Recent Advances in Therapeutics for Severe Fever with Thrombocytopenia Syndrome Virus
Abstract
1. Introduction
2. Genomic Characteristics of SFTSV
3. Research Progress of SFTSV Antiviral Drugs
3.1. Nucleotide Analogues
3.1.1. Ribavirin
3.1.2. Favipiravir
3.1.3. 4′-Fluorouridine and Its Derivatives
3.2. Calcium Channel Blockers
3.3. Natural Products
3.3.1. Vitamin D Derivatives
3.3.2. Caffeic Acid
3.4. Amodiaquine
3.5. Monoclonal Antibodies
3.5.1. Traditional Monoclonal Antibodies
3.5.2. Nanobody Technology
3.6. Interferon and Its Inducers
3.6.1. IFN-γ
3.6.2. Tilorone Dihydrochloride
3.6.3. Kaempferide
3.6.4. Metformin
3.7. Gn-Modified Biomimetic Nanospheres
Drug | Cell Model | SFTSV Strain | EC50/99 | CC50 | Reference |
---|---|---|---|---|---|
Ribavirin | Vero | HB29 | EC99 = 263 μM | >500 μM | [19] |
Huh7 | EC99 = 424 μM | ||||
U2OS | EC99 = 78 μM | [28] | |||
Vero | Japanese isolate | EC50 = 40.1 ± 16.3 μM | >100 μM | ||
Favipiravir | Vero | SPL010 | EC50 = 6.0 μM | >1000 μM | [27] |
Vero | Japanese isolate | EC50 = 25.0 ± 9.3 μM | >100 μM | [28] | |
VV261 | Vero | HBMC16 | EC50 = 0.89 μM | >100 μM | [32] |
Manidipine | SW13 Huh-7 | YG-1 | EC50 = 2.83 μM IC50 = 3.17 μM | 57.03 μM 28.2 μM | [34] |
Doxercalciferol | Huh7 | Chinese isolate | EC50 = 1.98 ± 1.30 μM | >9 μM | [35] |
Alfacalcidol | Huh7 | Chinese isolate | EC50 = 1.59 ± 0.35 μM | >9 μM | [35] |
Caffeic acid | Huh7.5.1–8 | HB29 | EC50 = 48 μM | >100 μM | [37] |
Amodiaquine | Vero Huh7 | Japanese isolate | EC50 = 19.1 ± 5.1 μM | >100 μM | [38] |
S2A5 | Vero 293T | WCH97, QD02 | EC50 ≤ 0.006 μM | [39] | |
SNB02 | Vero | E-JS-2013-24 | EC50 = 1.05 μM | [40] | |
IFN-γ | Vero | SPL030 | EC90 = 0.012 μM | [44] | |
Tilorone dihydrochloride | Huh7.5 | Chinese isolate | EC50 = 0.42 μM | 10 μM | [45] |
Kaempferide | 293T | WCH-2011 | >50 μM | [46] | |
Metformin | Huh7 | HBMC16 | [48] | ||
Gn-modified biomimetic nanospheres | Vero | Chinese isolate | EC50 = 0.01844 μM | >0.15 μM | [50] |
Drug | Animal Model | Drug Dosage | Viral Inoculum | Survival Rate | Reference |
---|---|---|---|---|---|
Ribavirin | STAT2−/−hamster | 75 mg/kg/d 25 mg/kg/d 60 mg/kg/d 300 mg/kg/d | 50PFU | [19] | |
IFNAR1−/−C57BL/6 | 106TCID50 | [27] | |||
Favipiravir | IFNAR1−/−C57BL/6 | 106TCID50 | [27] | ||
VV261 | IFNAR1−/−C57BL/6 | 2.5, 5, 10 mg/kg/d | 103PFU | 100% | [32] |
Nifedipine | 5W female C57BL/6 | 15 mg/kg/d | 105TCID50 | 100% | [33] |
Manidipine | IFNAR1−/−C57BL/6 | 10 mg/kg/d | 10PFU | 50% | [34] |
Doxercalciferol | ICR | 0.3 μg/kg/d OR 0.15 μg/kg/d | 1 × 105PFU | [35] | |
Doxercalciferol Amodiaquine | 6–8W A129(IFNAR1−/−) | 10 μg/kg/d OR 5 μg/kg/d | 10PFU | [35] | |
[38] | |||||
C57BL/6 | 100 mg/kg/d | 100TCID50 | |||
S2A5 | 6–8W IFN-α/βR | 400 μg (6 hpi) | 500TCID50 | 100% | [39] |
