Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Data Collection
2.2. Genome Sequencing and Assembly
2.3. Phylogenetic and Evolutionary Analysis
2.4. Sequence Diversity and Mutation Profiling
2.5. Prediction of Impacts of Mutations on Protein Structure and Function
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Confirmed Mpox Cases
3.2. Phylogenetic Characterization of MPXV Strains Circulating in Shenzhen
3.3. Molecular Evolution and Mutation Signatures of MPXV Strains in Shenzhen
3.4. APOBEC3-Mediated Mutations Drive Selective Evolution of MPXV
3.5. Predicted Structural and Functional Impact of Key Amino Acid Substitutions
3.6. Tandem Repeat Variability in Low-Complexity Regions Drives Evolutionary Adaptation of MPXV
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pauli, G.; Blümel, J.; Burger, R.; Drosten, C.; Gröner, A.; Gürtler, L.; Heiden, M.; Hildebrandt, M.; Jansen, B.; Montag-Lessing, T.; et al. Orthopox viruses: Infections in humans. Transfus. Med. Hemother. 2010, 37, 351–364. [Google Scholar] [PubMed]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Liao, Y.C.; Mao, Y.C.; Yeh, T.K.; Liu, P.Y. Tracing the footprints of MPXV in Asia: Phylogenetic insights and lineage dynamics. Sex. Transm. Infect. 2024, 100, 384–387. [Google Scholar] [CrossRef]
- Beig, M.; Mohammadi, M.; Nafe Monfared, F.; Nasereslami, S. Monkeypox: An emerging zoonotic pathogen. World J. Virol. 2022, 11, 426–434. [Google Scholar] [CrossRef]
- Lu, J.; Xing, H.; Wang, C.; Tang, M.; Wu, C.; Ye, F.; Yin, L.; Yang, Y.; Tan, W.; Shen, L. Mpox (formerly monkeypox): Pathogenesis, prevention, and treatment. Signal Transduct. Target. Ther. 2023, 8, 458. [Google Scholar] [CrossRef]
- Thakur, M.; Das, P.; Sobti, R.C.; Kaur, T. Human monkeypox: Epidemiology, transmission, pathogenesis, immunology, diagnosis and therapeutics. Mol. Cell Biochem. 2023, 478, 2097–2110. [Google Scholar] [CrossRef]
- Beeson, A.; Styczynski, A.; Hutson, C.L.; Whitehill, F.; Angelo, K.M.; Minhaj, F.S.; Morgan, C.; Ciampaglio, K.; Reynolds, M.G.; McCollum, A.M.; et al. Mpox respiratory transmission: The state of the evidence. Lancet Microbe 2023, 4, e277–e283. [Google Scholar] [CrossRef]
- Otieno, J.R.; Ruis, C.; Onoja, A.B.; Kuppalli, K.; Hoxha, A.; Nitsche, A.; Brinkmann, A.; Michel, J.; Mbala-Kingebeni, P.; Mukadi-Bamuleka, D.; et al. Global genomic surveillance of monkeypox virus. Nat. Med. 2025, 31, 342–350. [Google Scholar] [CrossRef]
- WHO. Third Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Upsurge of Mpox 2024. 2025. Available online: https://www.who.int/news/item/17-03-2025-third-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-upsurge-of-mpox-2024#:~:text=Concurring%20with%20the%20advice%20unanimously,2025%2C%20issued%20temporary%20recommendations%20to (accessed on 17 March 2025).
