Monocyte Dynamics in Chikungunya Fever: Sustained Activation and Vascular-Coagulation Pathway Involvement
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Laboratorial Diagnostics
2.4. Blood Samples Collection
2.5. Separation of Peripheral Blood Mononuclear Cells
2.6. Determination of Coagulation, GFs and Estradiol
2.7. Cytokines and sCD163 Determination
2.8. Flow Cytometry-Based Characterization of Monocyte Subsets and Surface Markers
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Laboratorial Parameters of Patients with CF
Acute n = 86 | Post-Acute n = 7 | Chronic n = 8 | |
---|---|---|---|
Age (years) * | 45 (18–76) | 56 (34–66) | 64 (46–73) |
Female sex; n (%) | 52 (60) | 2 (28) | 4 (50) |
Days post-symptom onset 1† | 5.0 (3–7) | 20 (15–38) | 91 (91–110) |
Laboratorial Diagnosis | |||
RT-PCR | 86 (100) | 7 (100) | 7 (87.5) |
Viral load Log copies/mL | 4.7 (3.2–6.1) | 3.5 (2.8–6.4) | 4.1 (3.7–4.7) † |
Anti-CHIKV antibodies | |||
IgM (%) 2 | 40 (40) | 7 (100) | 8 (100) |
IgG (%) | 10 (11) | 7 (100) | 8 (100) |
Clinical data during the time course of the disease, n (%) | |||
Fever | 78 (90.6) | 0 (0) | 0 (0) |
Temperature, (°C) * | 38.9 (38.2–39.0) | - | - |
Arthralgia | 80 (93.0) | 7 (100) | 8 (100) |
Myalgia | 69 (80.2) | 4 (57.1) | 0 (0) |
Prostration | 64 (74.4) | 4 (57.1) | 0 (0) |
Headache | 63 (73.2) | 3 (42.8) | 0 (0) |
Low back pain | 52 (60.4) | 5 (71.4) | 0 (0) |
Loss of appetite | 49 (56.9) | 4 (57.1) | 0 (0) |
Edema | 47(54.6) | 4 (57.1) | 4 (50.0) |
Exanthem | 47 (54.6) | 3 (42.8) | 0 (0) |
Nausea | 41 (47.6) | 3 (42.8) | 0 (0) |
Retro-orbital pain | 40 (46.5) | 2 (28.5) | 0 (0) |
Pruritus | 37 (43.0) | 4 (57.1) | 0 (0) |
Arthritis | 27 (31.3) | 2 (28.5) | 4 (50.0) |
Vertigo | 25 (29.1) | 2 (28.5) | 0 (0) |
Conjunctival hyperemia | 15 (17.4) | 0 (0) | 0 (0) |
Vomiting | 14 (16.2) | 0 (0) | 0 (0) |
Abdominal pain | 13 (15.1) | 0 (0) | 0 (0) |
Paresthesia | 8 (9.30) | 1 (14.2) | 0 (0) |
Diarrhea | 7 (8.13) | 2 (28.5) | 0 (0) |
Cough | 7 (8.13) | 0 (0) | 0 (0) |
Runny noise | 7 (8.13) | 0 (0) | 0 (0) |
Epistaxis | 1 (1.16) | 0 (0) | 0 (0) |
Facial and limb paralysis | 1 (1.16) | 0 (0) | 0 (0) |
Laboratorial parameters | |||
Hematocrit † | 36.2 (34.4–39.1) | 36.8 (36.6–40.1) | 41.5 (36.8–43.1) |
Platelets × 103 count/mm3 | 200 (154–252) | 238 (172–274) | 271 (195–385) 3 |
Leukocytes count/mm3 | 5300 (3775–6125) | 4765 (3708–6475) | 7925 (6123–10,165) |
Lymphocytes count/mm3 | 1220 (856–1813) | 1169 (1060–1531) | 1740 (1325–2448) |
Monocytes count/mm3 | 375 (300–564) | 359 (248–477) | 520 (352–587) |
Neutrophils count/mm3 | 3188 (2135–4214) | 2891 (1427–4484) | 4740 (3975–6638) 2 |
3.2. Dynamic Changes of Monocytes in CF Patients During Acute and Chronic Phases of CHIKV Infection
3.3. Monocyte Activation During Chikungunya Fever
3.4. PCA of Monocytes Subsets
3.5. Circulating Levels of Inflammatory, Coagulation, and Immune Activation Markers During CHIKV Infection
3.5.1. Pro-Inflammatory and Anti-Inflammatory Cytokines
3.5.2. Coagulation Factors and GFs
3.5.3. Elevated TLR7+Intermediate Monocytes and Vascular Markers in Patients with CF, Along with Articular Manifestations
3.5.4. Sex as a Biological Variable in CHIKV Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cunha, R.V.D.; Trinta, K.S. Chikungunya virus: Clinical aspects and treatment—A Review. Mem. Inst. Oswaldo Cruz 2017, 112, 523–531. [Google Scholar] [CrossRef]
