Diagnostic Performance of Salivary PCR for the Detection of Congenital Cytomegalovirus: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Protocol
2.3. Study Selection
2.4. Quality Assessment
2.5. Data Extraction
2.6. Missing Data Calculations
2.7. Data Analysis
3. Results
3.1. Screening Process
3.2. Quality Assessment Results
3.3. Study Characteristics
3.4. Exclusion of Outliers
3.5. Meta-Analysis of Diagnostic Test Accuracy
3.5.1. Random Effects Forest Plots for All Studies
3.5.2. Expanded Diagnostic Metrics for All Studies
3.5.3. The Summary Receiver Operating Characteristic (SROC) Curve
3.5.4. Publication Bias
3.6. Meta-Analysis of Diagnostic Test Acuuracy of Subgroups
3.6.1. SN and SP Random Effects Forest Plots for Subgroups
3.6.2. PPV and NPV Random Effects Forest Plots for Subgroups
3.6.3. Expanded Diagnostic Metrics for Subgroups
4. Discussion
4.1. All Studies Discussion
4.2. Subgroup Discussion
4.3. Strengths
4.4. Limitations
4.5. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CMV | Cytomegalovirus |
SGA | Small for Gestational Age |
PCR | Polymerase Chain Reaction |
SN | Sensitivity |
SP | Specificity |
PPV | Positive Predicted Value |
NPV | Negative Predicted Value |
DOR | Diagnostic Odds Ratio |
AUC | Area Under the Curve |
PLR | Positive Likelihood Ratio |
NLR | Negative Likelihood Ratio |
SROC | Summary Receiver Operating Characteristic |
Appendix A. Search Strategies
Appendix B. Quality Assessment Template
QUDAS-2 Survey |
---|
Patient Selection |
Was a case–control design avoided? |
Were inappropriate exclusions avoided? |
Risk of Bias: Was patient selection conducted in a way that avoids bias? |
Applicability Concern: Do the included patients match the review question? |
Index Test |
Was the index test (test being evaluated) result interpreted without knowledge of the reference standard? (Blinded interpretation) |
Was the test threshold pre-specified (rather than determined post hoc)? |
Risk of Bias: Was the index test conducted in a way that avoids bias? |
Applicability Concern: Does the index test match the review question? |
Reference Standard |
Is the reference standard likely to correctly classify the target condition? |
Was the reference standard interpreted without knowledge of the index test? (Blinded interpretation) |
Risk of Bias: Was the reference standard appropriate? |
Applicability Concern: Does the reference standard match the review question? |
Flow and Timing |
Was there an appropriate time interval between the index test and reference standard? |
Did all patients receive the same reference standard? |
Were all patients included in the final analysis? |
Risk of Bias: Was patient flow and timing handled appropriately? |
Appendix C. Data Extraction Template
Appendix D. Raw Data Table
Study ID | Total Number of Participants | TP | FP | TN | FN | SP | Standard Error | Lower CI | Upper CI | SN | Standard Error 2 | Lower CI 2 | Upper CI 2 | PPV | Standard Error 3 | Lower CI 3 | Upper CI 3 | NPV | Standard Error 4 | Lower CI 4 | Upper CI 4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alkhawaja 2012 [25] | 150 | 8 | 0 | 142 | 0 | 1 | 0.006901408 | 0.973659093 | 1 | 1 | 0.1225 | 0.67558438 | 1 | 1 | 0.1225 | 0.67558438 | 1 | 1 | 0.006901408 | 0.973659093 | 1 |
Barkai 2014 [26] | 9845 | 48 | 8 | 9789 | 0 | 0.9992 | 0.000302652 | 0.998411364 | 0.999597297 | 1 | 0.020416667 | 0.925897349 | 1 | 0.8571 | 0.049933812 | 0.74258818 | 0.925762933 | 1 | 0.000100112 | 0.999607713 | 1 |
Cardoso 2015 [27] | 333 | 4 | 0 | 328 | 1 | 1 | 0.002987805 | 0.988423392 | 1 | 0.8 | 0.265360133 | 0.375528264 | 0.963776839 | 1 | 0.245 | 0.51009998 | 1 | 0.997 | 0.004238393 | 0.983052342 | 0.999475082 |
Choudhary 2015 [28] | 18 | 18 | 0 | 0 | 0 | - | - | - | - | 1 | 0.054444444 | 0.824115449 | 1 | 1 | 0.054444444 | 0.824115449 | 1 | - | - | - | - |
Dollard 2021 [17] | 12,554 | 52 | 8 | 12,490 | 4 | 0.999 | 0.000293396 | 0.998271786 | 0.999421546 | 0.929 | 0.038523879 | 0.830800296 | 0.972119412 | 0.867 | 0.046782772 | 0.758739536 | 0.931092799 | 1 | 7.84377 E-05 | 0.999692619 | 1 |
Eventov-Friedman 2019 [29] | 856 | 57 | 68 | 730 | 1 | 0.915 | 0.009948395 | 0.893606311 | 0.932417183 | 0.983 | 0.988489251 | 0.199595396 | 0.999925424 | 0.456 | 0.062094275 | 0.343155986 | 0.573549656 | 0.999 | 0.001778738 | 0.992923231 | 0.999859431 |
