A Beautiful Bind: Phage Display and the Search for Cell-Selective Peptides
Abstract
1. Introduction
2. Phage Display and Combinatorial Peptide Libraries
3. Affinity Selection of Phage Display Peptide Libraries Through Biopanning
4. Target Presentation in Biopanning
4.1. Biopanning on Recombinant Proteins
4.2. Biopanning on Whole Cells
4.3. Ex Vivo Biopanning
4.4. In Vivo Biopanning
5. The Application of Phage Display for the Discovery of Cell-Selective Peptides
5.1. Peptides and Their Interactions with Cell Surface Proteins
5.2. Cell Surface Protein-Binding Peptides Identified by Phage Display
6. Affinity Maturation of Peptides Derived from Phage Display by Building Secondary Libraries
6.1. Definition and Scope of Affinity Maturation
6.2. Strategies for Peptide Affinity Maturation: Random Approach and Rational Design
6.3. Greedy vs. Non-Greedy Strategies for Optimization of Peptide Binding Affinity
7. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AgNPs | Silver nanoparticles |
AI | Artificial intelligence |
BBB | Blood–brain barrier |
BTIC | Brain tumor initiating cell |
BSA | Bovine serum albumin |
CCR7 | C-C chemokine receptor type 7 |
CPT | Camptothecin |
DAS | Dorsal air sac |
ECM | Extracellular matrix |
EGFRvIII | Epidermal growth factor tyrosine kinase receptor variant III |
EPC | Endothelial progenitor cell |
EpCAM | Epithelial cell adhesion molecule |
EpoR | Erythropoietin receptor |
ESCC | Esophageal squamous cell carcinoma |
FGFR2 | Fibroblast growth factor receptor 2 |
FLAP | 5-lipoxygenase-activating protein |
FRα | Folate receptor α |
GPCR | G-protein coupled receptor |
GPC-3 | Glypican-3 |
GST | Glutathione S-transferase |
HA | Hemagglutinin |
HAE | Hereditary angioedema |
hCMEC | Human cerebral microvascular endothelial cell |
HCC | Hepatocellular carcinoma |
HESC | Human immortalized epithelial-like eutopic endometrial stromal cell |
\ | |
HTS | High-throughput sequencing |
HuCCT-1 | Human cholangiocarcinoma cell line T1 |
IGF2BP2 | Insulin-like growth factor 2 mRNA-binding protein 2 |
ITP | Immune thrombocytopenic purpura |
LCC | Large carcinoma cell |
LGR5 | Leucine-rich repeat-containing G-protein coupled receptor 5 |
LMP1 | Latent membrane protein 1 |
MBP | Maltose-binding protein |
MD simulation | Molecular dynamics simulation |
ML | Machine learning |
MMP | Matrix metalloproteinase |
NGS | Next-generation sequencing |
NMR | Nuclear magnetic resonance |
NPC | Nasopharyngeal carcinoma |
NSCLC | Non-small cell lung cancer |
OPA | Ortho-phthalaldehyde |
PAI1 | Plasminogen activator inhibitor 1 |
PBI | Phage binding index |
PD-L1 | Programmed death-ligand 1 |
PDX | Patient-derived xenograft |
pIII, pVI, pVII, pVIII, pIX | Coat proteins (3, 6, 7, 8, 9) of the filamentous M13 phage |
PNH | Paroxysmal nocturnal hemoglobinuria |
PPI | Protein–protein interaction |
PSMA | Prostate-specific membrane antigen |
SAR | Structure–activity relationship |
SPIONs | Super-paramagnetic iron oxide nanoparticles |
ssDNA | Single-stranded DNA |
TBMB | 1,3,5-tris(bromomethyl)benzene |
TIMP-1 | Tissue inhibitor of metalloproteinases 1 (metalloproteinase inhibitor 1) |
TMDs | Transmembrane domains |
TpoR | Thrombopoietin receptor |
TUPs | Target-unrelated peptides |
References
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef]
- Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390. [Google Scholar] [CrossRef]
- Parmley, S.F.; Smith, G.P. Antibody-selectable filamentous fd phage vectors: Affinity purification of target genes. Gene 1988, 73, 305–318. [Google Scholar] [CrossRef]