- de Souza, W.M.; Fumagalli, M.J.; de Lima, S.T.S.; Parise, P.L.; Carvalho, D.C.M.; Hernandez, C.; de Jesus, R.; Delafiori, J.; Candido, D.S.; Carregari, V.C.; et al. Pathophysiology of chikungunya virus infection associated with fatal outcomes. Cell Host Microbe 2024, 32, 606–622.e8. [Google Scholar] [CrossRef]
- Morrison, T.E.; Oko, L.; Montgomery, S.A.; Whitmore, A.C.; Lotstein, A.R.; Gunn, B.M.; Elmore, S.A.; Heise, M.T. A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: Evidence of arthritis, tenosynovitis, myositis, and persistence. Am. J. Pathol. 2011, 178, 32–40. [Google Scholar] [CrossRef]
- Gasque, P.; Couderc, T.; Lecuit, M.; Roques, P.; Ng, L.F. Chikungunya virus pathogenesis and immunity. Vector Borne Zoonotic Dis. 2015, 15, 241–249. [Google Scholar] [CrossRef]
- Vairo, F.; Haider, N.; Kock, R.; Ntoumi, F.; Ippolito, G.; Zumla, A. Chikungunya: Epidemiology, Pathogenesis, Clinical Features, Management, and Prevention. Infect. Dis. Clin. N. Am. 2019, 33, 1003–1025. [Google Scholar] [CrossRef]
- Dupuis-Maguiraga, L.; Noret, M.; Brun, S.; Le Grand, R.; Gras, G.; Roques, P. Chikungunya disease: Infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl. Trop. Dis. 2012, 6, e1446. [Google Scholar] [CrossRef] [PubMed]
- Alves de Souza, T.M.; Fernandes-Santos, C.; Araujo da Paixao de Oliveira, J.; Tome, L.C.T.; Fiestas-Solorzano, V.E.; Nunes, P.C.G.; Guimaraes, G.M.C.; Sanchez-Arcila, J.C.; Paiva, I.A.; de Souza, L.J.; et al. Increased Indoleamine 2,3-Dioxygenase 1 (IDO-1) Activity and Inflammatory Responses during Chikungunya Virus Infection. Pathogens 2022, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Hawman, D.W.; Stoermer, K.A.; Montgomery, S.A.; Pal, P.; Oko, L.; Diamond, M.S.; Morrison, T.E. Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J. Virol. 2013, 87, 13878–13888. [Google Scholar] [CrossRef]
- Ruiz Silva, M.; van der Ende-Metselaar, H.; Mulder, H.L.; Smit, J.M.; Rodenhuis-Zybert, I.A. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells. Sci. Rep. 2016, 6, 32288. [Google Scholar] [CrossRef]
- Webster, B.; Werneke, S.W.; Zafirova, B.; This, S.; Coleon, S.; Decembre, E.; Paidassi, H.; Bouvier, I.; Joubert, P.E.; Duffy, D.; et al. Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses. Elife 2018, 7, e34273. [Google Scholar] [CrossRef]
- Constant, L.E.C.; Rajsfus, B.F.; Carneiro, P.H.; Sisnande, T.; Mohana-Borges, R.; Allonso, D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front. Microbiol. 2021, 12, 744164. [Google Scholar] [CrossRef]
- Labadie, K.; Larcher, T.; Joubert, C.; Mannioui, A.; Delache, B.; Brochard, P.; Guigand, L.; Dubreil, L.; Lebon, P.; Verrier, B.; et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Investig. 2010, 120, 894–906. [Google Scholar] [CrossRef]
- Hoarau, J.J.; Jaffar Bandjee, M.C.; Krejbich Trotot, P.; Das, T.; Li-Pat-Yuen, G.; Dassa, B.; Denizot, M.; Guichard, E.; Ribera, A.; Henni, T.; et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 2010, 184, 5914–5927. [Google Scholar] [CrossRef] [PubMed]
- Her, Z.; Malleret, B.; Chan, M.; Ong, E.K.; Wong, S.C.; Kwek, D.J.; Tolou, H.; Lin, R.T.; Tambyah, P.A.; Renia, L.; et al. Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J. Immunol. 2010, 184, 5903–5913. [Google Scholar] [CrossRef]
