An Update on RNA Virus Discovery: Current Challenges and Future Perspectives
Abstract
1. Introduction
2. Results
2.1. Technological Advancements in RNA Virus Discovery
2.2. Bioinformatics and Computational Tools
2.3. Unraveling Novel Viral Families
2.4. Ecological and Zoonotic Dimensions of RNA Virus Discovery: Implications for One Health and Public Health Preparedness
2.5. Persisting Challenges in RNA Virus Discovery
2.5.1. Sample Collection and Data Interpretation
2.5.2. Viral Characterization Complexity
2.6. Future Directions and Collaborative Approaches
2.6.1. Multi-Omic Integration and Predictive Modeling for Surveillance
2.6.2. Global Collaborations, Capacity Building and Data Sharing
3. Discussion
3.1. The Importance of Virus Discovery in Understanding the Evolutionary Challenges of RNA Viruses
3.2. Zoonotic Interfaces and the Ecology of Viral Emergence
3.3. Strategic Preparedness and the Ethics of Discovery
3.4. The Next Ten Years of RNA Virus Discovery
4. Conclusions
Shaping the Future of RNA Virus Discovery and Global Health Resilience
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez-Munoz, S.; Upegui-Porras, N.; Gomez, A.P.; Ramirez-Nieto, G. Key factors that enable the pandemic potential of RNA viruses and inter-species transmission: A systematic review. Viruses 2021, 13, 537. [Google Scholar] [CrossRef] [PubMed]
- Ankolekar, A.; Eppings, L.; Bottari, F.; Pinho, I.F.; Howard, K.; Baker, R.; Nan, Y.; Xing, X.; Walsh, S.L.F.; Vos, W.; et al. Using artificial intelligence and predictive modelling to enable learning healthcare systems (LHS) for pandemic preparedness. Comput. Struct. Biotechnol. J. 2024, 24, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Guerriero, P.; Pierantoni, M.; Callegari, E.; Sabbioni, S. Novel Virus Identification through Metagenomics: A Systematic Review. Life 2022, 12, 2048. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.; Albery, G.; Sjodin, A.; Poisot, T.; Bergner, L.; Chen, B.; Cohen, L.E.; Dallas, T.A.; Eskew, E.A.; Fagre, A.C.; et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe 2022, 3, e625–e637. [Google Scholar] [CrossRef]
- Bolles, M.; Donaldson, E.; Baric, R. SARS-CoV and emergent coronaviruses: Viral determinants of interspecies transmission. Curr. Opin. Virol. 2011, 1, 624–634. [Google Scholar] [CrossRef]
- Borham, A.; Motaal, K.; ElSersawy, N.; Ahmed, Y.; Mahmoud, S.; Musaibah, A.; Abdelnaser, A. Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology. Int. J. Environ. Res. Public Health 2025, 22, 883. [Google Scholar] [CrossRef]
- Chang, W.; Harvey, E.; Mahar, J.; Firth, C.; Shi, M.; Simon-Loriere, E.; Geoghegan, J.L.; Wille, M. Improving the reporting of metagenomic virome-scale data. Commun. Biol. 2024, 7, 1687. [Google Scholar] [CrossRef]
- Charon, J.; Olendraite, I.; Forgia, M.; Chong, L.; Hillary, L.; Roux, S.; Kupczok, A.; Debat, H.; Sakaguchi, S.; Tahzima, R.; et al. Consensus statement from the first RdRp Summit: Advancing RNA virus discovery at scale across communities. Front. Virol. 2024, 4, 1371958. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, J.; Sun, Y. RNAVirHost: A machine learning-based method for predicting hosts of RNA viruses through viral genomes. GigaScience 2024, 13, giae059. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, P.; Zhang, F.; Dai, H.; Jiao, X.; Wang, X.-Y.; Yu, Q.-W.; Kang, M.; Su, S.; Wang, D. Sensors for surveillance of RNA viruses: A One Health perspective. Lancet Microbe 2025, 6, 101029. [Google Scholar] [CrossRef]
- Cobbin, J.C.; Charon, J.; Harvey, E.; Holmes, E.C.; Mahar, J.E. Current challenges to virus discovery by meta-transcriptomics. Curr. Opin. Virol. 2021, 51, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Miah, M.; Hossain, M.E.; Rahim, S.; Sultana, S.; Satter, S.M.; Islam, A.; Whitmer, S.L.M.; Epstein, J.H.; Spiropoulou, C.F.; et al. Development of a culture-independent whole-genome sequencing of Nipah virus using the MinION Oxford Nanopore platform. Microbiol. Spectr. 2025, 13, e0249224. [Google Scholar] [CrossRef]
