Potential Impact of SARS-CoV-2 Spike Protein on HIV-1 Reservoir in People Living with HIV
Abstract
1. Introduction
2. The HIV-1 Reservoir
3. Vaccine Spike: Biodistribution and Pharmacokinetics
4. Spike-Induced HIV-1 Reactivation: “In Vitro” Studies
5. HIV-1 Reactivation Induced by COVID-19 mRNA Vaccines and Spike-Expressing Vectors: “Ex Vivo” Studies
6. Molecular Mechanisms of HIV-1 Reactivation Induced by COVID-19 mRNA Vaccines and Spike-Expressing Vectors
7. Effects of COVID-19 Vaccines in PLWH
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PLWH | People living with HIV |
| ART | Antiretroviral therapy |
| CNS | Central nervous system |
| PCVS | Post-COVID-19 vaccine syndrome |
| ACE-2 | Angiotensin-converting enzyme-2 |
| PBMCs | Peripheral blood mononuclear cells |
| LTR | Long terminal repeat |
References
- Federico, M. How Do Anti-SARS-CoV-2 mRNA Vaccines Protect from Severe Disease? Int. J. Mol. Sci. 2022, 23, 10374. [Google Scholar] [CrossRef]
- Federico, M. The Immunologic Downsides Associated with the Powerful Translation of Current COVID-19 Vaccine mRNA Can Be Overcome by Mucosal Vaccines. Vaccines 2024, 12, 1281. [Google Scholar] [CrossRef]
- Sörstedt, E.; Nilsson, S.; Blaxhult, A.; Gisslén, M.; Flamholc, L.; Sönnerborg, A.; Yilmaz, A. Viral Blips during Suppressive Antiretroviral Treatment Are Associated with High Baseline HIV-1 RNA Levels. BMC Infect. Dis. 2016, 16, 305. [Google Scholar] [CrossRef]
- Lorenzo-Redondo, R.; Fryer, H.R.; Bedford, T.; Kim, E.-Y.; Archer, J.; Pond, S.L.K.; Chung, Y.-S.; Penugonda, S.; Chipman, J.; Fletcher, C.V.; et al. Persistent HIV-1 Replication Maintains the Tissue Reservoir during Therapy. Nature 2016, 530, 51–56. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Landovitz, R.J.; Sax, P.E.; Smith, D.M.; Springer, S.A.; Günthard, H.F.; Thompson, M.A.; Bedimo, R.J.; Benson, C.A.; Buchbinder, S.P.; et al. Antiretroviral Drugs for Treatment and Prevention of HIV in Adults: 2024 Recommendations of the International Antiviral Society–USA Panel. JAMA 2025, 333, 609–628. [Google Scholar] [CrossRef] [PubMed]
- Fromentin, R.; Chomont, N. HIV Persistence in Subsets of CD4+ T Cells: 50 Shades of Reservoirs. Semin. Immunol. 2021, 51, 101438. [Google Scholar] [CrossRef] [PubMed]
- Ko, A.; Kang, G.; Hattler, J.B.; Galadima, H.I.; Zhang, J.; Li, Q.; Kim, W.-K. Macrophages but Not Astrocytes Harbor HIV DNA in the Brains of HIV-1-Infected Aviremic Individuals on Suppressive Antiretroviral Therapy. J. Neuroimmune Pharmacol. 2019, 14, 110–119. [Google Scholar] [CrossRef]
- Chen, W.; Berkhout, B.; Pasternak, A.O. Phenotyping Viral Reservoirs to Reveal HIV-1 Hiding Places. Curr. HIV/AIDS Rep. 2025, 22, 15. [Google Scholar] [CrossRef]
- Chaillon, A.; Gianella, S.; Dellicour, S.; Rawlings, S.A.; Schlub, T.E.; De Oliveira, M.F.; Ignacio, C.; Porrachia, M.; Vrancken, B.; Smith, D.M. HIV Persists throughout Deep Tissues with Repopulation from Multiple Anatomical Sources. J. Clin. Investig. 2020, 130, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Dufour, C.; Ruiz, M.J.; Pagliuzza, A.; Richard, C.; Shahid, A.; Fromentin, R.; Ponte, R.; Cattin, A.; Wiche Salinas, T.R.; Salahuddin, S.; et al. Near Full-Length HIV Sequencing in Multiple Tissues Collected Postmortem Reveals Shared Clonal Expansions across Distinct Reservoirs during ART. Cell Rep. 2023, 42, 113053. [Google Scholar] [CrossRef]