- Felipe, V.L.J.; Paula, A.V.; Silvio, U.I. Chikungunya virus infection induces differential inflammatory and antiviral responses in human monocytes and monocyte-derived macrophages. Acta Trop. 2020, 211, 105619. [Google Scholar] [CrossRef] [PubMed]
- Passlick, B.; Flieger, D.; Ziegler-Heitbrock, H.W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989, 74, 2527–2534. [Google Scholar] [CrossRef] [PubMed]
- Geissmann, F.; Jung, S.; Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19, 71–82. [Google Scholar] [CrossRef]
- Cros, J.; Cagnard, N.; Woollard, K.; Patey, N.; Zhang, S.Y.; Senechal, B.; Puel, A.; Biswas, S.K.; Moshous, D.; Picard, C.; et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010, 33, 375–386. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Baldoni, N.R.; Cardoso, C.S.; Oliveira, C.D.L. Biomarkers of severity and chronification in chikungunya fever: A systematic review and meta-analysis. Rev. Inst. Med. Trop. Sao Paulo 2021, 63, e16. [Google Scholar] [CrossRef]
- de Souza, T.M.A.; de Lima, R.C.; Solorzano, V.E.F.; Damasco, P.V.; de Souza, L.J.; Sanchez-Arcila, J.C.; Guimaraes, G.M.C.; Paiva, I.A.; da Rocha Queiroz Lima, M.; de Bruycker-Nogueira, F.; et al. Was It Chikungunya? Laboratorial and Clinical Investigations of Cases Occurred during a Triple Arboviruses’ Outbreak in Rio de Janeiro, Brazil. Pathogens 2022, 11, 245. [Google Scholar] [CrossRef]
- Ministério da Saúde, M.D. Chikungunya Manejo Clínico, 2nd ed.; MINISTÉRIO DA SAÚDE, Secretaria de Vigilância em Saúde e Ambiente, Departamento de Vigilância das Doenças Transmissíveis: Brasília, Brazil, 2024. [Google Scholar]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya virus in US travelers returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef]
- Johnson, B.W.; Russell, B.J.; Lanciotti, R.S. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J. Clin. Microbiol. 2005, 43, 4977–4983. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
- Zanotto, P.M.A.; Leite, L.C.C. The Challenges Imposed by Dengue, Zika, and Chikungunya to Brazil. Front. Immunol. 2018, 9, 1964. [Google Scholar] [CrossRef]
- Thomas, G.D.; Hamers, A.A.J.; Nakao, C.; Marcovecchio, P.; Taylor, A.M.; McSkimming, C.; Nguyen, A.T.; McNamara, C.A.; Hedrick, C.C. Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1548–1558. [Google Scholar] [CrossRef]
- Ozanska, A.; Szymczak, D.; Rybka, J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020, 92, e12883. [Google Scholar] [CrossRef]
- de Souza, T.M.A.; Ribeiro, E.D.; Correa, V.C.E.; Damasco, P.V.; Santos, C.C.; de Bruycker-Nogueira, F.; Chouin-Carneiro, T.; Faria, N.; Nunes, P.C.G.; Heringer, M.; et al. Following in the Footsteps of the Chikungunya Virus in Brazil: The First Autochthonous Cases in Amapa in 2014 and Its Emergence in Rio de Janeiro during 2016. Viruses 2018, 10, 623. [Google Scholar] [CrossRef]
- Michlmayr, D.; Pak, T.R.; Rahman, A.H.; Amir, E.D.; Kim, E.Y.; Kim-Schulze, S.; Suprun, M.; Stewart, M.G.; Thomas, G.P.; Balmaseda, A.; et al. Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases. Mol. Syst. Biol. 2018, 14, e7862. [Google Scholar] [CrossRef]
- Moller, H.J. Soluble CD163. Scand. J. Clin. Lab. Investig. 2012, 72, 1–13. [Google Scholar] [CrossRef]
