viral diarrhea virus into a naive group of heifers. Theriogenology 2012, 78, 1508–1516. [Google Scholar] [CrossRef]
- Gethmann, J.; Probst, C.; Bassett, J.; Blunk, P.; Hövel, P.; Conraths, F.J. An epidemiological and economic simulation model to evaluate strategies for the control of bovine virus diarrhea in Germany. Front. Vet. Sci. 2019, 6, 406. [Google Scholar] [CrossRef]
- Schweizer, M.; Peterhans, E. Pestiviruses. Annu. Rev. Anim. Biosci. 2014, 2, 141–163. [Google Scholar] [CrossRef]
- Tautz, N.; Tews, B.A.; Meyers, G. The molecular biology of pestiviruses. Adv. Virus Res. 2015, 93, 47–160. [Google Scholar] [CrossRef]
- Ganges, L.; Crooke, H.R.; Bohorquez, J.A.; Postel, A.; Sakoda, Y.; Becher, P.; Ruggli, N. Classical swine fever virus: The past, present and future. Virus Res. 2020, 289, 198151. [Google Scholar] [CrossRef]
- Al-Kubati, A.A.G.; Hussen, J.; Kandeel, M.; Al-Mubarak, A.I.A.; Hemida, M.G. Recent advances on the bovine viral diarrhea virus molecular pathogenesis, immune response, and vaccines development. Front. Vet. Sci. 2021, 8, 665128. [Google Scholar] [CrossRef]
- Ruggli, N.; Bird, B.H.; Liu, L.; Bauhofer, O.; Tratschin, J.D.; Hofmann, M.A. Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-a/b induction. Virology 2005, 340, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.H.V.G.; Ansari, I.H.; Vassilev, V.; Liang, D.L.; Lai, V.C.H.; Zhong, W.D.; Hong, Z.; Dubovi, E.J.; Donis, R.O. The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J. Virol. 2006, 80, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Mätzener, P.; Magkouras, I.; Rümenapf, T.; Peterhans, E.; Schweizer, M. The viral RNase Erns prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Virus Res. 2009, 140, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Krey, T.; Bontems, F.; Vonrhein, C.; Vaney, M.C.; Bricogne, G.; Rümenapf, T.; Rey, F.A. Crystal structure of the pestivirus envelope glycoprotein Erns and mechanistic analysis of its ribonuclease activity. Structure 2012, 20, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, C.; Sauter, K.S.; Mathys, V.; Wyss, F.; Schweizer, M. Prolonged activity of the pestiviral RNase Erns as an interferon antagonist after uptake by clathrin-mediated endocytosis. J. Virol. 2014, 88, 7235–7243. [Google Scholar] [CrossRef]
- Iqbal, M.; Flick-Smith, H.; McCauley, J.W. Interactions of bovine viral diarrhoea virus glycoprotein Erns with cell surface glycosaminoglycans. J. Gen. Virol. 2000, 81, 451–459. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, Y.C.; Wang, P.G.; Ding, M.X.; Deng, H.K. Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology 2004, 330, 332–341. [Google Scholar] [CrossRef]
- Ronecker, S.; Zimmer, G.; Herrler, G.; Greiser-Wilke, I.; Grummer, B. Formation of bovine viral diarrhea virus E1-E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains. J. Gen. Virol. 2008, 89, 2114–2121. [Google Scholar] [CrossRef]
- Beilleau, G.; Stalder, H.; Almeida, L.; Oliveira Esteves, B.I.; Alves, M.P.; Schweizer, M. The pestivirus RNase Erns tames the interferon response of the respiratory epithelium. Viruses 2024, 16, 1908. [Google Scholar] [CrossRef]
- Richter, M.; Reimann, I.; Schirrmeier, H.; Kirkland, P.D.; Beer, M. The viral envelope is not sufficient to transfer the unique broad cell tropism of Bungowannah virus to a related pestivirus. J. Gen. Virol. 2014, 95, 2216–2222. [Google Scholar] [CrossRef]
- Dalmann, A.; Reimann, I.; Wernike, K.; Beer, M. Autonomously replicating RNAs of Bungowannah pestivirus: Erns is not essential for the generation of infectious particles. J. Virol. 2020, 94, e00436-20. [Google Scholar] [CrossRef]
- Koethe, S.; Koenig, P.; Wernike, K.; Schulz, J.; Reimann, I.; Beer, M. Bungowannah pestivirus chimeras as novel double marker vaccine strategy against bovine viral diarrhea virus. Vaccines 2022, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Lussi, C.; de Martin, E.; Schweizer, M. Positively charged amino acids in the pestiviral Erns control cell entry, endoribonuclease activity and innate immune evasion. Viruses 2021, 13, 1581. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; McCauley, J.W. Identification of the glycosaminoglycan-binding site on the glycoprotein Erns of bovine viral diarrhoea virus by site-directed mutagenesis. J. Gen. Virol. 2002, 83, 2153–2159. [Google Scholar] [CrossRef]