SNB02 | 4–6W NCG-HuPBL | 400 μg/kg/d | 2 × 105TCID50 | [40] | |
IFN-γ | 3d ICR | 5 × 10−4 mg/kg | 103TCID50 | [44] | |
Tilorone dihydrochloride | 1d ICR | 20 mg/kg | 5 × 104PFU | 78.94% | [45] |
Kaempferide | BALB/c | 100 mg/kg/d | 2 × 103TCID50 | [46] | |
Metformin | BKS−db/db | 300 mg/kg/d | 4 × 105PFU | 80% | [48] |
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Liang, S.; Xie, W.; Li, Z.; Zhang, N.; Wang, X.; Qin, Y.; Bao, C.; Hu, J. Analysis of Fatal Cases of Severe Fever with Thrombocytopenia Syndrome in Jiangsu Province, China, between 2011 and 2022: A Retrospective Study. Front. Public Health 2023, 11, 1076226. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-J.; Liang, M.-F.; Zhang, S.-Y.; Liu, Y.; Li, J.-D.; Sun, Y.-L.; Zhang, L.; Zhang, Q.-F.; Popov, V.L.; Li, C.; et al. Fever with Thrombocytopenia Associated with a Novel Bunyavirus in China. N. Engl. J. Med. 2011, 364, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Amarasinghe, G.K.; Anthony, S.J.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; et al. 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales. Arch. Virol. 2020, 165, 3023–3072. [Google Scholar] [CrossRef]
- Sun, J.; Min, Y.-Q.; Li, Y.; Sun, X.; Deng, F.; Wang, H.; Ning, Y.-J. Animal Model of Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front. Microbiol. 2022, 12, 797189. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; Sun, Y.; Zhuang, L.; Tang, F.; Cui, N.; Qin, S.; Wang, B.; Liu, W. Survey and genetic analysis of severe fever with thrombocytopenia syndrome virus from Haemaphysalis longicornis. J. Pathog. Biol. 2014, 9, 629–632. (In Chinese) [Google Scholar]
- Jung, I.Y.; Choi, W.; Kim, J.; Wang, E.; Park, S.-W.; Lee, W.-J.; Choi, J.Y.; Kim, H.Y.; Uh, Y.; Kim, Y.K. Nosocomial Person-to-Person Transmission of Severe Fever with Thrombocytopenia Syndrome. Clin. Microbiol. Infect. 2019, 25, 633.e1–633.e4. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhou, D.J.; Xiong, Y.; Chen, X.P.; He, Y.W.; Sun, Q.; Yu, B.; Li, J.; Dai, Y.A.; Tian, J.H.; et al. Hemorrhagic fever caused by a novel tick-borne Bunyavirus in Huaiyangshan, China. Zhonghua Liu Xing Bing Xue Za Zhi 2011, 32, 209–220. [Google Scholar]
- Tran, X.C.; Yun, Y.; Van An, L.; Kim, S.-H.; Thao, N.T.P.; Man, P.K.C.; Yoo, J.R.; Heo, S.T.; Cho, N.-H.; Lee, K.H. Endemic Severe Fever with Thrombocytopenia Syndrome, Vietnam. Emerg. Infect. Dis. 2019, 25, 1029–1031. [Google Scholar] [CrossRef]
- Chang, M.S.; Woo, J.H. Severe Fever with Thrombocytopenia Syndrome: Tick-Mediated Viral Disease. J. Korean Med. Sci. 2013, 28, 795. [Google Scholar] [CrossRef]