- Tang, Y.; Chaillon, A.; Gianella, S.; Wong, L.M.; Li, D.; Simermeyer, T.L.; Porrachia, M.; Ignacio, C.; Woodworth, B.; Zhong, D.; et al. Brain Microglia Serve as a Persistent HIV Reservoir despite Durable Antiretroviral Therapy. J. Clin. Investig. 2023, 133, e167417. [Google Scholar] [CrossRef]
- Banga, R.; Procopio, F.A.; Lana, E.; Gladkov, G.T.; Roseto, I.; Parsons, E.M.; Lian, X.; Armani-Tourret, M.; Bellefroid, M.; Gao, C.; et al. Lymph Node Dendritic Cells Harbor Inducible Replication-Competent HIV despite Years of Suppressive ART. Cell Host Microbe 2023, 31, 1714–1731.e9. [Google Scholar] [CrossRef]
- Röltgen, K.; Nielsen, S.C.A.; Silva, O.; Younes, S.F.; Zaslavsky, M.; Costales, C.; Yang, F.; Wirz, O.F.; Solis, D.; Hoh, R.A.; et al. Immune Imprinting, Breadth of Variant Recognition, and Germinal Center Response in Human SARS-CoV-2 Infection and Vaccination. Cell 2022, 185, 1025–1040.e14. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, B.; Lu, P.; Monteiro, V.S.; Tabachnikova, A.; Wang, K.; Hooper, W.B.; Bastos, V.; Greene, K.; Sawano, M.; Guirgis, C.; et al. Immunological and Antigenic Signatures Associated with Chronic Illnesses after COVID-19 Vaccination. medRxiv 2025. [Google Scholar] [CrossRef]
- Lesgards, J.-F.; Cerdan, D.; Perronne, C. Do Long COVID and COVID Vaccine Side Effects Share Pathophysiological Picture and Biochemical Pathways? Int. J. Mol. Sci. 2025, 26, 7879. [Google Scholar] [CrossRef]
- Patterson, B.K.; Yogendra, R.; Francisco, E.B.; Guevara-Coto, J.; Long, E.; Pise, A.; Osgood, E.; Bream, J.; Kreimer, M.; Jeffers, D.; et al. Detection of S1 Spike Protein in CD16+ Monocytes up to 245 Days in SARS-CoV-2-Negative Post-COVID-19 Vaccine Syndrome (PCVS) Individuals. Hum. Vaccines Immunother. 2025, 21, 2494934. [Google Scholar] [CrossRef]
- Krawczyk, P.S.; Mazur, M.; Orzeł, W.; Gewartowska, O.; Jeleń, S.; Antczak, W.; Kasztelan, K.; Brouze, A.; Matylla-Kulińska, K.; Gumińska, N.; et al. Re-Adenylation by TENT5A Enhances Efficacy of SARS-CoV-2 mRNA Vaccines. Nature 2025, 641, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Sviercz, F.; Jarmoluk, P.; Godoy Coto, J.; Cevallos, C.; Freiberger, R.N.; López, C.A.M.; Ennis, I.L.; Delpino, M.V.; Quarleri, J. The Abortive SARS-CoV-2 Infection of Osteoclast Precursors Promotes Their Differentiation into Osteoclasts. J. Med. Virol. 2024, 96, e29597. [Google Scholar] [CrossRef]
- Jarmoluk, P.; Sviercz, F.A.; Cevallos, C.; Freiberger, R.N.; López, C.A.; Poli, G.; Delpino, M.V.; Quarleri, J. SARS-CoV-2 Modulation of HIV Latency Reversal in a Myeloid Cell Line: Direct and Bystander Effects. Viruses 2024, 16, 1310. [Google Scholar] [CrossRef]
- Wang, X.; Tang, W.; Zhao, J.; Ye, Z.; Xie, H.; Hewlett, I. SARS-CoV-2 Infection Reactivates HIV-1 Replication from Latency in U1 Cells. J. Cell Physiol. 2025, 240, e70049. [Google Scholar] [CrossRef]