- Gray, B.P.; Li, S.; Brown, K.C. From phage display to nanoparticle delivery: Functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug. Chem. 2013, 24, 85–96. [Google Scholar] [CrossRef]
- Dókus, L.E.; Lajkó, E.; Ranđelović, I.; Mező, D.; Schlosser, G.; Kőhidai, L.; Tóvári, J.; Mező, G. Phage display-based homing peptide-daunomycin conjugates for selective drug targeting to PANC-1 pancreatic cancer. Pharmaceutics 2020, 12, 576. [Google Scholar] [CrossRef]
- Qin, Y.; Cheng, S.; Li, Y.; Zou, S.; Chen, M.; Zhu, D.; Gao, S.; Wu, H.; Zhu, L.; Zhu, X. The development of a Glypican-3-specific binding peptide using in vivo and in vitro two-step phage display screening for the PET imaging of hepatocellular carcinoma. Biomater. Sci. 2020, 8, 5656–5665. [Google Scholar] [CrossRef] [PubMed]
- Soendergaard, M.; Newton-Northup, J.R.; Deutscher, S.L. In vivo phage display selection of an ovarian cancer targeting peptide for SPECT/CT imaging. Am. J. Nucl. Med. Mol. Imaging 2014, 4, 561–570. [Google Scholar] [PubMed]
- Pierzynowska, K.; Morcinek-Orłowska, J.; Gaffke, L.; Jaroszewicz, W.; Skowron, P.M.; Węgrzyn, G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit. Rev. Microbiol. 2024, 50, 450–490. [Google Scholar] [CrossRef]
- Saw, P.E.; Song, E.-W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019, 10, 787–807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Tang, Y.; Chen, Q.; Liu, Y. The screening of therapeutic peptides for anti-inflammation through phage display technology. Int. J. Mol. Sci. 2022, 23, 8554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Gao, H.; Qing, G. Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics 2022, 12, 2041–2062. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem. 2018, 61, 1382–1414. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today 2013, 18, 807–817. [Google Scholar] [CrossRef]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef]
- Tsomaia, N. Peptide therapeutics: Targeting the undruggable space. Eur. J. Med. Chem. 2015, 94, 459–470. [Google Scholar] [CrossRef]
- Atangcho, L.; Navaratna, T.; Thurber, G.M. Hitting undruggable targets: Viewing stabilized peptide development through the lens of quantitative systems pharmacology. Trends Biochem. Sci. 2019, 44, 241–257. [Google Scholar] [CrossRef]
- Jiang, J.; Abu-Shilbayeh, L.; Rao, V.B. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect. Immun. 1997, 65, 4770–4777. [Google Scholar] [CrossRef]
- Sharma, S.C.; Memic, A.; Rupasinghe, C.N.; Duc, A.C.E.; Spaller, M.R. T7 phage display as a method of peptide ligand discovery for PDZ domain proteins. Pept. Sci. Orig. Res. Biomol. 2009, 92, 183–193. [Google Scholar] [CrossRef]
- González-Cano, P.; Gamage, L.N.; Marciniuk, K.; Hayes, C.; Napper, S.; Hayes, S.; Griebel, P.J. Lambda display phage as a mucosal vaccine delivery vehicle for peptide antigens. Vaccine 2017, 35, 7256–7263. [Google Scholar] [CrossRef]
- Chackerian, B.; do Carmo Caldeira, J.; Peabody, J.; Peabody, D.S. Peptide epitope identification by affinity selection on bacteriophage MS2 virus-like particles. J. Mol. Biol. 2011, 409, 225–237. [Google Scholar] [CrossRef]
- Skamel, C.; Aller, S.G.; Bopda Waffo, A. In vitro evolution and affinity-maturation with coliphage Qβ display. PLoS ONE 2014, 9, e113069. [Google Scholar] [CrossRef]
- Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: Concept, innovations, applications and future. Biotechnol. Adv. 2010, 28, 849–858. [Google Scholar] [CrossRef]