Exler 2019 [30] | 133 | 27 | 10 | 94 | 2 | 0.904 | 0.030385127 | 0.832175114 | 0.947041811 | 0.931 | 0.057940588 | 0.780304765 | 0.980863997 | 0.73 | 0.077643808 | 0.570498487 | 0.846233472 | 0.98 | 0.017560659 | 0.928436508 | 0.994625623 |
Fernandes 2021 [31] | 1492 | 10 | 4 | 1478 | 0 | 0.9973 | 0.001501406 | 0.993079098 | 0.998949392 | 1 | 0.098 | 0.722459831 | 1 | 0.7143 | 0.139559386 | 0.453518208 | 0.882796921 | 1 | 0.000663058 | 0.99740755 | 1 |
Huang 2021 [33] | 6234 | 12 | 0 | 6185 | 37 | 1 | 0.000158448 | 0.99937927 | 1 | 0.245 | 0.06461424 | 0.146101715 | 0.380975436 | 1 | 0.081666667 | 0.757499243 | 1 | 0.994 | 0.000991636 | 0.991752774 | 0.995637589 |
Izquierdo 2023 [34] | 1651 | 7 | 2 | 1641 | 1 | 0.998 | 0.001253247 | 0.994387678 | 0.999288945 | 0.875 | 1.03429928 | 0.158743682 | 0.996163786 | 0.777 | 0.57160782 | 0.211260159 | 0.978413903 | 0.999 | 0.000982148 | 0.995914755 | 0.999755788 |
Izquierdo 2023.2 [34] | 119 | 2 | 0 | 116 | 1 | 1 | 0.008448276 | 0.967944353 | 1 | 0.666 | 0.425275336 | 0.207287919 | 0.938292062 | 1 | 0.49 | 0.342371953 | 1 | 0.9914 | 0.011959543 | 0.953082694 | 0.998473723 |
Izquierdo 2024 [34] | 190 | 3 | 0 | 186 | 1 | 1 | 0.005268817 | 0.979764182 | 1 | 0.75 | 0.326955654 | 0.300636052 | 0.954413937 | 1 | 0.326666667 | 0.43849392 | 1 | 0.995 | 0.007353136 | 0.970913725 | 0.99915779 |
Pasternak 2020 [35] | 83 | 42 | 0 | 41 | 0 | 1 | 0.023902439 | 0.914329551 | 1 | 1 | - | - | - | 1 | - | - | - | 1 | 0.023902439 | 0.914329551 | 1 |
Pasternak 2020.2 [35] | 83 | 41 | 0 | 41 | 1 | 1 | 0.023902439 | 0.914329551 | 1 | 0.976 | 0.991879025 | 0.196777328 | 0.999851885 | 1 | - | - | - | 0.976 | 0.033198776 | 0.876493769 | 0.995727096 |
Pasternak 2020.3 [35] | 83 | 42 | 3 | 38 | 0 | 0.927 | 0.047136385 | 0.805946267 | 0.97489117 | 1 | - | - | - | 0.933 | 0.357138784 | 0.382925624 | 0.99681011 | 1 | 0.025789474 | 0.908187067 | 1 |
Ross 2014 [36] | 80 | 79 | 1 | 0 | 0 | 0 | 0.98 | 0 | 0.793456709 | 1 | 0.012405063 | 0.953627163 | 1 | 0.988 | 0.017270278 | 0.93334121 | 0.997938727 | - | - | - | - |
Stark 2024 [37] | 880 | 33 | 4 | 838 | 5 | 0.994 | 0.002904787 | 0.986088851 | 0.997423901 | 0.868 | 0.060665104 | 0.726226125 | 0.942199556 | 0.892 | 0.057490953 | 0.753044839 | 0.95721137 | 0.994 | 0.002902787 | 0.986095372 | 0.997422679 |
Yamamoto 2006 [38] | 1923 | 22 | 2 | 1895 | 4 | 0.999 | 0.000890787 | 0.996249107 | 0.999733936 | 0.846 | 0.080197463 | 0.664506503 | 0.938410231 | 0.917 | 0.069560425 | 0.741935722 | 0.976988478 | 0.998 | 0.00114778 | 0.994749493 | 0.999239707 |
Appendix E. Study Characteristics Table
Study | Year of Publication | Country in Which the Study Conducted | Total Population | Temporal Classification | Study Design | Type of Test Conducted for Saliva | Type of Test Conducted for Urine | Saliva Sample | Urine Sample | Population Type | Age of Children | SP | SN | P PV | NPV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alkhawaja 2012 [25] | 2012 | Bahrain | 150 | prospective | cohort | nested PCR | nested PCR | Liquid | unclear | seropositive mothers | <6 wks | 1.000 | 1.000 | 1.000 | 1.000 |
Barkai 2014 [26] | 2014 | Israel | 9845 | prospective | cross-sectional | RT-PCR | RT-PCR | unclear | unclear | All | <4 wks | 0.999 | 1.000 | 0.857 | 1.000 |
Cardoso 2015 [27] | 2015 | Brazil | 333 | prospective | cross-sectional | nested PCR | nested PCR | Liquid | Bag | All | <3 wks | 1.000 | 0.800 | 1.000 | 0.997 |
Choudhary 2015 [28] | 2015 | India | 18 | prospective | cohort | PCR | PCR | Liquid | Sterile tube | High-risk | <10 months | - | 1.000 | 1.000 | - |
Dollard 2021 [17] | 2021 | United States | 12,554 | prospective | cohort | PCR | PCR | Dry | unclear | All | <3 wks | 0.999 | 0.929 | 0.867 | 1.000 |
Eventov-Friedman 2019 [29] | 2019 | Israel | 856 | prospective | cohort | PCR | PCR | Liquid | Bag | High-risk | <10 days | 0.915 | 0.983 | 0.456 | 0.999 |
Exler 2019 [30] | 2019 | Germany | 133 | retrospective | cohort | PCR | PCR | Liquid | unclear | seropositive mothers | <2 wks | 0.904 | 0.931 | 0.730 | 0.980 |
Fernandes 2021 [31] | 2021 | Portugal | 1492 | prospective | cross-sectional | qPCR | qPCR | Liquid | Bag | All | <2 wks | 0.997 | 1.000 | 0.714 | 1.000 |
