Assessing Urban Yellow Fever Transmission Risk: Aedes aegypti Vector Competence in Argentina
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Strains
2.2. Viral Strain
2.3. Oral Infection in Adult Aedes aegypti Mosquitoes
2.4. Mosquito Dissections and Sample Processing
2.5. Viral Detection
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindsey, N.P.; Horton, J.; Barrett, A.D.T.; Demanou, M.; Monath, T.P.; Tomori, O.; Van Herp, M.; Zeller, M.; Fall, I.C.; Cibrelus, L.; et al. Yellow fever resurgence: An avoidable crisis? npj Vaccines 2022, 7, 137. [Google Scholar] [CrossRef]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef]
- Bryant, J.E.; Holmes, E.C.; Barrett, A.D. Out of Africa: A molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog. 2007, 3, e75. [Google Scholar] [CrossRef]
- Hanley, K.A.; Monath, T.P.; Weaver, S.C.; Rossi, S.L.; Richman, R.L.; Vasilakis, N. Fever versus fever: The role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect. Genet. Evol. 2013, 19, 292–311. [Google Scholar] [CrossRef]
- Kuno, G.; Mackenzie, J.S.; Junglen, S.; Hubálek, Z.; Plyusnin, A.; Gubler, D.J. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017, 9, 185. [Google Scholar] [CrossRef]
- Maglioni, C.; Stratta, F. Impresiones profundas, Una mirada sobre la epidemia de fiebre amarilla en Buenos Aires. Población De Buenos Aires 2009, 6, 7–19. [Google Scholar]
- Possas, C.; Lourenço-de-Oliveira, R.; Tauil, P.L.; Pinheiro, F.D.P.; Pissinatti, A.; Cunha, R.V.D.; Homma, A. Yellow fever outbreak in Brazil: The puzzle of rapid viral spread and challenges for immunisation. Memórias Inst. Oswaldo Cruz 2018, 113, e180278. [Google Scholar] [CrossRef]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Giovanetti, M.; Pinotti, F.; Zanluca, C.; Fonseca, V.; Nakase, T.; Koishi, A.C.; Tscha, M.; Soares, G.; Dorl, G.G.; Marques, A.E.M.L.; et al. Genomic epidemiology unveils the dynamics and spatial corridor behind the Yellow Fever virus outbreak in Southern Brazil. Sci. Adv. 2023, 9, eadg9204. [Google Scholar] [CrossRef]
- Cunha, M.S.; da Costa, A.C.; de Azevedo Fernandes, N.C.C.; Guerra, J.M.; Dos Santos, F.C.P.; Nogueira, J.S.; D’Agostino, L.G.; Komninakis, S.V.; Witkin, S.S.; Ressio, R.A.; et al. Epizootics due to Yellow Fever Virus in São Paulo State, Brazil: Viral dissemination to new areas (2016–2017). Sci. Rep. 2019, 9, 5474. [Google Scholar] [CrossRef]
- Abreu, F.V.S.; Ferreira-de-Brito, A.; Azevedo, A.S.; Linhares, J.H.R.; de Oliveira Santos, V.; Hime Miranda, E.; Neves, M.S.A.S.; Yousfi, L.; Ribeiro, I.P.; Santos, A.A.C.D.; et al. Survey on Non-Human Primates and Mosquitoes Does not Provide Evidences of Spillover/Spillback between the Urban and Sylvatic Cycles of Yellow Fever and Zika Viruses Following Severe Outbreaks in Southeast Brazil. Viruses 2020, 12, 364. [Google Scholar] [CrossRef]
- Mares-Guia, M.A.M.M.; Horta, M.A.; Romano, A.; Rodrigues, C.D.S.; Mendonça, M.C.L.; Dos Santos, C.C.; Torres, M.C.; Araujo, E.S.M.; Fabri, A.; de Souza, E.R.; et al. Yellow fever epizootics in non-human primates, Southeast and Northeast Brazil (2017 and 2018). Parasites Vectors 2020, 13, 90. [Google Scholar] [CrossRef]