- Rakonjac, J.; Russel, M.; Khanum, S.; Brooke, S.J.; Rajič, M. Filamentous phage: Structure and biology. In Recombinant Antibodies for Infectious Diseases; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–20. [Google Scholar]
- Ebrahimizadeh, W.; Rajabibazl, M. Bacteriophage vehicles for phage display: Biology, mechanism, and application. Curr. Microbiol. 2014, 69, 109–120. [Google Scholar] [CrossRef]
- Hamzeh-Mivehroud, M.; Alizadeh, A.A.; Morris, M.B.; Church, W.B.; Dastmalchi, S. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov. Today 2013, 18, 1144–1157. [Google Scholar] [CrossRef]
- Geysen, H.M.; Meloen, R.H.; Barteling, S.J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 1984, 81, 3998–4002. [Google Scholar] [CrossRef]
- Aghebati-Maleki, L.; Bakhshinejad, B.; Baradaran, B.; Motallebnezhad, M.; Aghebati-Maleki, A.; Nickho, H.; Yousefi, M.; Majidi, J. Phage display as a promising approach for vaccine development. J. Biomed. Sci. 2016, 23, 66. [Google Scholar] [CrossRef]
- O’Neil, K.T.; Hoess, R.H.; Jackson, S.A.; Ramachandran, N.S.; Mousa, S.A.; DeGrado, W.F. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins Struct. Funct. Bioinform. 1992, 14, 509–515. [Google Scholar] [CrossRef]
- Ladner, R.C. Constrained peptides as binding entities. Trends Biotechnol. 1995, 13, 426–430. [Google Scholar] [CrossRef]
- Ho, K.L.; Yusoff, K.; Seow, H.F.; Tan, W.S. Selection of high affinity ligands to hepatitis B core antigen from a phage-displayed cyclic peptide library. J. Med. Virol. 2003, 69, 27–32. [Google Scholar] [CrossRef]
- Kolmar, H. Biological diversity and therapeutic potential of natural and engineered cystine knot miniproteins. Curr. Opin. Pharmacol. 2009, 9, 608–614. [Google Scholar] [CrossRef]
- Li, X.; Craven, T.W.; Levine, P.M. Cyclic peptide screening methods for preclinical drug discovery: Miniperspective. J. Med. Chem. 2022, 65, 11913–11926. [Google Scholar] [CrossRef]
- Heo, Y.-A. Pegcetacoplan: A review in paroxysmal nocturnal haemoglobinuria. Drugs 2022, 82, 1727–1735. [Google Scholar] [CrossRef]
- Cicardi, M.; Levy, R.J.; McNeil, D.L.; Li, H.H.; Sheffer, A.L.; Campion, M.; Horn, P.T.; Pullman, W.E. Ecallantide for the treatment of acute attacks in hereditary angioedema. N. Engl. J. Med. 2010, 363, 523–531. [Google Scholar] [CrossRef]
- Wang, X.S.; Chen, P.H.C.; Hampton, J.T.; Tharp, J.M.; Reed, C.A.; Das, S.K.; Wang, D.S.; Hayatshahi, H.S.; Shen, Y.; Liu, J. A genetically encoded, phage-displayed cyclic-peptide library. Angew. Chem. 2019, 131, 16051–16056. [Google Scholar] [CrossRef]
- Sohrabi, C.; Foster, A.; Tavassoli, A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat. Rev. Chem. 2020, 4, 90–101. [Google Scholar] [CrossRef]
- Kamstrup Sell, D.; Sinkjaer, A.W.; Bakhshinejad, B.; Kjaer, A. Propagation capacity of phage display peptide libraries is affected by the length and conformation of displayed peptide. Molecules 2023, 28, 5318. [Google Scholar] [CrossRef]
- Deyle, K.; Kong, X.-D.; Heinis, C. Phage selection of cyclic peptides for application in research and drug development. Acc. Chem. Res. 2017, 50, 1866–1874. [Google Scholar] [CrossRef]
- Heinis, C.; Rutherford, T.; Freund, S.; Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 2009, 5, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, L.; Ivarsson, Y. Genetically encoded cyclic peptide phage display libraries. ACS Cent. Sci. 2020, 6, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Bellotto, S.; Chen, S.; Rentero Rebollo, I.; Wegner, H.A.; Heinis, C. Phage selection of photoswitchable peptide ligands. J. Am. Chem. Soc. 2014, 136, 5880–5883. [Google Scholar] [CrossRef]