Huang 2021 [33] | 2021 | China | 6234 | prospective | cohort | qPCR | qPCR | Liquid | Bag | seropositive mothers | <3 wks | 1.000 | 0.245 | 1.000 | 0.994 |
Izquierdo 2023 [34] | 2023 | Chile | 1651 | prospective | cross-sectional | RT-PCR | RT-PCR | Dry | Bag | All | <3 wks | 0.998 | 0.875 | 0.777 | 0.999 |
Izquierdo 2023.2 [34] | 2023 | Chile | 119 | prospective | cross-sectional | RT-PCR | RT-PCR | Dry | Bag | High-risk | <3 wks | 1.000 | 0.666 | 1.000 | 0.991 |
Izquierdo 2024 [34] | 2024 | Chile | 190 | prospective | cross-sectional | RT-PCR | RT-PCR | Dry | Bag | High-risk | <3 wks | 1.000 | 0.750 | 1.000 | 0.995 |
Pasternak 2020 [35] | 2020 | Israel | 83 | prospective | case–control | qPCR | qPCR | Liquid | Bag | High-risk | <4 wks | 1.000 | 1.000 | 1.000 | 1.000 |
Pasternak 2020.2 [35] | 2020 | Israel | 83 | prospective | case–control | qPCR | qPCR | Wet | Bag | High-risk | <4 wks | 1.000 | 0.976 | 1.000 | 0.976 |
Pasternak 2020.3 [35] | 2020 | Israel | 83 | prospective | case–control | qPCR | qPCR | Dry | Bag | High-risk | <4 wks | 0.927 | 1.000 | 0.933 | 1.000 |
Ross 2014 [36] | 2014 | United States | 80 | prospective | cohort | qPCR | qPCR | Liquid | Bag | High-risk | <3 wks | 0.000 | 1.000 | 0.988 | - |
Stark 2024 [37] | 2024 | United States | 880 | retrospective | cohort | qPCR | PCR | unclear | unclear | High-risk | <3 wks | 0.994 | 0.868 | 0.892 | 0.994 |
Yamamoto 2006 [38] | 2006 | Brazil | 1923 | prospective | cross-sectional | PCR | PCR | Liquid | Sterile tube | All | <3 wks | 0.999 | 0.846 | 0.917 | 0.998 |
Appendix F. Full LOO Tables
Study | Estimate | SE | Z_Value | p_Value | CI_Lower | CI_Upper | Q | Qp | Tau2 | I2 | H2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alkhawaja 2012 [25] | 0.99835 | 0.00068 | 1473.69292 | <0.0001 | 0.99702 | 0.99968 | 105.06197 | 5.04392E-16 | 2.48461E-06 | 86.67453 | 7.50443 |
Barkai 2014 [26] | 0.99790 | 0.00088 | 1128.29218 | <0.0001 | 0.99616 | 0.99963 | 102.93035 | 1.29820E-15 | 3.99736E-06 | 86.39857 | 7.35217 |
Cardoso 2015 [27] | 0.99830 | 0.00069 | 1448.59914 | <0.0001 | 0.99695 | 0.99965 | 105.04763 | 5.07616E-16 | 2.49311E-06 | 86.67271 | 7.50340 |
Dollard 2021 [17] | 0.99793 | 0.00089 | 1126.86722 | <0.0001 | 0.99620 | 0.99967 | 99.91582 | 4.92191E-15 | 4.01000E-06 | 85.98820 | 7.13684 |
Eventov-Friedman 2019 [29] | 0.99908 | 0.00038 | 2662.53506 | <0.0001 | 0.99835 | 0.99982 | 32.73220 | 3.14837E-03 | 5.10888E-07 | 57.22866 | 2.33801 |
Exler 2019 [30] | 0.99847 | 0.00065 | 1547.15384 | <0.0001 | 0.99720 | 0.99973 | 95.16536 | 3.97717E-14 | 2.21286E-06 | 85.28876 | 6.79753 |
Fernandes 2021 [31] | 0.99849 | 0.00071 | 1413.18368 | <0.0001 | 0.99710 | 0.99987 | 102.69548 | 1.44050E-15 | 2.46067E-06 | 86.36746 | 7.33539 |
Huang 2021 [33] | 0.99759 | 0.00096 | 1037.24469 | <0.0001 | 0.99570 | 0.99947 | 88.89298 | 6.13968E-13 | 4.98788E-06 | 84.25072 | 6.34950 |
Izquierdo 2023 [34] | 0.99841 | 0.00072 | 1391.73049 | <0.0001 | 0.99700 | 0.99982 | 103.41226 | 1.04860E-15 | 2.49966E-06 | 86.46195 | 7.38659 |
Izquierdo 2023.2 [34] | 0.99836 | 0.00068 | 1476.01648 | <0.0001 | 0.99703 | 0.99968 | 105.06307 | 5.04146E-16 | 2.48396E-06 | 86.67467 | 7.50451 |
Izquierdo 2024 [34] | 0.99834 | 0.00068 | 1468.91767 | <0.0001 | 0.99701 | 0.99967 | 105.05961 | 5.04923E-16 | 2.48601E-06 | 86.67423 | 7.50426 |
Pasternak 2020 [35] | 0.99837 | 0.00067 | 1480.26758 | <0.0001 | 0.99704 | 0.99969 | 105.06500 | 5.03715E-16 | 2.48282E-06 | 86.67492 | 7.50464 |
Pasternak 2020.2 [35] | 0.99837 | 0.00067 | 1480.26758 | <0.0001 | 0.99704 | 0.99969 | 105.06500 | 5.03715E-16 | 2.48282E-06 | 86.67492 | 7.50464 |
Pasternak 2020.3 [35] | 0.99839 | 0.00067 | 1495.79361 | <0.0001 | 0.99709 | 0.99970 | 102.69279 | 1.44222E-15 | 2.41803E-06 | 86.36711 | 7.33520 |
Stark 2024 [37] | 0.99857 | 0.00068 | 1471.41615 | <0.0001 | 0.99724 | 0.99990 | 101.33737 | 2.62705E-15 | 2.39212E-06 | 86.18476 | 7.23838 |
Yamamoto 2006 [38] | 0.99824 | 0.00074 | 1350.65444 | <0.0001 | 0.99679 | 0.99969 | 104.59739 | 6.19929E-16 | 2.59703E-06 | 86.61534 | 7.47124 |
Study | Estimate | SE | Z_Value | p_Value | CI_Lower | CI_Upper | Q | Qp | Tau2 | I2 | H2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alkhawaja 2012 [25] | 0.86748 | 0.04870 | 17.81205 | <0.0001 | 0.77202 | 0.96293 | 142.47142 | 2.28664E-23 | 0.01954 | 90.17347 | 10.17653 |