- Andrade, M.S.; Campos, F.S.; Campos, A.A.S.; Abreu, F.V.S.; Melo, F.L.; Sevá, A.D.P.; Cardoso, J.D.C.; Dos Santos, E.; Born, L.C.; Silva, C.M.D.D.; et al. Real-Time Genomic Surveillance during the 2021 Re-Emergence of the Yellow Fever Virus in Rio Grande do Sul State, Brazil. Viruses 2021, 13, 1976. [Google Scholar] [CrossRef]
- Holzmann, I.; Agostini, I.; Areta, J.I.; Ferreyra, H.; Beldomenico, P.; Di Bitetti, M.S. Impact of yellow fever outbreaks on two howler monkey species (Alouattaguariba clamitans and A. caraya) in Misiones, Argentina. Am. J. Primatol. 2010, 72, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Goenaga, S.; Fabbri, C.; Dueñas, J.C.; Gardenal, C.N.; Rossi, G.C.; Calderon, G.; Morales, M.A.; Garcia, J.B.; Enria, D.A.; Levis, S. Isolation of yellow fever virus from mosquitoes in Misiones province, Argentina. Vector Borne Zoonotic Dis. 2012, 12, 986–993. [Google Scholar] [CrossRef]
- Organización Panamericana de la Salud, Perfil Nacional de Fiebre Amarilla, Argentina. 2022. Available online: https://iris.paho.org/handle/10665.2/56903 (accessed on 25 September 2024).
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.A.; Santos, F.B.D.; Vazeille, M.; Vasconcelos, P.F.D.C.; Lourenço-de-Oliveira, R.; Failloux, A.B. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci. Rep. 2017, 7, 4848. [Google Scholar] [CrossRef]
- Lourenço-de-Oliveira, R.; Vazeille, M.; de Filippis, A.M.; Failloux, A.B. Aedes aegypti in Brazil: Genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 43–54. [Google Scholar] [CrossRef]
- Johnson, B.W.; Chambers, T.V.; Crabtree, M.B.; Filippis, A.M.; Vilarinhos, P.T.; Resende, M.C.; Macoris, M.L.; Miller, B.R. Vector competence of Brazilian Aedes aegypti and Ae, albopictus for a Brazilian yellow fever virus isolate. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 611–613. [Google Scholar] [CrossRef]
- Rodrigues, N.B.; Godoy, R.S.M.; Orfano, A.S.; Chaves, B.A.; Campolina, T.B.; Costa, B.D.A.; Félix, L.D.S.; Silva, B.M.; Norris, D.E.; Pimenta, P.F.P.; et al. Brazilian Aedes aegypti as a Competent Vector for Multiple Complex Arboviral Coinfections. J. Infect. Dis. 2021, 224, 101–108. [Google Scholar] [CrossRef]
- Bonica, M.B.; Goenaga, S.; Martin, M.L.; Feroci, M.; Luppo, V.; Muttis, E.; Fabbri, C.; Morales, M.A.; Enria, D.; Micieli, M.V.; et al. Vector competence of Aedes aegypti for different strains of Zika virus in Argentina. PLoS Neglected Trop. Dis. 2019, 13, e0007433. [Google Scholar] [CrossRef]
- Goenaga, S.; Kenney, J.L.; Duggal, N.K.; Delorey, M.; Ebel, G.D.; Zhang, B.; Levis, S.C.; Enria, D.A.; Brault, A.C. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses 2015, 7, 5801–5812. [Google Scholar] [CrossRef]
- Domingo, C.; Patel, P.; Yillah, J.; Weidmann, M.; Méndez, J.A.; Nakouné, E.R.; Niedrig, M. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J. Clin. Microbiol. 2012, 50, 4054–4060. [Google Scholar] [CrossRef]
- Medina, F.; Medina, J.F.; Colón, C.; Vergne, E.; Santiago, G.A.; Muñoz-Jordán, J.L. Dengue virus: Isolation, propagation, quantification, and storage. Curr. Protoc. Microbiol. 2012, 27, 15D-2. [Google Scholar] [CrossRef]
- Faraway, J. Extending the Linear Model with R—Generalized Linear, Mixed Effects and Nonparametric Regression Models, 2nd ed.; CRC Press: New York, NY, USA, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 25 September 2024).