- Takahashi, T.; Maeda, K.; Suzuki, T.; Ishido, A.; Shigeoka, T.; Tominaga, T.; Kamei, T.; Honda, M.; Ninomiya, D.; Sakai, T.; et al. The First Identification and Retrospective Study of Severe Fever With Thrombocytopenia Syndrome in Japan. J. Infect. Dis. 2014, 209, 816–827. [Google Scholar] [CrossRef]
- Liu, S.; Chai, C.; Wang, C.; Amer, S.; Lv, H.; He, H.; Sun, J.; Lin, J. Systematic Review of Severe Fever with Thrombocytopenia Syndrome:Virology, Epidemiology, and Clinical Characteristics. Rev. Med. Virol. 2014, 24, 90–102. [Google Scholar] [CrossRef]
- Seo, J.-W.; Kim, D.; Yun, N.; Kim, D.-M. Clinical Update of Severe Fever with Thrombocytopenia Syndrome. Viruses 2021, 13, 1213. [Google Scholar] [CrossRef]
- Guu, T.S.Y.; Zheng, W.; Tao, Y.J. Bunyavirus: Structure and Replication. In Viral Molecular Machines; Rossmann, M.G., Rao, V.B., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2012; Volume 726, pp. 245–266. ISBN 978-1-4614-0979-3. [Google Scholar]
- Sun, Y.; Qi, Y.; Liu, C.; Gao, W.; Chen, P.; Fu, L.; Peng, B.; Wang, H.; Jing, Z.; Zhong, G.; et al. Nonmuscle Myosin Heavy Chain IIA Is a Critical Factor Contributing to the Efficiency of Early Infection of Severe Fever with Thrombocytopenia Syndrome Virus. J. Virol. 2014, 88, 237–248. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China; National Administration of Traditional Chinese Medicine. Diagnosis and treatment scheme for severe fever with thrombocytopenia syndrome (2023 Edition). Chin. J. Infect. Control. 2024, 23, 819–929. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, W.; Xu, Y.; Huang, Y. Severe Fever with Thrombocytopenia Syndrome in Hefei: Clinical Features, Risk Factors, and Ribavirin Therapeutic Efficacy. J. Med. Virol. 2021, 93, 3516–3523. [Google Scholar] [CrossRef]
- Takayama-Ito, M.; Saijo, M. Antiviral Drugs Against Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front. Microbiol. 2020, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Graci, J.D.; Cameron, C.E. Mechanisms of Action of Ribavirin against Distinct Viruses. Rev. Med. Virol. 2006, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Shimojima, M.; Fukushi, S.; Tani, H.; Yoshikawa, T.; Fukuma, A.; Taniguchi, S.; Suda, Y.; Maeda, K.; Takahashi, T.; Morikawa, S.; et al. Effects of Ribavirin on Severe Fever with Thrombocytopenia Syndrome Virus In Vitro. Jpn. J. Infect. Dis. 2014, 67, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Kim, K.-H.; Yi, J.; Choi, S.J.; Choe, P.G.; Park, W.B.; Kim, N.J.; Oh, M. In Vitro Antiviral Activity of Ribavirin against Severe Fever with Thrombocytopenia Syndrome Virus. Korean J. Intern. Med. 2017, 32, 731–737. [Google Scholar] [CrossRef]
- Liu, W.; Lu, Q.-B.; Cui, N.; Li, H.; Wang, L.-Y.; Liu, K.; Yang, Z.-D.; Wang, B.-J.; Wang, H.-Y.; Zhang, Y.-Y.; et al. Case-Fatality Ratio and Effectiveness of Ribavirin Therapy Among Hospitalized Patients in China Who Had Severe Fever With Thrombocytopenia Syndrome. Clin. Infect. Dis. 2013, 57, 1292–1299. [Google Scholar] [CrossRef]