Barkai 2014 [26] | 0.85824 | 0.06241 | 13.75202 | <0.0001 | 0.73592 | 0.98056 | 140.02984 | 6.99861E-23 | 0.03393 | 90.00213 | 10.00213 |
Cardoso 2015 [27] | 0.87799 | 0.04743 | 18.51029 | <0.0001 | 0.78502 | 0.97096 | 142.10809 | 2.70109E-23 | 0.01927 | 90.14834 | 10.15058 |
Choudhary 2015 [28] | 0.86208 | 0.05076 | 16.98425 | <0.0001 | 0.76260 | 0.96156 | 142.24243 | 2.53976E-23 | 0.02067 | 90.15765 | 10.16017 |
Dollard 2021 [17] | 0.86898 | 0.05233 | 16.60448 | <0.0001 | 0.76640 | 0.97155 | 141.23326 | 4.03325E-23 | 0.02211 | 90.08732 | 10.08809 |
Eventov-Friedman 2019 [29] | 0.87584 | 0.04691 | 18.67088 | <0.0001 | 0.78390 | 0.96778 | 142.52594 | 2.23019E-23 | 0.01928 | 90.17723 | 10.18042 |
Exler 2019 [30] | 0.86978 | 0.05050 | 17.22255 | <0.0001 | 0.77080 | 0.96876 | 142.02524 | 2.80564E-23 | 0.02046 | 90.14260 | 10.14466 |
Fernandes 2021 [31] | 0.86571 | 0.04917 | 17.60662 | <0.0001 | 0.76934 | 0.96208 | 142.44039 | 2.31941E-23 | 0.01969 | 90.17133 | 10.17431 |
Huang 2021 [33] | 0.98751 | 0.00961 | 102.79747 | <0.0001 | 0.96868 | 1.00633 | 13.33019 | 5.00705E-01 | 0.00000 | 0.00000 | 1.00000 |
Izquierdo 2023 [34] | 0.87608 | 0.04690 | 18.67837 | <0.0001 | 0.78415 | 0.96801 | 142.51738 | 2.23896E-23 | 0.01927 | 90.17664 | 10.17981 |
Izquierdo 2023.2 [34] | 0.87842 | 0.04706 | 18.66679 | <0.0001 | 0.78619 | 0.97066 | 142.00995 | 2.82538E-23 | 0.01922 | 90.14154 | 10.14357 |
Izquierdo 2024 [34] | 0.87832 | 0.04724 | 18.59445 | <0.0001 | 0.78574 | 0.97090 | 142.06694 | 2.75252E-23 | 0.01924 | 90.14549 | 10.14764 |
Pasternak 2020.2 [35] | 0.87586 | 0.04691 | 18.67139 | <0.0001 | 0.78392 | 0.96780 | 142.52605 | 2.23007E-23 | 0.01928 | 90.17723 | 10.18043 |
Ross 2014 [36] | 0.85778 | 0.06461 | 13.27719 | <0.0001 | 0.73116 | 0.98440 | 129.70910 | 7.75839E-21 | 0.03686 | 89.20662 | 9.26494 |
Stark 2024 [37] | 0.87669 | 0.04996 | 17.54918 | <0.0001 | 0.77878 | 0.97460 | 139.54507 | 8.73733E-23 | 0.01995 | 89.96740 | 9.96751 |
Yamamoto 2006 [38] | 0.87880 | 0.04926 | 17.84000 | <0.0001 | 0.78225 | 0.97535 | 140.04435 | 6.95228E-23 | 0.01953 | 90.00317 | 10.00317 |
Study | Estimate | SE | Z_Value | p_Value | CI_Lower | CI_Upper | Q | Qp | Tau2 | I2 | H2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alkhawaja 2012 [25] | 0.84579 | 0.04740 | 17.84378 | <0.0001 | 0.75289 | 0.93869 | 93.34868 | 8.81038E-14 | 0.01986 | 85.00247 | 6.66776 |
Barkai 2014 [26] | 0.85437 | 0.04999 | 17.08923 | <0.0001 | 0.75639 | 0.95236 | 90.07972 | 3.66575E-13 | 0.02176 | 84.45821 | 6.43427 |
Cardoso 2015 [27] | 0.85655 | 0.04610 | 18.57963 | <0.0001 | 0.76619 | 0.94691 | 93.22106 | 9.31590E-14 | 0.01944 | 84.98194 | 6.65865 |
Choudhary 2015 [28] | 0.83993 | 0.05006 | 16.77826 | <0.0001 | 0.74182 | 0.93805 | 92.57471 | 1.23559E-13 | 0.02189 | 84.87708 | 6.61248 |
Dollard 2021 [17] | 0.85318 | 0.05056 | 16.87489 | <0.0001 | 0.75408 | 0.95227 | 90.39569 | 3.19487E-13 | 0.02237 | 84.51254 | 6.45684 |
Eventov-Friedman 2019 [29] | 0.90788 | 0.02801 | 32.41077 | <0.0001 | 0.85298 | 0.96279 | 28.86187 | 1.09092E-02 | 0.00401 | 51.49310 | 2.06156 |
Exler 2019 [30] | 0.86662 | 0.04674 | 18.54056 | <0.0001 | 0.77501 | 0.95824 | 85.50974 | 2.65604E-12 | 0.01859 | 83.62760 | 6.10784 |
Fernandes 2021 [31] | 0.86325 | 0.04650 | 18.56453 | <0.0001 | 0.77211 | 0.95439 | 90.71594 | 2.77911E-13 | 0.01909 | 84.56721 | 6.47971 |
Huang 2021 [33] | 0.84242 | 0.04843 | 17.39460 | <0.0001 | 0.74750 | 0.93734 | 93.11580 | 9.75457E-14 | 0.02044 | 84.96496 | 6.65113 |
Izquierdo 2023 [34] | 0.85572 | 0.04568 | 18.73342 | <0.0001 | 0.76619 | 0.94525 | 93.44245 | 8.45646E-14 | 0.01941 | 85.01752 | 6.67446 |
Izquierdo 2023.2 [34] | 0.85725 | 0.04572 | 18.75095 | <0.0001 | 0.76764 | 0.94685 | 93.09243 | 9.85470E-14 | 0.01934 | 84.96118 | 6.64946 |
Izquierdo 2024 [34] | 0.85702 | 0.04590 | 18.67118 | <0.0001 | 0.76705 | 0.94698 | 93.16475 | 9.54805E-14 | 0.01939 | 84.97286 | 6.65463 |
Pasternak 2020.3 [35] | 0.85412 | 0.04592 | 18.60090 | <0.0001 | 0.76412 | 0.94412 | 93.53004 | 8.13867E-14 | 0.01947 | 85.03155 | 6.68072 |
Ross 2014 [36] | 0.83938 | 0.04929 | 17.02881 | <0.0001 | 0.74277 | 0.93598 | 58.00863 | 2.61361E-07 | 0.02065 | 75.86566 | 4.14347 |
Stark 2024 [37] | 0.85096 | 0.04975 | 17.10584 | <0.0001 | 0.75346 | 0.94846 | 92.55589 | 1.24578E-13 | 0.02157 | 84.87400 | 6.61114 |