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means, R Package Version 1.8.6. 2023. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 25 September 2024).
- Grech, M.G.; Ludueña-Almeida, F.; Almirón, W.R. Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Argentina. J. Vector Ecol. 2010, 35, 277–285. [Google Scholar] [CrossRef]
- Grech, M.; Visintin, A.; Laurito, M.; Estallo, E.; Lorenzo, P.; Roccia, I.; Korin, M.; Goya, F.; Ludueña-Almeida, F.; Almirón, W. New records of mosquito species (Diptera: Culicidae) from Neuquén and La Rioja provinces, Argentina. Rev. Saude Publica 2012, 46, 387–389. [Google Scholar] [CrossRef]
- Ciota, A.T.; Chin, P.A.; Ehrbar, D.J.; Micieli, M.V.; Fonseca, D.M.; Kramer, L.D. Differential effects of temperature and mosquito genetics determine transmissibility of arboviruses by Aedes aegypti in Argentina. Am. J. Trop. Med. Hyg. 2018, 99, 417. [Google Scholar] [CrossRef]
- Cansado-Utrilla, C.; Zhao, S.Y.; McCall, P.J.; Coon, K.L.; Hughes, G.L. The microbiome and mosquito vectorial capacity: Rich potential for discovery and translation. Microbiome 2021, 9, 111. [Google Scholar] [CrossRef]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 2016, 25, 5806–5826. [Google Scholar] [CrossRef]
- Gloria-Soria, A.; Chiodo, T.G.; Powell, J.R. Lack of evidence for natural Wolbachia infections in Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2018, 55, 1354–1356. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, J.; Ma, Z.; Liu, Y.; Wang, G.; Liu, Q.; Zhao, T. Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China. Front. Cell. Infect. Microbiol. 2022, 12, 1082809. [Google Scholar] [CrossRef]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review, Infection, genetics and evolution. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef]
- Van den Hurk, A.F.; McElroy, K.; Pyke, A.T.; McGee, C.E.; Hall-Mendelin, S.; Day, A.; Ryan, P.A.; Ritchie, S.A.; Vanlandingham, D.L.; Higgs, S. Vector competence of Australian mosquitoes for yellow fever virus. Am. J. Trop. Med. Hyg. 2011, 85, 446–451. [Google Scholar] [CrossRef]
- Jupp, P.G.; Kemp, A. Laboratory vector competence experiments with yellow fever virus and five South African mosquito species including Aedes aegypti. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 493–498. [Google Scholar] [CrossRef]
- Tabachnick, W.J.; Wallis, G.P.; Aitken, T.H.; Miller, B.R.; Amato, G.D.; Lorenz, L.; Powell, J.R.; Beaty, B.J. Oral infection of Aedes aegypti with yellow fever virus: Geographic variation and genetic considerations. Am. J. Trop. Med. Hyg. 1985, 34, 1219–1224. [Google Scholar] [CrossRef]
- Sanjuán, R. Collective Infectious Units in Viruses. Trends Microbiol. 2017, 25, 402–412. [Google Scholar] [CrossRef]