- Xu, L.; Chen, L.; Wang, H.; Shi, H.; Miao, X.; Li, S.; Jiang, Y.; Shi, H. SARS-CoV-2 S Protein Activates the HIV Latent Reservoir through the mTOR Pathway. bioRxiv 2025. [Google Scholar] [CrossRef]
- Stevenson, E.M.; Terry, S.; Copertino, D.; Leyre, L.; Danesh, A.; Weiler, J.; Ward, A.R.; Khadka, P.; McNeil, E.; Bernard, K.; et al. SARS CoV-2 mRNA Vaccination Exposes Latent HIV to Nef-Specific CD4+ T-Cells. Nat. Commun. 2022, 13, 4888. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef]
- Welch, J.L.; Xiang, J.; Chang, Q.; Houtman, J.C.D.; Stapleton, J.T. T-Cell Expression of Angiotensin-Converting Enzyme 2 and Binding of Severe Acute Respiratory Coronavirus 2. J. Infect. Dis. 2022, 225, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Onnis, A.; Andreano, E.; Cassioli, C.; Finetti, F.; Della Bella, C.; Staufer, O.; Pantano, E.; Abbiento, V.; Marotta, G.; D’Elios, M.M.; et al. SARS-CoV-2 Spike Protein Suppresses CTL-Mediated Killing by Inhibiting Immune Synapse Assembly. J. Exp. Med. 2022, 220, e20220906. [Google Scholar] [CrossRef] [PubMed]
- Grippin, A.J.; Marconi, C.; Copling, S.; Li, N.; Braun, C.; Woody, C.; Young, E.; Gupta, P.; Wang, M.; Wu, A.; et al. SARS-CoV-2 mRNA Vaccines Sensitize Tumours to Immune Checkpoint Blockade. Nature 2025, 647, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Bozzi, G.; Lombardi, A.; Ludovisi, S.; Muscatello, A.; Manganaro, L.; Cattaneo, D.; Gori, A.; Bandera, A. Transient Increase in Plasma HIV RNA after COVID-19 Vaccination with mRNA-1272. Int. J. Infect. Dis. 2021, 113, 125–126. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Ferrara, M.; Trevisan, G.; Longo, B.M.; Allice, T.; Burdino, E.; Alladio, F.; Fantino, S.; Di Perri, G.; Calcagno, A.; et al. Transient Plasma Viral Rebound after SARS-CoV-2 Vaccination in an Exceptional HIV-1 Elite Controller Woman. Virol. J. 2023, 20, 123. [Google Scholar] [CrossRef]
- Matveev, V.A.; Mihelic, E.Z.; Benko, E.; Budylowski, P.; Grocott, S.; Lee, T.; Korosec, C.S.; Colwill, K.; Stephenson, H.; Law, R.; et al. Immunogenicity of COVID-19 Vaccines and Their Effect on HIV Reservoir in Older People with HIV. iScience 2023, 26, 107915. [Google Scholar] [CrossRef]
- Duncan, M.C.; Omondi, F.H.; Kinloch, N.N.; Lapointe, H.R.; Speckmaier, S.; Moran-Garcia, N.; Lawson, T.; DeMarco, M.L.; Simons, J.; Holmes, D.T.; et al. Effects of COVID-19 mRNA Vaccination on HIV Viremia and Reservoir Size. AIDS 2024, 38, 1120–1130. [Google Scholar] [CrossRef]
- Cheng, M.-Q.; Li, R.; Weng, Z.-Y.; Song, G. Immunogenicity and Effectiveness of COVID-19 Booster Vaccination among People Living with HIV: A Systematic Review and Meta-Analysis. Front. Med. 2023, 10, 1275843. [Google Scholar] [CrossRef] [PubMed]
- Petrovszki, D.; Walter, F.R.; Vigh, J.P.; Kocsis, A.; Valkai, S.; Deli, M.A.; Dér, A. Penetration of the SARS-CoV-2 Spike Protein across the Blood-Brain Barrier, as Revealed by a Combination of a Human Cell Culture Model System and Optical Biosensing. Biomedicines 2022, 10, 188. [Google Scholar] [CrossRef]