- Chien, Y.; Chen, F.; Wu, H.; Lin, C.; Chang, W.; Perera, D.; Yang, J.; Lee, M.; Liao, Y. Cost-effective complete genome sequencing using the MinION platform for identification of recombinant enteroviruses. Microbiol. Spectr. 2023, 11, e02507-23. [Google Scholar] [CrossRef] [PubMed]
- Filloux, D.; Fernandez, E.; Loire, E.; Claude, L.; Galzi, S.; Candresse, T.; Winter, S.; Jeeva, M.L.; Makeshkumar, T.; Martin, D.P.; et al. Nanopore-based detection and characterization of yam viruses. Sci. Rep. 2018, 8, 17879. [Google Scholar] [CrossRef]
- Kleanthous, E.; Olendraite, I.; Lukhovitskaya, N.I.; Firth, A.E. Discovery of three RNA viruses using ant transcriptomic datasets. Arch. Virol. 2019, 164, 643–647. [Google Scholar] [CrossRef]
- Neri, U.; Wolf, Y.I.; Roux, S.; Camargo, A.P.; Lee, B.; Kazlauskas, D.; Chen, I.M.; Ivanova, N.; Zeigler Allen, L.; Paez-Espino, D.; et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022, 185, 4023–4037. [Google Scholar] [CrossRef]
- Dolja, V.V.; Koonin, E.V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 2018, 244, 36–52. [Google Scholar] [CrossRef]
- Zhou, L.; Leung, T.H. Detection by Single-Cell RNA Sequencing of Virally Mediated Skin Diseases. JID Innov. Ski. Sci. Mol. Popul. Health 2025, 5, 100348. [Google Scholar] [CrossRef]
- Russell, A.B.; Elshina, E.; Kowalsky, J.R.; Te Velthuis AJ, W.; Bloom, J.D. Single-Cell Virus Sequencing of Influenza Infections That Trigger Innate Immunity. J. Virol. 2019, 93, e00500-19. [Google Scholar] [CrossRef]
- Fromm, A.; Hevroni, G.; Vincent, F.; Schatz, D.; Martinez-Gutierrez, C.A.; Aylward, F.O.; Vardi, A. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat. Microbiol. 2024, 9, 1619–1629. [Google Scholar] [CrossRef]
- Dominguez-Huerta, G.; Wainaina, J.; Zayed, A.; Culley, A.; Kuhn, J.; Sullivan, M. The RNA virosphere: How big and diverse is it? Environ. Microbiol. 2023, 25, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Taylor, B.; Lin, V.; Altman, T.; Barbera, P.; Meleshko, D.; Lohr, D.; Novakovsky, G.; Buchfink, B.; Al-Shayeb, B.; et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 2022, 602, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Elrashedy, A.; Mousa, W.; Nayel, M.; Salama, A.; Zaghawa, A.; Elsify, A.; Hasan, M. Advances in bioinformatics and multi-omics integration: Transforming viral infectious disease research in veterinary medicine. Virol. J. 2025, 22, 22. [Google Scholar] [CrossRef]
- Esposito, M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef]
- Geoghegan, J.; Holmes, E. Predicting virus emergence amid evolutionary noise. Open Biol. 2017, 7, 170189. [Google Scholar] [CrossRef]
- Ghai, R.R.; Carpenter, A.; Liew, A.Y.; Martin, K.B.; Herring, M.K.; Gerber, S.I.; Hall, A.J.; Sleeman, J.M.; VonDobschuetz, S.; Behravesh, C.B. Animal reservoirs and hosts for emerging alphacoronaviruses and betacoronaviruses. Emerg. Infect. Dis. 2021, 27, 1015–1022. [Google Scholar] [CrossRef]
- Gorbalenya, A.; Lauber, C. Bioinformatics of virus taxonomy: Foundations and tools for developing sequence-based hierarchical classification. Curr. Opin. Virol. 2022, 52, 48–56. [Google Scholar] [CrossRef]
- Grange, Z.L.; Goldstein, T.; Johnson, C.K.; Anthony, S.; Gilardi, K.; Daszak, P.; Olival, K.J.; O’Rourke, T.; Murray, S.; Olson, S.H.; et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc. Natl. Acad. Sci. USA 2021, 118, e2002324118. [Google Scholar] [CrossRef]
- Hill, V.; Githinji, G.; Vogels, C.; Bento, A.; Chaguza, C.; Carrington, C.; Grubaugh, N. Toward a global virus genomic surveillance network. Cell Host Microbe 2023, 31, 861–873. [Google Scholar] [CrossRef]