Yamamoto 2006 [38] | 0.84903 | 0.04905 | 17.30819 | <0.0001 | 0.75289 | 0.94518 | 93.33104 | 8.87861E-14 | 0.02096 | 84.99963 | 6.66650 |
Study | Estimate | SE | Z_Value | p_Value | CI_Lower | CI_Upper | Q | Qp | Tau2 | I2 | H2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alkhawaja 2012 [25] | 0.99929 | 2.926E-04 | 3415.01153 | <0.0001 | 0.99872 | 0.99986 | 48.19143 | 1.22202E-05 | 2.58765E-07 | 70.94919 | 3.44224 |
Barkai 2014 [26] | 0.99807 | 7.727E-04 | 1291.64409 | <0.0001 | 0.99655 | 0.99958 | 47.96598 | 1.33172E-05 | 3.08023E-06 | 70.81265 | 3.42614 |
Cardoso 2015 [27] | 0.99931 | 2.916E-04 | 3427.09513 | <0.0001 | 0.99873 | 0.99988 | 47.70285 | 1.47204E-05 | 2.55168E-07 | 70.65165 | 3.40735 |
Dollard 2021 [17] | 0.99807 | 7.734E-04 | 1290.47523 | <0.0001 | 0.99655 | 0.99958 | 47.60547 | 1.52758E-05 | 3.08688E-06 | 70.59162 | 3.40039 |
Eventov-Friedman 2019 [29] | 0.99930 | 2.955E-04 | 3381.54984 | <0.0001 | 0.99872 | 0.99988 | 47.89841 | 1.36645E-05 | 2.57413E-07 | 70.77147 | 3.42131 |
Exler 2019 [30] | 0.99931 | 2.884E-04 | 3464.84240 | <0.0001 | 0.99874 | 0.99988 | 46.89921 | 1.99691E-05 | 2.48935E-07 | 70.14875 | 3.34994 |
Fernandes 2021 [31] | 0.99918 | 3.151E-04 | 3170.71180 | <0.0001 | 0.99856 | 0.99980 | 48.18820 | 1.22353E-05 | 2.65545E-07 | 70.94725 | 3.44201 |
Huang 2021 [33] | 0.99999 | 6.121E-05 | 16337.66443 | <0.0001 | 0.99987 | 1.00011 | 11.90201 | 6.14172E-01 | 0.00000 | 0.00000 | 1.00000 |
Izquierdo 2023 [34] | 0.99932 | 3.012E-04 | 3317.47315 | <0.0001 | 0.99873 | 0.99991 | 47.22766 | 1.76324E-05 | 2.54414E-07 | 70.35635 | 3.37340 |
Izquierdo 2023.2 [34] | 0.99930 | 2.909E-04 | 3435.58932 | <0.0001 | 0.99873 | 0.99987 | 47.67887 | 1.48553E-05 | 2.54845E-07 | 70.63689 | 3.40563 |
Izquierdo 2024 [34] | 0.99930 | 2.912E-04 | 3431.71177 | <0.0001 | 0.99873 | 0.99987 | 47.73599 | 1.45360E-05 | 2.55311E-07 | 70.67202 | 3.40971 |
Pasternak 2020 [35] | 0.99929 | 2.924E-04 | 3418.07605 | <0.0001 | 0.99872 | 0.99986 | 48.19146 | 1.22201E-05 | 2.58709E-07 | 70.94921 | 3.44225 |
Pasternak 2020.2 [35] | 0.99930 | 2.908E-04 | 3436.84941 | <0.0001 | 0.99873 | 0.99987 | 47.67048 | 1.49028E-05 | 2.54764E-07 | 70.63172 | 3.40503 |
Pasternak 2020.3 [35] | 0.99929 | 2.924E-04 | 3418.11551 | <0.0001 | 0.99872 | 0.99986 | 48.19146 | 1.22201E-05 | 2.58708E-07 | 70.94921 | 3.44225 |
Stark 2024 [37] | 0.99939 | 2.804E-04 | 3564.54656 | <0.0001 | 0.99884 | 0.99994 | 43.97065 | 5.98460E-05 | 2.27075E-07 | 68.16058 | 3.14076 |
Yamamoto 2006 [38] | 0.99939 | 2.917E-04 | 3425.77611 | <0.0001 | 0.99882 | 0.99996 | 45.26014 | 3.70113E-05 | 2.38587E-07 | 69.06770 | 3.23287 |
References
- Varnum, S.M.; Streblow, D.N.; Monroe, M.E.; Smith, P.; Auberry, K.J.; Paša-Tolić, L.; Wang, D.; Camp, D.G., 2nd; Rodland, K.; Wiley, S.; et al. Identification of proteins in human cytomegalovirus (HCMV) particles: The HCMV proteome. J. Virol. 2004, 78, 10960–10966. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). About Cytomegalovirus. Cytomegalovirus (CMV) and Congenital CMV Infection. 2024. Available online: https://www.cdc.gov/cytomegalovirus/about/index.html (accessed on 15 June 2025).
- Al Mana, H.; Yassine, H.M.; Younes, N.N.; Al-Mohannadi, A.; Al-Sadeq, D.W.; Alhababi, D.; Nasser, E.A.; Nasrallah, G.K. The status of cytomegalovirus (CMV) prevalence in the MENA region: A systematic review. Pathogens 2019, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Clinical Overview of CMV and Congenital CMV. Cytomegalovirus (CMV) and Congenital CMV Infection. 2024. Available online: https://www.cdc.gov/cytomegalovirus/hcp/clinical-overview/index.html (accessed on 15 June 2025).
- Sinzger, C.; Digel, M.; Jahn, G. Cytomegalovirus cell tropism. Med. Microbiol. Immunol. 2021, 210, 325–339. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). CMV in Newborns. Cytomegalovirus (CMV) and Congenital CMV Infection. 2024. Available online: https://www.cdc.gov/cytomegalovirus/congenital-infection/index.html (accessed on 15 June 2025).
- National Deaf Children’s Society. Cytomegalovirus Childhood Deafness|Deafness Caused by CMV. Available online: https://www.ndcs.org.uk/information-and-support/childhood-deafness/causes-of-deafness/cytomegalovirus-cmv/ (accessed on 15 June 2025).