- Jafari, M.R.; Deng, L.; Kitov, P.I.; Ng, S.; Matochko, W.L.; Tjhung, K.F.; Zeberoff, A.; Elias, A.; Klassen, J.S.; Derda, R. Discovery of light-responsive ligands through screening of a light-responsive genetically encoded library. ACS Chem. Biol. 2014, 9, 443–450. [Google Scholar] [CrossRef]
- Xiang, H.; Bai, L.; Zhang, X.; Dan, T.; Cheng, P.; Yang, X.; Ai, H.; Li, K.; Lei, X. A facile strategy for the construction of a phage display cyclic peptide library for the selection of functional macrocycles. Chem. Sci. 2024, 15, 11847–11855. [Google Scholar] [CrossRef]
- Kay, B.K.; Adey, N.B.; Yun-Sheng, H.; Manfredi, J.P.; Mataragnon, A.H.; Fowlkes, D.M. An M13 phage library displaying random 38-amino-acid peptides as a source of novel sequences with affinity to selected targets. Gene 1993, 128, 59–65. [Google Scholar] [CrossRef]
- Sloth, A.B.; Bakhshinejad, B.; Jensen, M.; Stavnsbjerg, C.; Liisberg, M.B.; Rossing, M.; Kjaer, A. Analysis of compositional bias in a commercial phage display peptide library by next-generation sequencing. Viruses 2022, 14, 2402. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.P.; Petrenko, V.A. Phage display. Chem. Rev. 1997, 97, 391–410. [Google Scholar] [CrossRef]
- Bibi, N.; Niaz, H.; Hupp, T.; Kamal, M.A.; Rashid, S. Screening and identification of PLK1-Polo box binding peptides by high-throughput sequencing of phage-selected libraries. Protein Pept. Lett. 2019, 26, 620–633. [Google Scholar] [CrossRef]
- Juds, C.; Schmidt, J.; Weller, M.G.; Lange, T.; Beck, U.; Conrad, T.; Börner, H.G. Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces. J. Am. Chem. Soc. 2020, 142, 10624–10628. [Google Scholar] [CrossRef]
- He, B.; Li, B.; Chen, X.; Zhang, Q.; Lu, C.; Yang, S.; Long, J.; Ning, L.; Chen, H.; Huang, J. PDL1Binder: Identifying programmed cell death ligand 1 binding peptides by incorporating next-generation phage display data and different peptide descriptors. Front. Microbiol. 2022, 13, 928774. [Google Scholar] [CrossRef]
- Mansour, S.; Adhya, I.; Lebleu, C.; Dumpati, R.; Rehan, A.; Chall, S.; Dai, J.; Errasti, G.; Delacroix, T.; Chakrabarti, R. Identification of a novel peptide ligand for the cancer-specific receptor mutation EGFRvIII using high-throughput sequencing of phage-selected peptides. Sci. Rep. 2022, 12, 20725. [Google Scholar] [CrossRef] [PubMed]
- Pleiko, K.; Põšnograjeva, K.; Haugas, M.; Paiste, P.; Tobi, A.; Kurm, K.; Riekstina, U.; Teesalu, T. In vivo phage display: Identification of organ-specific peptides using deep sequencing and differential profiling across tissues. Nucleic Acids Res. 2021, 49, e38. [Google Scholar] [CrossRef] [PubMed]
- Spiliotopoulos, A.; Maurer, S.K.; Tsoumpeli, M.T.; Bonfante, J.A.; Owen, J.P.; Gough, K.C.; Dreveny, I. Next-generation phage display to identify peptide ligands of deubiquitinases. In Deubiquitinases: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2022; pp. 189–218. [Google Scholar]
- Kohl, F.; Laufkötter, O.; Firth, M.; Krimpenfort, L.; Mangla, P.; Ansarizadeh, M.; Geylan, G.; Eklund, L.; De Maria, L.; Jakobsson, L. Identification of cell type-specific cell-penetrating peptides through in vivo phage display leveraged by next generation sequencing. Biomed. Pharmacother. 2025, 182, 117740. [Google Scholar] [CrossRef] [PubMed]
- Sloth, A.B.; Bakhshinejad, B.; Stavnsbjerg, C.; Rossing, M.; Kjaer, A. Depth of sequencing plays a determining role in the characterization of phage display peptide libraries by NGS. Int. J. Mol. Sci. 2023, 24, 5396. [Google Scholar] [CrossRef]