- Holmes, E.C. The ecology of viral emergence. Annu. Rev. Virol. 2022, 9, 173–192. [Google Scholar] [CrossRef]
- Holmes, E.; Krammer, F. Goodrum F Virology—The next fifty years. Cell 2024, 187, 5128–5145. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; He, Y.; Fang, P.; Mei, S.; Xu, Z.; Wu, W.-C.; Tian, J.-H.; Zhang, S.; Zeng, Z.-Y.; Gou, Q.-Y.; et al. Using artificial intelligence to document the hidden RNA virosphere. Cell 2024, 187, 6929–6942.e16. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, J.; Suzuki, T.; Hamada, M. Hidden challenges in evaluating spillover risk of zoonotic viruses using machine learning models. Commun. Med. 2025, 5, 187. [Google Scholar] [CrossRef] [PubMed]
- Kokoris, M.; McRuer, R.; Nabavi, M.; Jacobs, A.; Prindle, M.; Cech, C.; Berg, K.; Lehmann, T.; Machacek, C.; Tabone, J.; et al. Sequencing by Expansion (SBX)—A novel, high-throughput single-molecule sequencing technology. bioRxiv 2025. [Google Scholar] [CrossRef]
- Koonin, E.; Kuhn, J.; Dolja, V.; Krupovic, M. Megataxonomy and global ecology of the virosphere. ISME J. 2024, 18, wrad042. [Google Scholar] [CrossRef]
- Koren, O.; Chavez, L. The land-use land-cover change–emerging infectious disease nexus reconsidered. BioScience 2025, biaf045. [Google Scholar] [CrossRef]
- Lauber, C.; Seitz, S. Opportunities and challenges of data-driven virus discovery. Biomolecules 2022, 12, 1073. [Google Scholar] [CrossRef]
- Liu-Wei, W.; Kafkas, Ş.; Chen, J.; Dimonaco, N.J.; Tegnér, J.; Hoehndorf, R. DeepViral: Prediction of novel virus–host interactions from protein sequences and infectious disease phenotypes. Bioinformatics 2021, 37, 2722–2729. [Google Scholar] [CrossRef]
- Mandl, J.N.; Ahmed, R.; Barreiro, L.B.; Daszak, P.; Epstein, J.H.; Virgin, H.W.; Feinberg, M.B. Reservoir host immune responses to emerging zoonotic viruses. Cell 2015, 160, 20–35. [Google Scholar] [CrossRef]
- Marie, V.; Gordon, M. The (Re-)Emergence and Spread of Viral Zoonotic Disease: A Perfect Storm of Human Ingenuity and Stupidity. Viruses 2023, 15, 1638. [Google Scholar] [CrossRef]
- Martinez-Hernandez, F.; Fornas, O.; Lluesma Gomez, M.; Bolduc, B.; de la Cruz Peña, M.J.; Martínez, J.M.; Anton, J.; Gasol, J.M.; Rosselli, R.; Rodriguez-Valera, F.; et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 2017, 8, 15892. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.; Agarwal, A.; Saxena, S.K.; Katoch, C.D.S. Transforming clinical virology with AI, machine learning and deep learning: A comprehensive review and outlook. VirusDisease 2023, 34, 345–355. [Google Scholar] [CrossRef]
- Pandit, P.; Anthony, S.; Goldstein, T.; Olival, K.; Doyle, M.; Gardner, N.R.; Bird, B.; Smith, W.; Wolking, D.; Gilardi, K.; et al. Predicting the potential for zoonotic transmission and host associations for novel viruses. Commun. Biol. 2022, 5, 844. [Google Scholar] [CrossRef]
- Pauciullo, S.; Zulian, V.; La Frazia, S.; Paci, P.; Garbuglia, A. Spillover: Mechanisms, Genetic Barriers, and the Role of Reservoirs in Emerging Pathogens. Microorganisms 2024, 12, 2191. [Google Scholar] [CrossRef]
- Plowright, R.; Parrish, C.; McCallum, H.; Hudson, P.; Ko, A.; Graham, A.; Lloyd-Smith, J. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef]
- Posada-Cespedes, S.; Seifert, D.; Beerenwinkel, N. Recent advances in inferring viral diversity from high-throughput sequencing data. Virus Res. 2017, 239, 17–32. [Google Scholar] [CrossRef]
- Roux, S.; Matthijnssens, J.; Dutilh, B. Metagenomics in Virology. Encycl. Virol. 2021, 1, 133–140. [Google Scholar] [CrossRef]