- Li, H.; Lu, Q.-B.; Xing, B.; Zhang, S.-F.; Liu, K.; Du, J.; Li, X.-K.; Cui, N.; Yang, Z.-D.; Wang, L.-Y.; et al. Epidemiological and Clinical Features of Laboratory-Diagnosed Severe Fever with Thrombocytopenia Syndrome in China, 2011–2017: A Prospective Observational Study. Lancet Infect. Dis. 2018, 18, 1127–1137. [Google Scholar] [CrossRef]
- Delang, L.; Abdelnabi, R.; Neyts, J. Favipiravir as a Potential Countermeasure against Neglected and Emerging RNA Viruses. Antivir. Res. 2018, 153, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, K.; Daikoku, T. Favipiravir, an Anti-Influenza Drug against Life-Threatening RNA Virus Infections. Pharmacol. Ther. 2020, 209, 107512. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, X.-M.; Cui, N.; Yuan, C.; Zhang, S.-F.; Lu, Q.-B.; Yang, Z.-D.; Xin, Q.-L.; Song, Y.-B.; Zhang, X.-A.; et al. Clinical Effect and Antiviral Mechanism of T-705 in Treating Severe Fever with Thrombocytopenia Syndrome. Sig. Transduct. Target. Ther. 2021, 6, 145. [Google Scholar] [CrossRef] [PubMed]
- Sangawa, H.; Komeno, T.; Nishikawa, H.; Yoshida, A.; Takahashi, K.; Nomura, N.; Furuta, Y. Mechanism of Action of T-705 Ribosyl Triphosphate against Influenza Virus RNA Polymerase. Antimicrob. Agents Chemother. 2013, 57, 5202–5208. [Google Scholar] [CrossRef]
- Tani, H.; Fukuma, A.; Fukushi, S.; Taniguchi, S.; Yoshikawa, T.; Iwata-Yoshikawa, N.; Sato, Y.; Suzuki, T.; Nagata, N.; Hasegawa, H.; et al. Efficacy of T-705 (Favipiravir) in the Treatment of Infections with Lethal Severe Fever with Thrombocytopenia Syndrome Virus. mSphere 2016, 1, e00061-15. [Google Scholar] [CrossRef]
- Baba, M.; Toyama, M.; Sakakibara, N.; Okamoto, M.; Arima, N.; Saijo, M. Establishment of an Antiviral Assay System and Identification of Severe Fever with Thrombocytopenia Syndrome Virus Inhibitors. Antivir. Chem. Chemother. 2017, 25, 83–89. [Google Scholar] [CrossRef]
- Suemori, K.; Saijo, M.; Yamanaka, A.; Himeji, D.; Kawamura, M.; Haku, T.; Hidaka, M.; Kamikokuryo, C.; Kakihana, Y.; Azuma, T.; et al. A Multicenter Non-Randomized, Uncontrolled Single Arm Trial for Evaluation of the Efficacy and the Safety of the Treatment with Favipiravir for Patients with Severe Fever with Thrombocytopenia Syndrome. PLoS Negl. Trop. Dis. 2021, 15, e0009103. [Google Scholar] [CrossRef]
- Xu, H.; Jian, X.; Wen, Y.; Xu, M.; Jin, R.; Wu, X.; Zhou, F.; Cao, J.; Xiao, G.; Peng, K.; et al. A Nanoluciferase SFTSV for Rapid Screening Antivirals and Real-Time Visualization of Virus Infection in Mice. eBioMedicine 2024, 99, 104944. [Google Scholar] [CrossRef]