- Pfaender, S.; Mar, K.B.; Michailidis, E.; Kratzel, A.; Boys, I.N.; V’kovski, P.; Fan, W.; Kelly, J.N.; Hirt, D.; Ebert, N. LY6E impairs coronavirus fusion and confers immune control of viral disease. Nat. Microbiol. 2020, 5, 1330–1339. [Google Scholar] [CrossRef]
- Sauter, K.S.; Brcic, M.; Franchini, M.; Jungi, T.W. Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Vet. Immunol. Immunopathol. 2007, 118, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.; Peterhans, E. Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J. Virol. 2001, 75, 4692–4698. [Google Scholar] [CrossRef]
- Thao, T.T.N.; Labroussaa, F.; Ebert, N.; Jores, J.; Thiel, V. In-yeast assembly of coronavirus infectious cDNA clones using a synthetic genomics pipeline. In Coronaviruses, Methods and Protocols, 2nd ed.; Humana Press: New York, NY, USA, 2020; pp. 167–184. [Google Scholar]
- Kaiser, V.; Nebel, L.; Schüpbach-Regula, G.; Zanoni, R.G.; Schweizer, M. Influence of border disease virus (BDV) on serological surveillance within the bovine virus diarrhea (BVD) eradication program in Switzerland. BMC Vet. Res. 2017, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–495. [Google Scholar]
- Wagner, T.M.; Torres-Puig, S.; Yimthin, T.; Irobalieva, R.N.; Heller, M.; Kaessmeyer, S.; Démoulins, T.; Jores, J. Extracellular vesicles of minimalistic Mollicutes as mediators of immune modulation and horizontal gene transfer. Commun. Biol. 2025, 8, 674. [Google Scholar] [CrossRef]
- Yu, F.; Haynes, S.E.; Teo, G.C.; Avtonomov, D.M.; Polasky, D.A.; Nesvizhskii, A.I. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cell. Proteom. 2020, 19, 1575–1585. [Google Scholar] [CrossRef]
- de Martin, E.; Schweizer, M. Fifty shades of Erns: Innate immune evasion by the viral endonucleases of all pestivirus species. Viruses 2022, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Windisch, J.M.; Schneider, R.; Stark, R.; Weiland, E.; Meyers, G.; Thiel, H.-J. RNase of classical swine fever virus: Biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. J. Virol. 1996, 70, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Sainz, I.; Holinka, L.G.; Lu, Z.; Risatti, G.R.; Borca, M.V. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 2008, 370, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Riedel, C.; Lamp, B.; Chen, H.W.; Heimann, M.; Rümenapf, T. Fluorophore labelled BVDV: A novel tool for the analysis of infection dynamics. Sci. Rep. 2019, 9, 5972. [Google Scholar] [CrossRef]
- Tanenbaum, M.E.; Gilbert, L.A.; Qi, L.S.; Weissman, J.S.; Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014, 159, 635–646. [Google Scholar] [CrossRef]
- Fan, Z.C.; Bird, R.C. Development of a reporter bovine viral diarrhea virus and initial evaluation of its application for high throughput antiviral drug screening. J. Virol. Methods 2012, 180, 54–61. [Google Scholar] [CrossRef]
- Isken, O.; Langerwisch, U.; Schönherr, R.; Lamp, B.; Schröder, K.; Duden, R.; Rümenapf, T.H.; Tautz, N. Functional characterization of bovine viral diarrhea virus nonstructural protein 5A by reverse genetic analysis and live cell imaging. J. Virol. 2014, 88, 82–98. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, X.; Sun, Y.; Li, L.F.; Zhang, L.K.; Li, S.; Luo, Y.Z.; Qiu, H.J. Generation and evaluation of a chimeric classical swine fever virus expressing a visible marker gene. Arch. Virol. 2016, 161, 563–571. [Google Scholar] [CrossRef]
- Merwaiss, F.; Czibener, C.; Alvarez, D.E. Cell-to-cell transmission is the main mechanism supporting bovine viral diarrhea virus spread in cell culture. J. Virol. 2019, 93, e01776-18. [Google Scholar] [CrossRef]
- Fan, Z. Development of a Recombinant Noncytopathic Bovine Viral Diarrhea Virus Stably Expressing Enhanced Green Fluorescent Protein. Master’s Thesis, Auburn University, Auburn, AL, USA, 2005. Available online: https://etd.auburn.edu/handle/10415/830 (accessed on 11 January 2026).