- Rosenberg, R. Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cell. Mol. Life Sci. 2015, 72, 1115–1125. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.; Hollister, E. Unraveling the viral dark matter through viral metagenomics. Front. Immunol. 2022, 13, 1005107. [Google Scholar] [CrossRef]
- Sharan, M.; Vijay, D.; Yadav, J.; Bedi, J.; Dhaka, P. Surveillance and response strategies for zoonotic diseases: A comprehensive review. Sci. One Health 2023, 2, 100050. [Google Scholar] [CrossRef]
- Šimičić, P.; Židovec-Lepej, S. A glimpse on the evolution of RNA viruses: Implications and lessons from SARS-CoV-2. Viruses 2022, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Adriaenssens, E.; Zerbini, F.M.; Abrescia, N.; Aiewsakun, P.; Alfenas-Zerbini, P.; Bao, Y.; Barylski, J.; Drosten, C.; Duffy, S.; et al. Four principles to establish a universal virus taxonomy. PLoS Biol. 2023, 21, e3001922. [Google Scholar] [CrossRef] [PubMed]
- Struelens, M.J.; Ludden, C.; Werner, G.; Sintchenko, V.; Jokelainen, P.; Ip, M. Real-time genomic surveillance for enhanced control of infectious diseases and antimicrobial resistance. Front. Sci. 2024, 2, 1298248. [Google Scholar] [CrossRef]
- Walensky, R.P.; Walke, H.T.; Fauci, A.S. SARS-CoV-2 variants of concern in the United States—Challenges and opportunities. JAMA 2021, 325, 1037–1038. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Wang, Z.; Yang, W.; Li, E.; Xia, X.; Yan, F.; Chiu, S. Emerging and reemerging infectious diseases: Global trends and new strategies for their prevention and control. Signal Transduct. Target. Ther. 2024, 9, 223. [Google Scholar] [CrossRef]
- Yang, Z.; Shan, Y.; Liu, X.; Chen, G.; Pan, Y.; Gou, Q.; Zou, J.; Chang, Z.; Zeng, Q.; Yang, C.; et al. VirID: Beyond Virus Discovery—An Integrated Platform for Comprehensive RNA Virus Characterization. Mol. Biol. Evol. 2024, 41, msae202. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Wang, W.; Qin, X.; Holmes, E. Expanding the RNA Virosphere by Unbiased Metagenomics. Annu. Rev. Virol. 2019, 6, 119–139. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Jiang, M.; Hou, H.; Gao, Y.; Li, Y.; Wang, F.; Wang, J.; Peng, K.; Liu, Y.-X. Nanopore sequencing: Flourishing in its teenage years. J. Genet. Genom. 2024, 51, 1361–1374. [Google Scholar] [CrossRef]
Period/Year | Milestone/Advancement |
---|---|
Early 2000s | Foundational Sequencing and Bioinformatics Completion of the Human Genome Project, establishing large-scale sequencing capabilities. Widespread adoption of Sanger sequencing and initial development of foundational bioinformatics tools. |
Mid 2000s | First-Generation Next-Generation Sequencing (NGS) Introduction of high-throughput sequencing platforms (e.g., 454 Life Sciences, Illumina Genome Analyzer), enabling parallel sequencing and significantly reducing costs and time per base. |
Late 2000s–Early 2010s | Metagenomics and Metatranscriptomics Emergence Development and widespread application of unbiased metagenomic and metatranscriptomic approaches, allowing for the discovery of novel viruses without prior cultivation. |
Mid 2010s | Third-Generation Sequencing and Portability Commercialization of long-read sequencing technologies (e.g., Pacific Biosciences, Oxford Nanopore Technologies’ MinION), offering real-time data, portability, and improved resolution for complex genomes. |
Late 2010s–Early 2020s | Advanced Computational and Single-Cell Approaches Significant advancements in single-cell sequencing, enabling analysis of viral presence and gene expression at individual host cell resolution. Increased integration of Artificial Intelligence (AI) and Machine Learning (ML) for tasks like viral host prediction and classification. Development of large-scale cloud-based bioinformatics infrastructures (e.g., Serratus) for petabase-scale data analysis. |