- Kristiansen, M.; Graversen, J.H.; Jacobsen, C.; Sonne, O.; Hoffman, H.J.; Law, S.K.; Moestrup, S.K. Identification of the haemoglobin scavenger receptor. Nature 2001, 409, 198–201. [Google Scholar] [CrossRef]
- Crux, N.B.; Elahi, S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front. Immunol. 2017, 8, 832. [Google Scholar] [CrossRef]
- Bezerra, W.P.; Moizeis, R.N.C.; Salmeron, A.C.A.; Pereira, H.W.B.; de Araujo, J.M.G.; Guedes, P.M.M.; Fernandes, J.V.; Nascimento, M.S.L. Innate immune response in patients with acute Chikungunya disease. Med. Microbiol. Immunol. 2023, 212, 279–290. [Google Scholar] [CrossRef]
- Mahish, C.; De, S.; Chatterjee, S.; Ghosh, S.; Keshry, S.S.; Mukherjee, T.; Khamaru, S.; Tung, K.S.; Subudhi, B.B.; Chattopadhyay, S.; et al. TLR4 is one of the receptors for Chikungunya virus envelope protein E2 and regulates virus induced pro-inflammatory responses in host macrophages. Front. Immunol. 2023, 14, 1139808. [Google Scholar] [CrossRef]
- Ng, L.F.; Chow, A.; Sun, Y.J.; Kwek, D.J.; Lim, P.L.; Dimatatac, F.; Ng, L.C.; Ooi, E.E.; Choo, K.H.; Her, Z.; et al. IL-1beta, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS ONE 2009, 4, e4261. [Google Scholar] [CrossRef]
- Teng, T.S.; Kam, Y.W.; Lee, B.; Hapuarachchi, H.C.; Wimal, A.; Ng, L.C.; Ng, L.F. A Systematic Meta-analysis of Immune Signatures in Patients With Acute Chikungunya Virus Infection. J. Infect. Dis. 2015, 211, 1925–1935. [Google Scholar] [CrossRef]
- Antoniak, S.; Mackman, N. Multiple roles of the coagulation protease cascade during virus infection. Blood 2014, 123, 2605–2613. [Google Scholar] [CrossRef]
- Drake, T.A.; Morrissey, J.H.; Edgington, T.S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 1989, 134, 1087–1097. [Google Scholar]
- Ellery, P.E.; Adams, M.J. Tissue factor pathway inhibitor: Then and now. Semin. Thromb. Hemost. 2014, 40, 881–886. [Google Scholar] [CrossRef]
- Anfasa, F.; Goeijenbier, M.; Widagdo, W.; Siegers, J.Y.; Mumtaz, N.; Okba, N.; van Riel, D.; Rockx, B.; Koopmans, M.P.G.; Meijers, J.C.M.; et al. Zika Virus Infection Induces Elevation of Tissue Factor Production and Apoptosis on Human Umbilical Vein Endothelial Cells. Front. Microbiol. 2019, 10, 817. [Google Scholar] [CrossRef]
- Leal de Azeredo, E.; Solorzano, V.E.; de Oliveira, D.B.; Marinho, C.F.; de Souza, L.J.; da Cunha, R.V.; Damasco, P.V.; Kubelka, C.F.; de-Oliveira-Pinto, L.M. Increased circulating procoagulant and anticoagulant factors as TF and TFPI according to severity or infecting serotypes in human dengue infection. Microbes Infect. 2017, 19, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Uyanik, M.S.; Pamuk, G.E.; Pamuk, O.N.; Tuncel, S.A. Tissue factor pathway inhibitor and thrombin-activatable carboxypeptidase B for prediction of early atherosclerosis in gouty arthritis. Thromb. Res. 2014, 134, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Gissel, M.; Kwasny-Krochin, B.; Gluszko, P.; Mann, K.G.; Brummel-Ziedins, K.E. Thrombin generation in rheumatoid arthritis: Dependence on plasma factor composition. Thromb. Haemost. 2010, 104, 224–230. [Google Scholar] [CrossRef]
- Medrano-Bosch, M.; Simon-Codina, B.; Jimenez, W.; Edelman, E.R.; Melgar-Lesmes, P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front. Immunol. 2023, 14, 1196033. [Google Scholar] [CrossRef]