- Fan, D.; Hu, C.; Yang, X.; Yang, X.; Chen, Y.; Lin, J. Generation of a DNA-launched classical swine fever virus infectious clone packaged in bacterial artificial chromosome. Virus Res. 2023, 323, 198961. [Google Scholar] [CrossRef] [PubMed]
- Kiesler, A.; Schwarz, L.; Riedel, C.; Högler, S.; Brunthaler, R.; Dimmel, K.; Auer, A.; Zaruba, M.; Mötz, M.; Seitz, K.; et al. New emergence of the novel pestivirus Linda virus in a pig farm in Carinthia, Austria. Viruses 2022, 14, 326. [Google Scholar] [CrossRef] [PubMed]





| Primer | Sequence (3′ ⟶ 5′) | Genome Position |
|---|---|---|
| BuPV_frag1_F | CAGGGTTTTCCCAGTCACGACTAATACGACTCACTATAGGTATAACGACAGTAGTTCAAGTGTCG | 5′UTR-C |
| BuPV_frag1_R | ACCGGTACCACCAATAGGC | 5′UTR-C |
| BuPV_frag2_F | AGACTCAAGACGGCTTATACCAC | C-E1 |
| BuPV_frag2_R | ACTGATGTCAAAGGTTCCTGGTC | C-E1 |
| Bungo_frag3_F | TCCTTACTGCCCAGTGGCTA | E1-p7 |
| Bungo_frag3_R | ACCACGATCAACAACAGAAGGA | E1-p7 |
| Bungo_frag4_F | AGAACATAGTGGCTCAAGCTGA | p7-NS3 |
| Bungo_frag4_R | TGGTGTGGCACAGTGATATTCA | p7-NS3 |
| Bungo_frag5_F | TCTGAAAGAAGGTGACATGGCA | NS3-NS5A |
| Bungo_frag5_R | TGGATGGTCAGGTCAGTCGT | NS3-NS5A |
| Bungo_frag6_F | TGGTTACAGAGAGGCTTACCTA | NS5A-NS5B |
| Bungo_frag6_R | TTAAAATTTGAGGCCAACAATTTCCA | NS5A-NS5B |
| Bungo_frag7_F | GTCTACCAAGGAACTGAAAGGTATGT | NS5B-3′UTR |
| Bungo_frag7_R | CTGCAGGTCGACTCTAGAGGATCTTAATTAAGGGCTTTTTGGAACTGTGCATAG | NS5B-3′UTR |
| Feature | Lower Band | Upper Band | Conclusion |
|---|---|---|---|
| GFP-Erns Detection | 17 spectral counts | 6 spectral counts | Detected in both bands; stronger in lower band |
| E1 Protein Detection | 4 spectral counts | 0 spectral counts | E1 present only in lower band |
| Swine Proteins | Dominant background | Dominant background | Consistent with expression system |
| Glycosylation | None detected | None detected | Plausible based on gel shift; not confirmed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ezzat, S.; Schweizer, M. GFP-Tagged Erns in Bungowannah Pestivirus: A Tool for Viral Tracking and Functional Studies. Viruses 2026, 18, 263. https://doi.org/10.3390/v18020263
Ezzat S, Schweizer M. GFP-Tagged Erns in Bungowannah Pestivirus: A Tool for Viral Tracking and Functional Studies. Viruses. 2026; 18(2):263. https://doi.org/10.3390/v18020263
Chicago/Turabian StyleEzzat, Sara, and Matthias Schweizer. 2026. "GFP-Tagged Erns in Bungowannah Pestivirus: A Tool for Viral Tracking and Functional Studies" Viruses 18, no. 2: 263. https://doi.org/10.3390/v18020263
APA StyleEzzat, S., & Schweizer, M. (2026). GFP-Tagged Erns in Bungowannah Pestivirus: A Tool for Viral Tracking and Functional Studies. Viruses, 18(2), 263. https://doi.org/10.3390/v18020263