- Gloria-Soria, A.; Brackney, D.E.; Armstrong, P.M. Saliva collection via capillary method may underestimate arboviral transmission by mosquitoes. Parasites Vectors 2022, 15, 103. [Google Scholar] [CrossRef]
Colony | DPI | Fed | Body | IR% | Legs | DR% | Saliva | TR% |
---|---|---|---|---|---|---|---|---|
La Plata | 3 | 49 | 26 | 53 | 10 | 38 | 6 | 60 |
7 | 53 | 25 | 47 | 12 | 48 | 4 | 33 | |
14 | 77 | 36 | 47 | 19 | 53 | 10 | 53 | |
21 | 50 | 19 | 38 | 15 | 79 | 8 | 53 | |
Total | 229 | 106 | 46 (3.3) | 56 | 53 (4.8) | 28 | 50 (6.7) | |
Tartagal | 3 | 25 | 2 | 8 | 1 | 50 | 0 | 0 |
7 | 61 | 9 | 15 | 5 | 56 | 2 | 40 | |
14 | 57 | 5 | 9 | 4 | 80 | 3 | 75 | |
21 | 62 | 13 | 21 | 7 | 54 | 6 | 86 | |
Total | 205 | 29 | 14 (2.4) | 17 | 59 (9.1) | 11 | 65 (11.6) |
IR Model Predictions for Colonies | ||
Estimate | CI95 | |
Tartagal | 0.14 | (0.095–0.205) |
La Plata | 0.46 | (0.391–0.537) |
DR Model Predictions for DPIs | ||
Estimate | CI95 | |
3 dpi | 0.39 | (0.198–0.629) |
7 dpi | 0.50 | (0.299–0.702) |
14 dpi | 0.56 | (0.369–0.737) |
21 dpi | 0.69 | (0.46–0.851) |
Colony | DPI | Mean Body Titer (log10 PFU/mL) ± SD (N) | Mean Leg Titer (log10 PFU/mL) ± SD (N) | Mean Saliva Titer (log10 PFU/mL) ± SD (N) |
---|---|---|---|---|
La Plata | 3 | 3.77 ± 1.56 (19) | 2.68 ± 1.03 (7) | 2.70 (1) |
7 | 3.7 ± 0.97 (18) | 2 ± 0.96 (8) | 5.48 (1) | |
14 | 4.84 ± 0.79 (27) | 3.04 ± 0.67 (18) | 1.48 ± 0.67 (2) | |
21 | 5.25 ± 0.55 (13) | 3.21 ± 0.43 (10) | 1.80 ± 0.71 (2) | |
Total | 244 | |||
Tartagal | 3 | 3.31 ± 0.23 (2) | 2.20 (1) | 0 |
7 | 3.34 ± 1.03 (8) | 3.63 ± 0.31 (3) | 0 | |
14 | 5.91 ± 0.53 (5) | 3.60 ± 0.37 (4) | 3.30 (1) | |
21 | 5.56 ± 1.05 (7) | 3.06 ± 0.75 (6) | 1.70 (1) | |
Total | 205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boaglio, E.R.; Muttis, E.; Feroci, M.; Fabbri, C.; Minardi, G.; Sánchez, J.; Micieli, M.V.; Goenaga, S. Assessing Urban Yellow Fever Transmission Risk: Aedes aegypti Vector Competence in Argentina. Viruses 2025, 17, 718. https://doi.org/10.3390/v17050718
Boaglio ER, Muttis E, Feroci M, Fabbri C, Minardi G, Sánchez J, Micieli MV, Goenaga S. Assessing Urban Yellow Fever Transmission Risk: Aedes aegypti Vector Competence in Argentina. Viruses. 2025; 17(5):718. https://doi.org/10.3390/v17050718
Chicago/Turabian StyleBoaglio, Estefanía R., Evangelina Muttis, Mariel Feroci, Cintia Fabbri, Graciela Minardi, Juliana Sánchez, María V. Micieli, and Silvina Goenaga. 2025. "Assessing Urban Yellow Fever Transmission Risk: Aedes aegypti Vector Competence in Argentina" Viruses 17, no. 5: 718. https://doi.org/10.3390/v17050718
APA StyleBoaglio, E. R., Muttis, E., Feroci, M., Fabbri, C., Minardi, G., Sánchez, J., Micieli, M. V., & Goenaga, S. (2025). Assessing Urban Yellow Fever Transmission Risk: Aedes aegypti Vector Competence in Argentina. Viruses, 17(5), 718. https://doi.org/10.3390/v17050718