- Silva, M.M.O.; Kikuti, M.; Anjos, R.O.; Portilho, M.M.; Santos, V.C.; Goncalves, T.S.F.; Tauro, L.B.; Moreira, P.S.S.; Jacob-Nascimento, L.C.; Santana, P.M.; et al. Risk of chronic arthralgia and impact of pain on daily activities in a cohort of patients with chikungunya virus infection from Brazil. Int. J. Infect. Dis. 2021, 105, 608–616. [Google Scholar] [CrossRef]
- Huits, R.; De Kort, J.; Van Den Berg, R.; Chong, L.; Tsoumanis, A.; Eggermont, K.; Bartholomeeusen, K.; Arien, K.K.; Jacobs, J.; Van Esbroeck, M.; et al. Chikungunya virus infection in Aruba: Diagnosis, clinical features and predictors of post-chikungunya chronic polyarthralgia. PLoS ONE 2018, 13, e0196630. [Google Scholar] [CrossRef]
- Souyris, M.; Mejia, J.E.; Chaumeil, J.; Guery, J.C. Female predisposition to TLR7-driven autoimmunity: Gene dosage and the escape from X chromosome inactivation. Semin. Immunopathol. 2019, 41, 153–164. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Rama, K.; de Roo, A.M.; Louwsma, T.; Hofstra, H.S.; Gurgel do Amaral, G.S.; Vondeling, G.T.; Postma, M.J.; Freriks, R.D. Clinical outcomes of chikungunya: A systematic literature review and meta-analysis. PLoS Negl. Trop. Dis. 2024, 18, e0012254. [Google Scholar] [CrossRef]
- Monteiro, J.D.; Valverde, J.G.; Morais, I.C.; Souza, C.R.M.; Fagundes Neto, J.C.; Melo, M.F.; Nascimento, Y.M.; Alves, B.E.B.; Medeiros, L.G.; Pereira, H.W.B.; et al. Epidemiologic and clinical investigations during a chikungunya outbreak in Rio Grande do Norte State, Brazil. PLoS ONE 2020, 15, e0241799. [Google Scholar] [CrossRef]
- Martins, E.B.; Quintana, M.S.B.; Silva, M.F.B.; de Bruycker-Nogueira, F.; Moraes, I.C.V.; Rodrigues, C.D.S.; Santos, C.C.; Sampaio, S.A.; Pina-Costa, A.; Fabri, A.A.; et al. Predictors of chronic joint pain after Chikungunya virus infection in the INOVACHIK prospective cohort study. J. Clin. Virol. 2023, 169, 105610. [Google Scholar] [CrossRef] [PubMed]
- Moulton, V.R. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front. Immunol. 2018, 9, 2279. [Google Scholar] [CrossRef]
- Wong, K.L.; Tai, J.J.; Wong, W.C.; Han, H.; Sem, X.; Yeap, W.H.; Kourilsky, P.; Wong, S.C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011, 118, e16–e31. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, E.L.; Neves-Souza, P.C.; Alvarenga, A.R.; Reis, S.R.; Torrentes-Carvalho, A.; Zagne, S.M.; Nogueira, R.M.; Oliveira-Pinto, L.M.; Kubelka, C.F. Differential regulation of toll-like receptor-2, toll-like receptor-4, CD16 and human leucocyte antigen-DR on peripheral blood monocytes during mild and severe dengue fever. Immunology 2010, 130, 202–216. [Google Scholar] [CrossRef]
- Naranjo-Gomez, J.S.; Castillo, J.A.; Rojas, M.; Restrepo, B.N.; Diaz, F.J.; Velilla, P.A.; Castano, D. Different phenotypes of non-classical monocytes associated with systemic inflammation, endothelial alteration and hepatic compromise in patients with dengue. Immunology 2019, 156, 147–163. [Google Scholar] [CrossRef]
- Beddingfield, B.J.; Sugimoto, C.; Wang, E.; Weaver, S.C.; Russell-Lodrigue, K.E.; Killeen, S.Z.; Kuroda, M.J.; Roy, C.J. Phenotypic and Kinetic Changes of Myeloid Lineage Cells in Innate Response to Chikungunya Infection in Cynomolgus Macaques. Viral Immunol. 2022, 35, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.C.; Lucas, C.J.; Brisse, M.E.; Ware, B.C.; Hickman, H.D.; Morrison, T.E.; Diamond, M.S. Ly6C(+) monocytes in the skin promote systemic alphavirus dissemination. Cell Rep. 2024, 43, 113876. [Google Scholar] [CrossRef] [PubMed]