Recent/Ongoing | Integrated Omics and Global Collaboration Expansion of multi-omics integration (genomics, transcriptomics, proteomics) for a holistic view of virus–host interactions. Growth of global data-sharing initiatives and collaborative networks accelerating virus discovery and surveillance efforts. |
Challenges | Perspectives |
---|---|
Sample Collection Remote access, degradation, contamination, and lack of standardized methods limit the quality and scope of samples. (See Section 2.5.1.) | Multi-Omics Integration Combining genomics, transcriptomics, and proteomics to illuminate virus–host dynamics. (See Section 2.4.) |
Data Overload and Interpretation Discriminating real viral sequences from noise in large metagenomic datasets remains difficult. (See Section 2.5.2.) | AI-Powered Discovery Machine learning models to enhance virus classification, host prediction, and outbreak risk assessment. (See Section 3.4.) |
Viral Characterization Functional and biological validation lags behind genomic identification due to lack of isolates and models. (See Section 2.5.2.) | Portable Sequencing Platforms On-site and real-time virus detection through ultra-portable, affordable sequencing technologies. (See Section 2.1.) |
Taxonomic Uncertainty Novel lineages challenge existing classification schemes, demanding more flexible and dynamic frameworks. (See Section 2.5.2.) | One Health and Ecological Frameworks Integrated views of human, animal, and environmental health to contextualize virus emergence. (See Section 2.4.) |
Ethical and Legal Issues Sample ownership, informed consent, and fair benefit sharing are unresolved, especially in biodiverse regions. (See Section 3.3.) | Global Equity and Capacity Building International collaboration, open-access data, and inclusive training to democratize discovery. (See Section 3.3.) |
Innovation | Impact On Virus Discovery |
---|---|
Petabase-Scale Alignment | Enables detection of highly divergent RNA viruses from massive sequencing repositories using signature viral markers like RdRp. |
Single-Cell Sequencing | Provides resolution at the level of individual infected cells, uncovering within-host diversity and viral replication dynamics. |
Ultra-Portable Sequencers (E.G., Minion) | Facilitates real-time, field-based virus detection for outbreak response and surveillance in remote locations. |
Predictive Spillover Modeling | Integrates ecological, host, and evolutionary data to identify high-risk interfaces for zoonotic emergence. |
Ai-Based Genome Annotation | Automates and accelerates the functional classification of viral genomes, improving throughput and reliability. |
Viral Dark Matter Exploration | Focuses on uncovering unclassified or unculturable viruses, expanding the known virosphere and redefining taxonomy. |
Cloud-Based Discovery Pipelines | Democratizes computational power, enabling global researchers to analyze viral metagenomic data at scale. |
Synthetic Viromics | Allows for the synthetic reconstruction and functional testing of candidate viruses to evaluate host range and pathogenicity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debat, H.; Bejerman, N. An Update on RNA Virus Discovery: Current Challenges and Future Perspectives. Viruses 2025, 17, 983. https://doi.org/10.3390/v17070983
Debat H, Bejerman N. An Update on RNA Virus Discovery: Current Challenges and Future Perspectives. Viruses. 2025; 17(7):983. https://doi.org/10.3390/v17070983
Chicago/Turabian StyleDebat, Humberto, and Nicolas Bejerman. 2025. "An Update on RNA Virus Discovery: Current Challenges and Future Perspectives" Viruses 17, no. 7: 983. https://doi.org/10.3390/v17070983
APA StyleDebat, H., & Bejerman, N. (2025). An Update on RNA Virus Discovery: Current Challenges and Future Perspectives. Viruses, 17(7), 983. https://doi.org/10.3390/v17070983