- Grosse, S.D. Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: A quantitative assessment. J. Clin. Virol. 2007, 41, 57–62. [Google Scholar] [CrossRef]
- Aldè, M.; Fancello, V.; Di Mauro, P.; Canelli, R.; Zaouche, S.; Falanga, C. Audiological and vestibular follow-up for children with congenital cytomegalovirus infection: From current limitations to future directions. Children 2024, 11, 1211. [Google Scholar] [CrossRef]
- Grosse, S.D. Economic assessments of the burden of congenital cytomegalovirus infection and the cost-effectiveness of prevention strategies. Expert Rev. Pharmacoecon Outcomes Res. 2021, 21, 271–283. [Google Scholar] [CrossRef]
- Retzler, J.; Hex, N.; Bartlett, C.; Webb, A.; Wood, S.; Star, C.; Griffiths, P.; Jones, C.E. Economic cost of congenital CMV in the UK. Arch. Dis. Child. 2018, 104, 559–563. [Google Scholar] [CrossRef]
- de Vries, J.J.; van der Eijk, A.A.; Wolthers, K.C.; Rusman, L.G.; Pas, S.D.; Molenkamp, R.; Claas, E.C.; Kroes, A.C.; Vossen, A.C. Real-time PCR versus viral culture on urine as a gold standard in the diagnosis of congenital cytomegalovirus infection. J. Clin. Virol. 2012, 53, 167–170. [Google Scholar] [CrossRef]
- Ross, S.A.; Ahmed, A.; Palmer, A.L.; Michaels, M.G.; Sánchez, P.J.; Stewart, A.; Bernstein, D.I.; Feja, K.; Novak, Z.; Fowler, K.B.; et al. Urine collection method for the diagnosis of congenital cytomegalovirus infection. Pediatr. Infect. Dis. J. 2015, 34, 903–905. [Google Scholar] [CrossRef]
- Waters, A.; Jennings, K.; Fitzpatrick, E.; Coughlan, S.; Molloy, E.J.; De Gascun, C.F.; Hall, W.W.; Knowles, S.J. Incidence of congenital cytomegalovirus infection in Ireland: Implications for screening and diagnosis. J. Clin. Virol. 2014, 59, 156–160. [Google Scholar] [CrossRef]
- Izquierdo, G.; Guerra, C.; Reyes, R.; Araya, L.; Sepulveda, B.; Cabrera, C.; Medina, P.; Mardones, E.; Villavicencio, L.; Montecinos, L.; et al. Universal and expanded screening strategy for congenital cytomegalovirus infection: Is pool testing by a rapid molecular test in saliva a new choice in developing countries? Viruses 2024, 16, 772. [Google Scholar] [CrossRef]
- Ross, S.A.; Michaels, M.G.; Ahmed, A.; Palmer, A.L.; Sánchez, P.J.; Bernstein, D.I.; Feja, K.; Stewart, A.; Boppana, S.B.; Fowler, K.B. Contribution of breastfeeding to false-positive saliva polymerase chain reaction for newborn congenital cytomegalovirus screening. JAMA Pediatr. 2018, 172, 535–543. [Google Scholar] [CrossRef]
- Dollard, S.C.; Dreon, M.; Hernandez-Alvarado, N.; Amin, M.M.; Wong, P.; Lanzieri, T.M.; Osterholm, E.A.; Sidebottom, A.; Rosendahl, S.; McCann, M.T.; et al. Sensitivity of dried blood spot testing for detection of congenital cytomegalovirus infection. JAMA Pediatr. 2021, 175, e20544. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Shetty, J.K.; Rady, S.; Alameddine, M.; Abde, M.I.; Sabra, S. Evaluation of Salivary Sample in Diagnosis, Screening and Management of Cytomegalovirus (CMV) Infection in Newborns-Systematic Review and Metanalysis. 2024. Available online: https://www.crd.york.ac.uk/PROSPERO/view/CRD42024603785 (accessed on 20 April 2025).
- Reitsma, J.B.; Rutjes, A.; Whiting, P.; Yang, B.; Leeflang, M.M.; Bossuyt, P.M.; Deeks, J.J. Chapter 8: Assessing risk of bias and applicability. In Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy, Version 2.0; Deeks, J.J., Bossuyt, P.M., Leeflang, M.M., Takwoingi, Y., Eds.; Cochrane: London, UK, 2023; Available online: https://training.cochrane.org/handbook-diagnostic-test-accuracy/current (accessed on 7 July 2025).
- Erdoğan, S.; Gülhan, O.T. Alternative Confidence Interval Methods Used in the Diagnostic Accuracy Studies. Comput. Math. Methods Med. 2016, 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, G. meta: An R package for meta-analysis. R. News 2007, 7, 40–45. [Google Scholar]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- AlKhawaja, S.; Ismaeel, A.; Botta, G.; Senok, A.C. The prevalence of congenital and perinatal cytomegalovirus infections among newborns of seropositive mothers. J. Infect. Dev. Ctries. 2011, 6, 410–415. [Google Scholar] [CrossRef]
- Barkai, G.; Ari-Even Roth, D.; Barzilai, A.; Tepperberg-Oikawa, M.; Mendelson, E.; Hildesheimer, M.; Kuint, J. Universal neonatal cytomegalovirus screening using saliva—Report of clinical experience. J. Clin. Virol. 2014, 60, 361–366. [Google Scholar] [CrossRef]
- Cardoso, E.S.d.C.; Jesus, B.L.S.d.; da Gomes, L.G.S.; Sousa, S.M.B.; Gadelha, S.R.; Marin, L.J. The use of saliva as a practical and feasible alternative to urine in large-scale screening for congenital cytomegalovirus infection increases inclusion and detection rates. Rev. Soc. Bras. Med. Trop. 2015, 48, 206–207. [Google Scholar] [CrossRef]
- Choudhary, A.; Pati, S.K.; Patro, R.K.; Deorari, A.K.; Dar, L. Comparison of conventional, immunological and molecular techniques for the diagnosis of symptomatic congenital human cytomegalovirus infection in neonates and infants. Indian J. Med. Microbiol. 2015, 33, 15–19. [Google Scholar] [CrossRef]
- Eventov-Friedman, S.; Manor, H.; Bar-Oz, B.; Averbuch, D.; Caplan, O.; Lifshitz, A.; Bdolah-Abram, T.; Wolf, D.G. Saliva Real-Time Polymerase Chain Reaction for Targeted Screening of Congenital Cytomegalovirus Infection. J. Infect. Dis. 2019, 220, 1790–1796. [Google Scholar] [CrossRef]
- Exler, S.; Daiminger, A.; Grothe, M.; Schalasta, G.; Enders, G.; Enders, M. Primary cytomegalovirus (CMV) infection in pregnancy: Diagnostic value of CMV PCR in saliva compared to urine at birth. J. Clin. Virol. 2019, 117, 33–36. [Google Scholar] [CrossRef]