- Haist, K.C.; Burrack, K.S.; Davenport, B.J.; Morrison, T.E. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog. 2017, 13, e1006748. [Google Scholar] [CrossRef]
- Lorente, E.; Barriga, A.; Barnea, E.; Palomo, C.; Garcia-Arriaza, J.; Mir, C.; Esteban, M.; Admon, A.; Lopez, D. Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence. PLoS Negl. Trop. Dis. 2019, 13, e0007547. [Google Scholar] [CrossRef]
- Kumar, N.; Santhoshkumar, R.; Venkataswamy, M.M. Chikungunya virus infection in human microglial C20 cells induces mitochondria-mediated apoptosis. Front. Cell Infect. Microbiol. 2024, 14, 1380736. [Google Scholar] [CrossRef]
- Salomao, N.; Rabelo, K.; Avvad-Portari, E.; Basilio-de-Oliveira, C.; Basilio-de-Oliveira, R.; Ferreira, F.; Ferreira, L.; de Souza, T.M.; Nunes, P.; Lima, M.; et al. Histopathological and immunological characteristics of placentas infected with chikungunya virus. Front. Microbiol. 2022, 13, 1055536. [Google Scholar] [CrossRef]
- Ab-Rahman, H.A.; Rahim, H.; AbuBakar, S.; Wong, P.F. Macrophage Activation Syndrome-Associated Markers in Severe Dengue. Int. J. Med. Sci. 2016, 13, 179–186. [Google Scholar] [CrossRef]
- S, S.S.; Pillai, A.B.; Ramachandrappa, V.S.; T, K.; Dhodapkar, R.; Kah, J.; Rajendiran, S. Increased serum levels of macrophage activation marker sCD163 in Dengue patients. J. Clin. Virol. 2017, 86, 62–67. [Google Scholar] [CrossRef]
- Valdes-Lopez, J.F.; Fernandez, G.J.; Urcuqui-Inchima, S. Synergistic Effects of Toll-Like Receptor 1/2 and Toll-Like Receptor 3 Signaling Triggering Interleukin 27 Gene Expression in Chikungunya Virus-Infected Macrophages. Front. Cell Dev. Biol. 2022, 10, 812110. [Google Scholar] [CrossRef]
- Fernandes-Santos, C.; Azeredo, E.L. Innate Immune Response to Dengue Virus: Toll-like Receptors and Antiviral Response. Viruses 2022, 14, 992. [Google Scholar] [CrossRef]
- Amendt, T.; Yu, P. TLR7 and IgM: Dangerous Partners in Autoimmunity. Antibodies 2023, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.K.; Tripathi, A. Association of toll-like receptor polymorphisms with susceptibility to chikungunya virus infection. Virology 2017, 511, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Babu, N.; Mahilkar, S.; Jayaram, A.; Ibemgbo, S.A.; Mathur, G.; Shetty, U.; Sudandiradas, R.; Kumar, P.S.; Singh, S.; Pani, S.S.; et al. Cytokine profile, neutralisation potential and viral replication dynamics in sera of chikungunya patients in India: A cross-sectional study. Lancet Reg. Health Southeast. Asia 2023, 19, 100269. [Google Scholar] [CrossRef]
- Jacob-Nascimento, L.C.; Carvalho, C.X.; Silva, M.M.O.; Kikuti, M.; Anjos, R.O.; Fradico, J.R.B.; Campi-Azevedo, A.C.; Tauro, L.B.; Campos, G.S.; Moreira, P.; et al. Acute-Phase Levels of CXCL8 as Risk Factor for Chronic Arthralgia Following Chikungunya Virus Infection. Front. Immunol. 2021, 12, 744183. [Google Scholar] [CrossRef] [PubMed]
- Skrzeczynska-Moncznik, J.; Bzowska, M.; Loseke, S.; Grage-Griebenow, E.; Zembala, M.; Pryjma, J. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand. J. Immunol. 2008, 67, 152–159. [Google Scholar] [CrossRef]