- Firth, C.; Kitchen, A.; Shapiro, B.; Suchard, M.A.; Holmes, E.C.; Rambaut, A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol. Biol. Evol. 2010, 27, 2038–2051. [Google Scholar] [CrossRef]
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022, 28, 1569–1572. [Google Scholar] [CrossRef]
- Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S.; et al. Monkeypox virus infection in humans across 16 countries—April–June 2022. N. Engl. J. Med. 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Schuele, L.; Boter, M.; Nieuwenhuijse, D.F.; Götz, H.; Fanoy, E.; de Vries, H.; Vieyra, B.; Bavalia, R.; Hoornenborg, E.; Molenkamp, R.; et al. Circulation, viral diversity and genomic rearrangement in mpox virus in the Netherlands during the 2022 outbreak and beyond. J. Med. Virol. 2024, 96, e29397. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, Á.; Neher, R.A.; Ndodo, N.; Borges, V.; Gannon, B.; Gomes, J.P.; Groves, N.; King, D.J.; Maloney, D.; Lemey, P.; et al. APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science 2023, 382, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Forni, D.; Cagliani, R.; Molteni, C.; Clerici, M.; Sironi, M. Monkeypox virus: The changing facets of a zoonotic pathogen. Infect. Genet. Evol. 2022, 105, 105372. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, F.; Peng, Y.; Gong, X.; Fan, G.; Lin, Y.; Yang, L.; Shen, L.; Niu, S.; Liu, J.; et al. Evolutionary trajectory and characteristics of Mpox virus in 2023 based on a large-scale genomic surveillance in Shenzhen, China. Nat. Commun. 2024, 15, 7452. [Google Scholar] [CrossRef]
- Dou, X.; Li, F.; Ren, Z.; Zhang, D.; Li, J.; Li, D.; Sun, Y.; Jin, H.; Li, R.; Li, W.; et al. Clinical, epidemiological, and virological features of Mpox in Beijing, China—May 31–June 21, 2023. Emerg. Microbes Infect. 2023, 12, 2254407. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Liu, J.; Xiang, L.; Huang, S.; Xie, X.; Fang, L.; Lin, Y.; Zhang, M.; Wang, L.; et al. Phylogeny and molecular evolution of the first local monkeypox virus cluster in Guangdong Province, China. Nat. Commun. 2023, 14, 8241. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, X.; Qu, J.; Peng, B.; Kong, D.; Lu, J.; Hu, Q.; Zhou, Z.; Lin, H.; Yao, X.; et al. Investigation into the epidemiology, genetic characteristics, and clinical manifestations of the first monkeypox outbreak in Shenzhen, China. Biosaf. Health 2023, 5, 259–265. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Ruan, J.; Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008, 18, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Coppens, J.; Vanroye, F.; Brosius, I.; Liesenborghs, L.; van Henten, S.; Vanbaelen, T.; Bracke, S.; Berens-Riha, N.; De Baetselier, I.; Kenyon, C.; et al. Alternative sampling specimens for the molecular detection of mpox (formerly monkeypox) virus. J. Clin. Virol. 2023, 159, 105372. [Google Scholar] [CrossRef]
- Wang, L.; Shang, J.; Weng, S.; Aliyari, S.R.; Ji, C.; Cheng, G.; Wu, A. Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J. Med. Virol. 2023, 95, e28036. [Google Scholar] [CrossRef]
- Deiana, M.; Lavezzari, D.; Mori, A.; Accordini, S.; Pomari, E.; Piubelli, C.; Malagò, S.; Cordioli, M.; Ronzoni, N.; Angheben, A.; et al. Exploring viral genome profile in Mpox patients during the 2022 outbreak, in a North-Eastern Centre of Italy. Viruses 2024, 16, 726. [Google Scholar] [CrossRef]
- Patiño, L.H.; Guerra, S.; Muñoz, M.; Luna, N.; Farrugia, K.; van de Guchte, A.; Khalil, Z.; Gonzalez-Reiche, A.S.; Hernandez, M.M.; Banu, R.; et al. Phylogenetic landscape of Monkeypox virus (MPV) during the early outbreak in New York City, 2022. Emerg. Microbes Infect. 2023, 12, e2192830. [Google Scholar] [CrossRef]