- Fernandes, C.; Marques, A.; de Jesus Chasqueira, M.; Braz, M.C.; Ferreira, A.R.; Neto, A.S.; Mendes, C.; Lito, D.; Menezes, M.F.; Sousa, M.J.; et al. Saliva pools for screening of human cytomegalovirus using real-time PCR. Eur. J. Pediatr. 2020, 180, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Forner, G.; Saldan, A.; Mengoli, C.; Gussetti, N.; Palù, G.; Abate, D. Cytomegalovirus (CMV) Enzyme-Linked Immunosorbent Spot Assay but Not CMV QuantiFERON Assay Is a Novel Biomarker To Determine Risk of Congenital CMV Infection in Pregnant Women. J. Clin. Microbiol. 2016, 54, 2149–2154. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, H.; Li, T.; Tang, J.; Yu, H.; Guo, X.; Song, Q.; Wei, F.; Wang, J.; Liang, C.; et al. Comparison of detection strategies for screening and confirming congenital cytomegalovirus infection in newborns in a highly seroprevalent population: A mother-child cohort study. Lancet Reg. Health West. Pac. 2021, 12, 100182. Available online: https://www.thelancet.com/action/showPdf?pii=S2666-6065%2821%2900091-2 (accessed on 28 January 2022). [CrossRef] [PubMed]
- Izquierdo, G.; Farfan, M.J.; Villavicencio, L.; Montecinos, L.; Tarque, F.; Acevedo, W.; Reyes, R.; Guerra, C.; Araya, L.; Sepúlveda, B.; et al. Optimizing congenital cytomegalovirus detection by pool testing in saliva by a rapid molecular test. Eur. J. Pediatr. 2023, 182, 5131–5136. [Google Scholar] [CrossRef]
- Pasternak, Y.; Tepperberg Oikawa, M.; Mendelson, E.; Osovsky, M.; Klinger, G.; Bilavsky, E. Diagnosing congenital cytomegalovirus by saliva on Guthrie paper. J. Clin. Virol. 2020, 126, 104337. [Google Scholar] [CrossRef]
- Ross, S.A.; Ahmed, A.; Palmer, A.L.; Michaels, M.G.; Sánchez, P.J.; Bernstein, D.I.; Tolan, R.W., Jr.; Novak, Z.; Chowdhury, N.; Fowler, K.B.; et al. Detection of congenital cytomegalovirus infection by real-time polymerase chain reaction analysis of saliva or urine specimens. J. Infect. Dis. 2014, 210, 1415–1418. [Google Scholar] [CrossRef]
- Stark, A.; Greenberg, R.G.; Pittman, R.; Weimer, K.E.D. Concordance of cytomegalovirus saliva and urine testing in infants for the detection of congenital infection. Pediatr. Infect. Dis. J. 2024, 43, 1191–1193. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Marin, L.J.; Brito, R.M.; Oliveira, P.F.C.; Coelho, T.B. Is saliva as reliable as urine for detection of cytomegalovirus DNA for neonatal screening of congenital CMV infection? J. Clin. Virol. 2006, 36, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Wu, F.F.; Li, X.X.; Shen, R.; Zheng, Z.; Liu, H.Y. Diagnostic test accuracy of PCR by saliva specimen for cytomegalovirus infection in newborn: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e31776. [Google Scholar] [CrossRef] [PubMed]
- CDC. Laboratory Testing for CMV and Congenital CMV. Cytomegalovirus (CMV) and Congenital CMV Infection. 2024. Available online: https://www.cdc.gov/cytomegalovirus/php/laboratories/index.html (accessed on 2 March 2025).
- Cytomegalovirus (CMV) Infection: Causes & Symptoms. Cleveland Clinic. 2022. Available online: https://my.clevelandclinic.org/health/diseases/21166-cytomegalovirus#diagnosis-and-tests (accessed on 15 March 2025).
- Boston Children’s Hospital. Childrenshospital.org. 2025. Available online: https://www.childrenshospital.org/conditions/congenital-cytomegalovirus (accessed on 23 March 2025).
- Chiereghin, A.; Pavia, C.; Turello, G.; Borgatti, E.C.; Pillastrini, F.B.; Gabrielli, L.; Gibertoni, D.; Marsico, C.; De Paschale, M.; Manco, M.T.; et al. Universal Newborn Screening for Congenital Cytomegalovirus Infection—From Infant to Maternal Infection: A Prospective Multicenter Study. Front. Pediatr. 2022, 10, 909646. [Google Scholar] [CrossRef]
- Manicklal, S.; Emery, V.C.; Lazzarotto, T.; Boppana, S.B.; Gupta, R.K. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 2013, 26, 86–102. [Google Scholar] [CrossRef]
- LetamendiaRichard, E.; PérillaudDubois, C.; de La Guillonnière, L.; Thouard, I.; Cordier, A.G.; RoqueAfonso, A.M.; de Luca, D.; Benachi, A.; VauloupFellous, C. Feasibility, performances and predictive value of congenital CMV screening using saliva swabs. BJOG Int. J. Obstet. Gynaecol. 2022, 129, 291–299. [Google Scholar] [CrossRef]
- Pinninti, S.; Boppana, S. Congenital cytomegalovirus infection diagnostics and management. Curr. Opin. Infect. Dis. 2022, 35, 436–441. [Google Scholar] [CrossRef]
- Salomè, S.; Corrado, F.R.; Mazzarelli, L.L.; Maruotti, G.M.; Capasso, L.; Blazquez-Gamero, D.; Raimondi, F. Congenital cytomegalovirus infection: The state of the art and future perspectives. Front. Pediatr. 2023, 11, 1276912. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, Version 6.3; Cochrane: London, UK, 2022; Available online: https://training.cochrane.org/handbook (accessed on 15 March 2025).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
(A) Primary Outcome | ||
PICO components | Inclusion Criteria | Exclusion Criteria |
Population (P) | Symptomatic or asymptomatic neonates (≤28 days old) diagnosed with congenital CMV | Individuals who are not neonates (e.g., children, adults); other infectious diseases in neonates, non-human population |
Index test (I) | Saliva PCR used for the detection of congenital CMV | ONLY other bodily fluids (e.g., blood, amniotic fluid) |
Comparator (C) | Gold standard Urine PCR for the detection of congenital CMV | Comparing ONLY to other bodily fluids (e.g., blood, amniotic fluid) |
Outcome (O) | Studies reporting SN, SP, PPV, NPV | Absence of raw data, including true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives (FN) |
Study Characteristics | Interventional and Observational studies (cohort, case–control, and cross sectional) | Case reports, reviews, editorials, letters, commentaries |
Studies in English | Studies published in languages other than English | |
(B) Secondary Outcome | ||
PICO components | Inclusion Criteria | Exclusion Criteria |