- Sell, D.K.; Bakhshinejad, B.; Sinkjaer, A.W.; Dawoodi, I.M.; Wiinholt, M.N.; Sloth, A.B.; Stavnsbjerg, C.; Kjaer, A. Using NGS to Uncover the Corruption of a Peptide Phage Display Selection. Curr. Issues Mol. Biol. 2024, 46, 10590–10605. [Google Scholar] [CrossRef]
- AC’t Hoen, P.; Jirka, S.M.; Ten Broeke, B.R.; Schultes, E.A.; Aguilera, B.; Pang, K.H.; Heemskerk, H.; Aartsma-Rus, A.; van Ommen, G.J.; den Dunnen, J.T. Phage display screening without repetitious selection rounds. Anal. Biochem. 2012, 421, 622–631. [Google Scholar] [CrossRef]
- Rentero Rebollo, I.; Sabisz, M.; Baeriswyl, V.; Heinis, C. Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Res. 2014, 42, e169. [Google Scholar] [CrossRef]
- Munisso, M.C.; Yamaoka, T. Novel peptides for small-caliber graft functionalization selected by a phage display of endothelial-positive/platelet-negative combined selection. J. Mater. Chem. B 2017, 5, 9354–9364. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, W.; Zhu, Z.; Lang, L.; Wang, J.; Huang, M.; Zhang, M.; Yang, C. Selection and identification of transferrin receptor-specific peptides as recognition probes for cancer cells. Anal. Bioanal. Chem. 2018, 410, 1071–1077. [Google Scholar] [CrossRef]
- Abbineni, G.; Modali, S.; Safiejko-Mroczka, B.; Petrenko, V.A.; Mao, C. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol. Pharm. 2010, 7, 1629–1642. [Google Scholar] [CrossRef]
- Bakhshinejad, B.; Sadeghizadeh, M. Identification of a novel colon adenocarcinoma cell targeting peptide using phage display library biopanning. Biotechnol. Appl. Biochem. 2022, 69, 2753–2765. [Google Scholar] [CrossRef] [PubMed]
- Koide, A.; Wojcik, J.; Gilbreth, R.N.; Reichel, A.; Piehler, J.; Koide, S. Accelerating phage-display library selection by reversible and site-specific biotinylation. Protein Eng. Des. Sel. 2009, 22, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Colazet, M.; Chames, P. Phage display and selections on purified antigens. In Antibody Engineering: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2018; pp. 165–178. [Google Scholar]
- Butler, J.; Ni, L.; Nessler, R.; Joshi, K.; Suter, M.; Rosenberg, B.; Chang, J.; Brown, W.; Cantarero, L. The physical and functional behavior of capture antibodies adsorbed on polystyrene. J. Immunol. Methods 1992, 150, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Liu, I.-J.; Lu, R.-M.; Wu, H.-C. Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci. 2016, 23, 8. [Google Scholar] [CrossRef]
- Kubicek, J.; Block, H.; Maertens, B.; Spriestersbach, A.; Labahn, J. Expression and purification of membrane proteins. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 541, pp. 117–140. [Google Scholar]
- Even-Desrumeaux, K.; Chames, P. Phage display and selections on cells. In Antibody Engineering: Methods and Protocols, Second Edition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 225–235. [Google Scholar]
- Zhu, X.; Wu, H.; Luo, S.; Xianyu, Z.; Zhu, D. Screening and identification of a novel hepatocellular carcinoma cell binding peptide by using a phage display library. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2008, 28, 299–303. [Google Scholar] [CrossRef]
- Gross, A.L.; Gillespie, J.W.; Petrenko, V.A. Promiscuous tumor targeting phage proteins. Protein Eng. Des. Sel. 2016, 29, 93–103. [Google Scholar] [CrossRef]
- Caprini, A.; Silva, D.; Zanoni, I.; Cunha, C.; Volontè, C.; Vescovi, A.; Gelain, F. A novel bioactive peptide: Assessing its activity over murine neural stem cells and its potential for neural tissue engineering. New Biotechnol. 2013, 30, 552–562. [Google Scholar] [CrossRef]