- Bayati, F.; Mohammadi, M.; Valadi, M.; Jamshidi, S.; Foma, A.M.; Sharif-Paghaleh, E. The Therapeutic Potential of Regulatory T Cells: Challenges and Opportunities. Front. Immunol. 2020, 11, 585819. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013, 34, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Prinz, N.; Clemens, N.; Canisius, A.; Lackner, K.J. Endosomal NADPH-oxidase is critical for induction of the tissue factor gene in monocytes and endothelial cells. Lessons from the antiphospholipid syndrome. Thromb. Haemost. 2013, 109, 525–531. [Google Scholar] [CrossRef]
- Grover, S.P.; Mackman, N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 709–725. [Google Scholar] [CrossRef]
- Bray, M.; Mahanty, S. Ebola hemorrhagic fever and septic shock. J. Infect. Dis. 2003, 188, 1613–1617. [Google Scholar] [CrossRef]
- de Azeredo, E.L.; Kubelka, C.F.; Alburquerque, L.M.; Barbosa, L.S.; Damasco, P.V.; Avila, C.A.; Motta-Castro, A.R.; da Cunha, R.V.; Monteiro, R.Q. Tissue factor expression on monocytes from patients with severe dengue fever. Blood Cells Mol. Dis. 2010, 45, 334–335. [Google Scholar] [CrossRef]
- Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Investig. 2020, 130, 6151–6157. [Google Scholar] [CrossRef]
- Nyamwaya, D.K.; Thumbi, S.M.; Bejon, P.; Warimwe, G.M.; Mokaya, J. The global burden of Chikungunya fever among children: A systematic literature review and meta-analysis. PLOS Glob. Public. Health 2022, 2, e0000914. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.M.; Carey, D.E.; Reuben, R.; Jesudass, E.S.; De Ranitz, C.; Jadhav, M. The 1964 epidemic of dengue-like fever in South India: Isolation of chikungunya virus from human sera and from mosquitoes. Indian J. Med. Res. 1965, 53, 694–701. [Google Scholar] [PubMed]
- Gomes de Azevedo-Quintanilha, I.; Campos, M.M.; Teixeira Monteiro, A.P.; Dantas do Nascimento, A.; Calheiros, A.S.; Oliveira, D.M.; Dias, S.S.G.; Soares, V.C.; Santos, J.D.C.; Tavares, I.; et al. Increased platelet activation and platelet-inflammasome engagement during chikungunya infection. Front. Immunol. 2022, 13, 958820. [Google Scholar] [CrossRef]
- Oliveira-Neto, J.T.; Souza, J.P.; Rodrigues, D.; Machado, M.R.; Alves, J.V.; Barros, P.R.; Bressan, A.F.; Silva, J.F.; Costa, T.J.; Costa, R.M.; et al. Acute Chikungunya Infection Induces Vascular Dysfunction by Directly Disrupting Redox Signaling in Endothelial Cells. Cells 2024, 13, 1770. [Google Scholar] [CrossRef]
- Williams, B.; Neder, J.; Cui, P.; Suen, A.; Tanaka, K.; Zou, L.; Chao, W. Toll-like receptors 2 and 7 mediate coagulation activation and coagulopathy in murine sepsis. J. Thromb. Haemost. 2019, 17, 1683–1693. [Google Scholar] [CrossRef]
- Sarmiento, L.; Svensson, J.; Barchetta, I.; Giwercman, A.; Cilio, C.M. Copy number of the X-linked genes TLR7 and CD40L influences innate and adaptive immune responses. Scand. J. Immunol. 2019, 90, e12776. [Google Scholar] [CrossRef]
- Winckers, K.; Thomassen, S.; Ten Cate, H.; Hackeng, T.M. Platelet full length TFPI-alpha in healthy volunteers is not affected by sex or hormonal use. PLoS ONE 2017, 12, e0168273. [Google Scholar] [CrossRef]
- Bedoui, Y.; Septembre-Malaterre, A.; Giry, C.; Jaffar-Bandjee, M.C.; Selambarom, J.; Guiraud, P.; Gasque, P. Robust COX-2-mediated prostaglandin response may drive arthralgia and bone destruction in patients with chronic inflammation post-chikungunya. PLoS Negl. Trop. Dis. 2021, 15, e0009115. [Google Scholar] [CrossRef]