Population (P) | Symptomatic or asymptomatic neonates (≤28 days old) diagnosed with congenital CMV | Individuals who are not neonates (e.g., children, adults); other infectious diseases in neonates, and non-human populations |
Index test (I) | Saliva PCR used for the detection of congenital CMV in subgroups of all neonates, high-risk neonates, and seropositive mothers | ONLY other bodily fluids (e.g., blood, amniotic fluid) |
Comparator (C) | Gold standard Urine PCR for the detection of congenital CMV in subgroups of all neonates, high-risk neonates, and seropositive mothers | Comparing ONLY to other bodily fluids (e.g., blood, amniotic fluid) |
Outcome (O) | Studies reporting SN, SP, PPV, NPV | Absence of raw data, including true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives (FN) |
Study Characteristics | Interventional and Observational studies (cohort, case–control, and cross-sectional) | Case reports, reviews, editorials, letters, commentaries |
Studies in English | Studies published in languages other than English |
Diagnostic Metric | Study Excluded | Random Effects Estimate | Standard Error | Tau2 | I2 |
---|---|---|---|---|---|
Specificity | Dollard 2021 [17] | 0.99793 | 0.00089 | 4.01000 × 10−6 | 85.98820 |
Eventov-Friedman 2019 [29] | 0.99908 | 0.00038 | 5.10888 × 10−7 | 57.122866 | |
Sensitivity | Dollard 2021 [17] | 0.86898 | 0.05233 | 0.02211 | 90.08732 |
Eventov-Friedman 2019 [29] | 0.87584 | 0.04691 | 0.01928 | 90.17723 | |
PPV | Dollard 2021 [17] | 0.85318 | 0.05056 | 0.02237 | 84.51254 |
Eventov-Friedman 2019 [29] | 0.90788 | 0.02801 | 0.00401 | 51.49310 | |
NPV | Dollard 2021 [17] | 0.99807 | 0.00077 | 3.08688 × 10−6 | 70.59162 |
Eventov-Friedman 2019 [29] | 0.99930 | 0.000 | 2.57413 × 10−7 | 70.77147 |
Diagnostic Metric | Study Excluded | Random Effects Estimate | Standard Error | Tau2 | I2 |
---|---|---|---|---|---|
Specificity | Dollard 2021 [17] | 0.99793 | 0.00089 | 4.01000 × 10−6 | 85.98820 |
Huang 2021 [33] | 0.99759 | 0.000996 | 4.98788 × 10−6 | 84.25072 | |
Sensitivity | Dollard 2021 [17] | 0.86898 | 0.05233 | 0.02211 | 90.08732 |
Huang 2021 [33] | 0.98751 | 0.00961 | 0 | 0 | |
PPV | Dollard 2021 [17] | 0.85318 | 0.05056 | 0.02237 | 84.51254 |
Huang 2021 [33] | 0.84242 | 0.04843 | 0.02044 | 84.96496 | |
NPV | Dollard 2021 [17] | 0.99807 | 0.00077 | 3.08688 × 10−6 | 70.59162 |
Huang 2021 [33] | 0.99999 | 6.12073 × 10−5 | 0 | 0 |
Outcome Measures | All Studies (Excluding − Eventov + Huang) |
---|---|
Total population | 29,617 |
Total Positives | 480 |
Total Negatives | 29,137 |
Diagnostic Odds Ratio (DOR) | 2041.137 [778.9949, 5348.226] |
Area Under the Curve (AUC) | 0.9943729 [0.9751325, 0.9987089] |
Sensitivity (SN) | 0.9875060 [0.9518955, 0.9977854] |
Specificity (SP) | 0.9990828 [0.9983696, 0.9996323] |
Positive Predicted Value (PPV) | 0.90788477 [0.85298261, 0.96278693] |
Negative Predicted Value (NPV) | 0.99998505 [0.99986509, 1] |
Positive Likelihood Ratio (PLR) | 109.8749 [33.7796, 357.39] |
Negative Likelihood ratio (NLR) | 0.08854017 [0.04091139, 0.1916181] |
Statistics | Value |
---|---|
Test statistics (t-value) | −0.4149 |
Degrees of Freedom (df) | 13 |
p-value | 0.685 |
Limit Estimate (b) | 8.3678 |
Confidence Interval (CI) | (5.6490, 11.0866) |
Summary Table | All Neonates Population Studies [95% CI] | High Risk Population Studies (Without Eventov) [95% CI] | Seropositive Mothers Population Studies (Without Huang) [95% CI] |
---|---|---|---|
Total population | 27,798 | 1536 | 283 |
Total Positives | 167 | 268 | 45 |
Total Negatives | 27,631 | 1268 | 238 |
Diagnostic Odds Ratio (DOR) | 8635.7889097 [3197.511, 23323.41] | 897.15102940 [351.83610399, 2287.6559865] | 437.0323 [10.75779, 17,754.31] |
Area Under the Curve (AUC) | 0.9818733 [0.9575835, 1] | 0.92594386 [0.86819714, 0.9836906] | 0.9424269 [0.8681777, 1] |
Sensitivity (SN) | 0.9647973 [0.9163109, 1] | 0.98101489 [0.93534775, 1] | 0.9436141 [0.8409574, 1] |
Specificity (SP) | 0.9990369 [0.9986484, 0.9994253] | 0.99567693 [0.99096294, 1] | 0.9565622 [0.8629098, 1] |
Positive Predicted Value (PPV) | 0.8674074 [0.8092515, 0.9255633] | 0.98170591 [0.95077107, 1] | 0.8483736 [0.5857928, 1] |
Negative Predicted Value (NPV) | 0.9999896 [0.9998681, 1] | 0.99402375 [0.98893884, 0.9991087] | 0.9965186 [0.9816554, 1] |
Positive Likelihood Ratio (PLR) | 833.0070243 [517.1105, 1341.881] | 29.49578286 [6.43471024, 135.2044108] | 37.10282 [1.416866, 971.5942] |
Negative Likelihood ratio (NLR) | 0.1141102 [0.06201394, 0.2099710] | 0.09141527 [0.03820145, 0.2187548] | 0.08494893 [0.02705231, 0.2667543] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rady, S.M.A.; Abdelmoati, M.I.; Sabra, S.; Alameddine, M.; Dsilva, S.; Shetty, J.K. Diagnostic Performance of Salivary PCR for the Detection of Congenital Cytomegalovirus: A Systematic Review and Meta-Analysis. Viruses 2025, 17, 1253. https://doi.org/10.3390/v17091253
Rady SMA, Abdelmoati MI, Sabra S, Alameddine M, Dsilva S, Shetty JK. Diagnostic Performance of Salivary PCR for the Detection of Congenital Cytomegalovirus: A Systematic Review and Meta-Analysis. Viruses. 2025; 17(9):1253. https://doi.org/10.3390/v17091253
Chicago/Turabian StyleRady, Sara Mohammed Ahmed, Mahmoud Ibrahim Abdelmoati, Sara Sabra, Maryam Alameddine, Suchita Dsilva, and Jeevan K. Shetty. 2025. "Diagnostic Performance of Salivary PCR for the Detection of Congenital Cytomegalovirus: A Systematic Review and Meta-Analysis" Viruses 17, no. 9: 1253. https://doi.org/10.3390/v17091253
APA StyleRady, S. M. A., Abdelmoati, M. I., Sabra, S., Alameddine, M., Dsilva, S., & Shetty, J. K. (2025). Diagnostic Performance of Salivary PCR for the Detection of Congenital Cytomegalovirus: A Systematic Review and Meta-Analysis. Viruses, 17(9), 1253. https://doi.org/10.3390/v17091253