- Rhea, E.M.; Logsdon, A.F.; Hansen, K.M.; Williams, L.M.; Reed, M.J.; Baumann, K.K.; Holden, S.J.; Raber, J.; Banks, W.A.; Erickson, M.A. The S1 Protein of SARS-CoV-2 Crosses the Blood–Brain Barrier in Mice. Nat. Neurosci. 2021, 24, 368–378. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Roda, W.; Branton, W.G.; Clain, J.; Rabezanahary, H.; Zghidi-Abouzid, O.; Gelman, B.B.; Angel, J.B.; Cohen, E.A.; Gill, M.J.; et al. Lentiviral Infections Persist in Brain despite Effective Antiretroviral Therapy and Neuroimmune Activation. mBio 2021, 12, e0278421. [Google Scholar] [CrossRef] [PubMed]
- Agosto, L.M.; Uchil, P.D.; Mothes, W. HIV Cell-to-Cell Transmission: Effects on Pathogenesis and Antiretroviral Therapy. Trends Microbiol. 2015, 23, 289–295. [Google Scholar] [CrossRef]
- Stevenson, E.M.; Ward, A.R.; Truong, R.; Thomas, A.S.; Huang, S.-H.; Dilling, T.R.; Terry, S.; Bui, J.K.; Mota, T.M.; Danesh, A.; et al. HIV-Specific T Cell Responses Reflect Substantive in Vivo Interactions with Antigen despite Long-Term Therapy. JCI Insight 2021, 6, e142640. [Google Scholar] [CrossRef] [PubMed]
- Titanji, B.K.; Pillay, D.; Jolly, C. Combination Antiretroviral Therapy and Cell-Cell Spread of Wild-Type and Drug-Resistant Human Immunodeficiency Virus-1. J. Gen. Virol. 2017, 98, 821–834. [Google Scholar] [CrossRef]
- Manfredi, F.; Chiozzini, C.; Ferrantelli, F.; Leone, P.; Pugliese, K.; Spada, M.; Di Virgilio, A.; Giovannelli, A.; Valeri, M.; Cara, A.; et al. Antiviral Effect of SARS-CoV-2 N-Specific CD4+ T Cells Induced in Lungs by Engineered Extracellular Vesicles. npj Vaccines 2023, 8, 83. [Google Scholar] [CrossRef]

| Reference | Number of Patients | ART Suppression Status | Time of Sampling | Plasma HIV-1 RNA | Cell-Associated RNA | HIV-1 Reservoir Size |
|---|---|---|---|---|---|---|
| Stevenson et al. [22] | 13 | HIV-1 suppressed for at least one year before vaccination | 2 weeks after both first and second vaccinations | 1.5- to 1.6-fold decrease compared to baseline values | IPDA: no significant variations throughout; TILDA: Increase after each injection in 2/4 patients | |
| Matveev et al. [29] | 68, >55-years aged | 63 HIV-1 suppressed patients; 5 with low-level viremia (LLV), >40 copies/mL | 24 and 48 weeks after first vaccination | IPDA: no variations except that increase from 35.5 to 175% in 3 LLV at the 48 weeks timepoint | ||
| Duncan et al. [30] | 62 | HIV-1 suppressed (pVL < 20 copies/mL) | 4 weeks after both first and second vaccination | No significant/persistent increase. pVL < 200 copies/mL throughout | IPDA: no variations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Federico, M. Potential Impact of SARS-CoV-2 Spike Protein on HIV-1 Reservoir in People Living with HIV. Viruses 2026, 18, 154. https://doi.org/10.3390/v18020154
Federico M. Potential Impact of SARS-CoV-2 Spike Protein on HIV-1 Reservoir in People Living with HIV. Viruses. 2026; 18(2):154. https://doi.org/10.3390/v18020154
Chicago/Turabian StyleFederico, Maurizio. 2026. "Potential Impact of SARS-CoV-2 Spike Protein on HIV-1 Reservoir in People Living with HIV" Viruses 18, no. 2: 154. https://doi.org/10.3390/v18020154
APA StyleFederico, M. (2026). Potential Impact of SARS-CoV-2 Spike Protein on HIV-1 Reservoir in People Living with HIV. Viruses, 18(2), 154. https://doi.org/10.3390/v18020154