- Malemud, C.J. Growth hormone, VEGF and FGF: Involvement in rheumatoid arthritis. Clin. Chim. Acta 2007, 375, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Miotla, J.; Maciewicz, R.; Kendrew, J.; Feldmann, M.; Paleolog, E. Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab. Investig. 2000, 80, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.D.; Akama-Garren, E.H.; Stein, E.A.; Petralia, J.D.; Ruiz, P.J.; Edalati, A.; Lindstrom, T.M.; Robinson, W.H. Inhibition of epidermal growth factor receptor tyrosine kinase ameliorates collagen-induced arthritis. J. Immunol. 2012, 188, 3513–3521. [Google Scholar] [CrossRef] [PubMed]
Articular Manifestations | Total n = 93 | Male 39 | Female 54 | OR (95% CI) | p Value |
---|---|---|---|---|---|
Arthralgia * | 35 (89.7%) | 52 (96.3%) | 2.91 (0.65–16.0) | 0.2334 | |
Myalgia | 31 (79.4%) | 42 (77.7%) | 0.90 (0.31–2.50) | >0.999 | |
Arthritis | 12 (30.7%) | 17 (31.4%) | 1.03 (0.41–2.45) | >0.999 | |
Prostration | 27 (62.9%) | 41 (75.9%) | 1.42 (0.56–3.44) | 0.4875 | |
Edema | 14 (35.8%) | 37 (68.5%) | 3.88 (1.66–8.94) | 0.0029 | |
Low back pain | 20 (51.2%) | 37 (68.5%) | 2.06 (0.89–4.97) | 0.1308 | |
Extra-articular manifestations | |||||
Loss of appetite | 20 (51.2%) | 33 (61.1%) | 1.49 (0.66–3.41) | 0.3991 | |
Nausea | 15 (38.4%) | 29 (53.7%) | 1.85 (0.83–4.39) | 0.2066 | |
Exanthema | 20 (51.2%) | 30 (55.5%) | 1.88 (0.53–2.66) | 0.8333 | |
Pruritus | 17 (43.5%) | 24 (44.4%) | 1.03 (0.46–2.35) | >0.999 | |
Headache | 24 (61.5%) | 42 (77.7%) | 2.18 (0.89–5.40) | 0.1079 | |
Vertigo | 8 (20.5%) | 19 (35.1%) | 2.10 (0.78–5.51) | 0.1650 | |
Retro-orbital pain | 15 (38.4%) | 27 (50.0%) | 1.60 (0.71–3.77) | 0.2977 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, C.F.; Nunes, P.C.G.; Fiestas-Solorzano, V.E.; Gandini, M.; dos Santos, F.B.; Pinheiro, R.O.; de Souza, L.J.; Damasco, P.V.; de Oliveira Pinto, L.M.; de Azeredo, E.L. Monocyte Dynamics in Chikungunya Fever: Sustained Activation and Vascular-Coagulation Pathway Involvement. Viruses 2025, 17, 1224. https://doi.org/10.3390/v17091224
dos Santos CF, Nunes PCG, Fiestas-Solorzano VE, Gandini M, dos Santos FB, Pinheiro RO, de Souza LJ, Damasco PV, de Oliveira Pinto LM, de Azeredo EL. Monocyte Dynamics in Chikungunya Fever: Sustained Activation and Vascular-Coagulation Pathway Involvement. Viruses. 2025; 17(9):1224. https://doi.org/10.3390/v17091224
Chicago/Turabian Styledos Santos, Caroline Fernandes, Priscila Conrado Guerra Nunes, Victor Edgar Fiestas-Solorzano, Mariana Gandini, Flavia Barreto dos Santos, Roberta Olmo Pinheiro, Luís Jose de Souza, Paulo Vieira Damasco, Luzia Maria de Oliveira Pinto, and Elzinandes Leal de Azeredo. 2025. "Monocyte Dynamics in Chikungunya Fever: Sustained Activation and Vascular-Coagulation Pathway Involvement" Viruses 17, no. 9: 1224. https://doi.org/10.3390/v17091224
APA Styledos Santos, C. F., Nunes, P. C. G., Fiestas-Solorzano, V. E., Gandini, M., dos Santos, F. B., Pinheiro, R. O., de Souza, L. J., Damasco, P. V., de Oliveira Pinto, L. M., & de Azeredo, E. L. (2025). Monocyte Dynamics in Chikungunya Fever: Sustained Activation and Vascular-Coagulation Pathway Involvement. Viruses, 17(9), 1224. https://doi.org/10.3390/v17091224