- Galán-Huerta, K.A.; Paz-Infanzon, M.; Nuzzolo-Shihadeh, L.; Ruiz-Higareda, A.F.; Bocanegra-Ibarias, P.; Villareal-Martínez, D.Z.; Muñoz-Garza, F.Z.; Guerrero-Putz, M.D.; Sáenz-Ibarra, B.; Barboza-Quintana, O.; et al. Metagenomic sequencing of monkeypox virus, Northern Mexico. Emerg. Infect. Dis. 2023, 29, 448–450. [Google Scholar] [CrossRef]
- Monzón, S.; Varona, S.; Negredo, A.; Vidal-Freire, S.; Patiño-Galindo, J.A.; Ferressini-Gerpe, N.; Zaballos, A.; Orviz, E.; Ayerdi, O.; Muñoz-Gómez, A.; et al. Monkeypox virus genomic accordion strategies. Nat. Commun. 2024, 15, 3059. [Google Scholar] [CrossRef]
- Shchelkunov, S.N. Interaction of orthopoxviruses with the cellular ubiquitin-ligase system. Virus Genes 2010, 41, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Shi, H.; Cheng, G. Mpox virus: Its molecular evolution and potential impact on viral epidemiology. Viruses 2023, 15, 995. [Google Scholar] [CrossRef] [PubMed]
- Tsyrendorzhiev, D.D.; Orlovskaya, I.A.; Sennikov, S.V.; Tregubchak, T.V.; Gileva, I.P.; Tsyrendorzhieva, M.D.; Shchelkunov, S.N. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein. Bull. Exp. Biol. Med. 2014, 157, 249–252. [Google Scholar] [CrossRef]
- Weaver, J.R.; Isaacs, S.N. Monkeypox virus and insights into its immunomodulatory proteins. Immunol. Rev. 2008, 225, 96–113. [Google Scholar] [CrossRef]
- Campbell, J.A.; Trossman, D.S.; Yokoyama, W.M.; Carayannopoulos, L.N. Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D. J. Exp. Med. 2007, 204, 1311–1317. [Google Scholar] [CrossRef]
- Liu, R.; Moss, B. Vaccinia virus C9 Ankyrin Repeat/F-Box protein is a newly identified antagonist of the Type I interferon-induced antiviral state. J. Virol. 2018, 92, e00053-18. [Google Scholar] [CrossRef]
- Masirika, L.M.; Kumar, A.; Dutt, M.; Ostadgavahi, A.T.; Hewins, B.; Nadine, M.B.; Steeven, B.K.; Mweshi, F.K.; Mambo, L.M.; Mbiribindi, J.B.; et al. Complete genome sequencing, annotation, and mutational profiling of the novel Clade I human Mpox virus, Kamituga Strain. J. Infect. Dev. Ctries. 2024, 18, 600–608. [Google Scholar] [CrossRef]
Gene | Protein | Amino Acid Mutation | Structural Domain | ΔΔG (kcal/mol) | Predicted Molecular Effects | Predicted Functional Implications |
---|---|---|---|---|---|---|
OPG002 | Crm-B secreted TNF-alpha-receptor-like protein | OPG002: S54F | TNF-α binding domain | −0.50 | Steric hindrance by aromatic ring | Impaired TNF-α binding affinity |
Disrupted H-bond network | ||||||
OPG016 | Brix domain protein | OPG016: R84K | MHC-I-like domain | −2.70 | Optimized salt bridge formation | Enhanced NKG2D evasion |
OPG047 | Kelch-like protein | OPG047: R48C | BTB domain | −1.38 | New H-bond in linker region | Altered interferon antagonism |
Altered electrostatic potential |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Zheng, X.; Lei, L.; Xiao, J.; Yu, G.; Li, Y.; Ma, Z.; Li, M.; Zeng, Y.; Lv, Z.; et al. Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024. Viruses 2025, 17, 1214. https://doi.org/10.3390/v17091214
Shi C, Zheng X, Lei L, Xiao J, Yu G, Li Y, Ma Z, Li M, Zeng Y, Lv Z, et al. Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024. Viruses. 2025; 17(9):1214. https://doi.org/10.3390/v17091214
Chicago/Turabian StyleShi, Chuan, Xiaochen Zheng, Lei Lei, Jinhui Xiao, Guangqing Yu, Yingdong Li, Zhifeng Ma, Minjie Li, Yanling Zeng, Ziquan Lv, and et al. 2025. "Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024" Viruses 17, no. 9: 1214. https://doi.org/10.3390/v17091214
APA StyleShi, C., Zheng, X., Lei, L., Xiao, J., Yu, G., Li, Y., Ma, Z., Li, M., Zeng, Y., Lv, Z., Chen, Y., Tan, W., & Wang, Q. (2025). Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024. Viruses, 17(9), 1214. https://doi.org/10.3390/v17091214