- Xiang, L.; Hu, T.; Xue, H.; Pan, W.; Xie, Y.; Shen, J. Synthesis and Evaluation of NHC Derivatives and 4′-Fluorouridine Prodrugs. Org. Biomol. Chem. 2023, 21, 2754–2767. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, W.; Dong, X.; Sun, T.; Xu, M.; Xiang, L.; Li, J.; Wang, H.; Jian, X.; Yu, J.; et al. Design and Development of a Novel Oral 4′-Fluorouridine Double Prodrug VV261 against SFTSV. J. Med. Chem. 2025, 68, 9811–9826. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.-K.; Li, S.-F.; Zhang, S.-F.; Wan, W.-W.; Zhang, Y.-L.; Xin, Q.-L.; Dai, K.; Hu, Y.-Y.; Wang, Z.-B.; et al. Calcium Channel Blockers Reduce Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Related Fatality. Cell Res. 2019, 29, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Urata, S.; Yoshikawa, R.; Yasuda, J. Calcium Influx Regulates the Replication of Several Negative-Strand RNA Viruses Including Severe Fever with Thrombocytopenia Syndrome Virus. J. Virol. 2023, 97, e00015-23. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Yan, X.; Yang, S.; Ren, S.; Luo, Y.; Li, J.; Wang, P.; Shao, Y.; Li, W.; Li, S.; et al. Antiviral Activity of Vitamin D Derivatives against Severe Fever with Thrombocytopenia Syndrome Virus in Vitro and in Vivo. Virol. Sin. 2024, 39, S1995820X24001342. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Shirasago, Y.; Ando, S.; Shimojima, M.; Saijo, M.; Fukasawa, M. Caffeic Acid, a Coffee-Related Organic Acid, Inhibits Infection by Severe Fever with Thrombocytopenia Syndrome Virus in Vitro. J. Infect. Chemother. 2018, 24, 597–601. [Google Scholar] [CrossRef]
- Ogawa, M.; Shirasago, Y.; Tanida, I.; Kakuta, S.; Uchiyama, Y.; Shimojima, M.; Hanada, K.; Saijo, M.; Fukasawa, M. Structural Basis of Antiviral Activity of Caffeic Acid against Severe Fever with Thrombocytopenia Syndrome Virus. J. Infect. Chemother. 2021, 27, 397–400. [Google Scholar] [CrossRef]
- Baba, M.; Okamoto, M.; Toyama, M.; Sakakibara, N.; Shimojima, M.; Saijo, M.; Niwa, T.; Yagi, Y. Amodiaquine Derivatives as Inhibitors of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Replication. Antivir. Res. 2023, 210, 105479. [Google Scholar] [CrossRef]
- Ren, X.; Sun, J.; Kuang, W.; Yu, F.; Wang, B.; Wang, Y.; Deng, W.; Xu, Z.; Yang, S.; Wang, H.; et al. A Broadly Protective Antibody Targeting Glycoprotein Gn Inhibits Severe Fever with Thrombocytopenia Syndrome Virus Infection. Nat. Commun. 2024, 15, 7009. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Huang, B.; Ma, X.; Zhu, L.; Zheng, N.; Xu, S.; Nawaz, W.; Xu, C.; Wu, Z. A Single-Domain Antibody Inhibits SFTSV and Mitigates Virus-Induced Pathogenesis in Vivo. JCI Insight 2020, 5, e136855. [Google Scholar] [CrossRef]
- Y-Clone Medical Science Co., Ltd. Technology Transfer and R&D Collaboration Agreement on SNB02 . Available online: www.y-clone.com (accessed on 19 August 2025).
- Hoffmann, H.-H.; Schneider, W.M.; Rice, C.M. Interferons and Viruses: An Evolutionary Arms Race of Molecular Interactions. Trends Immunol. 2015, 36, 124–138. [Google Scholar] [CrossRef]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-γ: An Overview of Signals, Mechanisms and Functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef]
- Ning, Y.-J.; Mo, Q.; Feng, K.; Min, Y.-Q.; Li, M.; Hou, D.; Peng, C.; Zheng, X.; Deng, F.; Hu, Z.; et al. Interferon-γ-Directed Inhibition of a Novel High-Pathogenic Phlebovirus and Viral Antagonism of the Antiviral Signaling by Targeting STAT1. Front. Immunol. 2019, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yan, Y.; Dai, Q.; Yin, J.; Zhao, L.; Li, Y.; Li, W.; Zhong, W.; Cao, R.; Li, S. Tilorone Confers Robust In Vitro and In Vivo Antiviral Effects against Severe Fever with Thrombocytopenia Syndrome Virus. Virol. Sin. 2022, 37, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Sun, J.; Zhang, C.; Chen, C.; Chen, Z.; Anirudhan, V.; Cui, Q.; Wang, H.; Rong, L.; Ning, Y.-J. Kaempferide Enhances Type I Interferon Signaling as a Novel Broad-Spectrum Antiviral Agent. Antivir. Res. 2025, 237, 106141. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Zhao, J.; Zhang, S.; Xu, Y.; Liu, Y.; Peng, X.; Wang, G.; Gong, X.; Zhang, L.; Li, S.; et al. Impact of Glycemia and Insulin Treatment in Fatal Outcome of Severe Fever with Thrombocytopenia Syndrome. Int. J. Infect. Dis. 2022, 119, 24–31. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, X.; Ge, H.; Cui, N.; Lin, L.; Yue, M.; Zhu, C.; Zhou, Q.; Song, P.; Shang, X.; et al. Metformin as Antiviral Therapy Protects Hyperglycemic and Diabetic Patients. mBio 2025, 16, e00634-25. [Google Scholar] [CrossRef]
- Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of Action, Challenges, and Therapeutic Approaches. Eur. J. Pharmacol. 2021, 905, 174178. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Li, J.; Chen, Q.; Zhang, Y.; Chen, K.; Shang, S. Gn-Modified Biomimetic Nanospheres for Targeted siRNA Delivery and Their in Vitro Activity against Severe Fever with Thrombocytopenia Syndrome Virus. Int. J. Biol. Macromol. 2025, 309, 142955. [Google Scholar] [CrossRef]
Segment | Size | Encoded Protein | Function |
---|---|---|---|
L | 6386 bp | RdRp | Catalyzes viral RNA synthesis (replication and transcription) |
M | 3378 bp | Gn | Mediates membrane fusion |
Gc | Coordinates viral attachment, entry, and membrane fusion | ||
S | 1744 bp | NSs | Induces cytokine storms and inflammatory responses |
Np | Assembles ribonucleoprotein complexes for genome protection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, H.; Wang, Y.; Zhang, L.; Xu, S.; Liu, L.; Tong, Y. Recent Advances in Therapeutics for Severe Fever with Thrombocytopenia Syndrome Virus. Viruses 2025, 17, 1174. https://doi.org/10.3390/v17091174
Dang H, Wang Y, Zhang L, Xu S, Liu L, Tong Y. Recent Advances in Therapeutics for Severe Fever with Thrombocytopenia Syndrome Virus. Viruses. 2025; 17(9):1174. https://doi.org/10.3390/v17091174
Chicago/Turabian StyleDang, Huimin, Yuanyuan Wang, Lihong Zhang, Shan Xu, Lei Liu, and Yigang Tong. 2025. "Recent Advances in Therapeutics for Severe Fever with Thrombocytopenia Syndrome Virus" Viruses 17, no. 9: 1174. https://doi.org/10.3390/v17091174
APA StyleDang, H., Wang, Y., Zhang, L., Xu, S., Liu, L., & Tong, Y. (2025). Recent Advances in Therapeutics for Severe Fever with Thrombocytopenia Syndrome Virus. Viruses, 17(9), 1174. https://doi.org/10.3390/v17091174