- Kaur, R.; Jain, R.; Budholiya, N.; Rathore, A.S. Long term culturing of CHO cells: Phenotypic drift and quality attributes of the expressed monoclonal antibody. Biotechnol. Lett. 2023, 45, 357–370. [Google Scholar] [CrossRef]
- Yao, L.; Bestwick, C.; Bestwick, L.A.; Maffulli, N.; Aspden, R.M. Phenotypic drift in human tenocyte culture. Tissue Eng. 2006, 12, 1843–1849. [Google Scholar] [CrossRef]
- Hoffman, J.A.; Laakkonen, P.; Porkka, K.; Bernasconi, M.; Ruoslahti, E. In vivo and ex vivo selections using phage-displayed libraries. In Phage Display: A Practical Approach; Lowman, H.B., Clackson, T., Eds.; Oxford University Press: New York, NY, USA, 2004; pp. 171–192. [Google Scholar] [CrossRef]
- Koivistoinen, A.; Ilonen, I.; Punakivi, K.; Räsänen, J.V.; Helin, H.; Sihvo, E.; Bergman, M.; Salo, J. A novel peptide (Thx) homing to non-small cell lung cancer identified by ex vivo phage display. Clin. Transl. Oncol. 2013, 15, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Odermatt, A.; Audigé, A.; Frick, C.; Vogt, B.; Frey, B.M.; Frey, F.J.; Mazzucchelli, L. Identification of receptor ligands by screening phage-display peptide libraries ex vivo on microdissected kidney tubules. J. Am. Soc. Nephrol. 2001, 12, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Pasqualini, R.; Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 1996, 380, 364–366. [Google Scholar] [CrossRef]
- Bábíčková, J.; Tóthová, Ľ.; Boor, P.; Celec, P. In vivo phage display—A discovery tool in molecular biomedicine. Biotechnol. Adv. 2013, 31, 1247–1259. [Google Scholar] [CrossRef]
- Arap, W.; Kolonin, M.G.; Trepel, M.; Lahdenranta, J.; Cardó-Vila, M.; Giordano, R.J.; Mintz, P.J.; Ardelt, P.U.; Yao, V.J.; Vidal, C.I. Steps toward mapping the human vasculature by phage display. Nat. Med. 2002, 8, 121–127. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Pang, Z.; Wang, Y.; Liu, Q.; Guo, L.; Jiang, X. Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids 2012, 42, 2373–2381. [Google Scholar] [CrossRef]
- Li, J.; Feng, L.; Jiang, X. In vivo phage display screen for peptide sequences that cross the blood–cerebrospinal-fluid barrier. Amino Acids 2015, 47, 401–405. [Google Scholar] [CrossRef]
- Larimer, B.M.; Thomas, W.D.; Smith, G.P.; Deutscher, S.L. Affinity maturation of an ERBB2-targeted SPECT imaging peptide by in vivo phage display. Mol. Imaging Biol. 2014, 16, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Hyvönen, M.; Laakkonen, P. Identification and characterization of homing peptides using in vivo peptide phage display. In Cell-Penetrating Peptides: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2015; pp. 205–222. [Google Scholar]
- Du, B.; Han, H.; Wang, Z.; Kuang, L.; Wang, L.; Yu, L.; Wu, M.; Zhou, Z.; Qian, M. Targeted drug delivery to hepatocarcinoma in vivo by phage-displayed specific binding peptide. Mol. Cancer Res. 2010, 8, 135–144. [Google Scholar] [CrossRef]
- Arap, W.; Pasqualini, R. The human vascular mapping project. Selection and utilization of molecules for tumor endothelial targeting. Haemostasis 2001, 31, 30–31. [Google Scholar] [PubMed]
- Staquicini, F.I.; Cardó-Vila, M.; Kolonin, M.G.; Trepel, M.; Edwards, J.K.; Nunes, D.N.; Sergeeva, A.; Efstathiou, E.; Sun, J.; Almeida, N.F. Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients. Proc. Natl. Acad. Sci. USA 2011, 108, 18637–18642. [Google Scholar] [CrossRef] [PubMed]
- Krag, D.N.; Shukla, G.S.; Shen, G.-P.; Pero, S.; Ashikaga, T.; Fuller, S.; Weaver, D.L.; Burdette-Radoux, S.; Thomas, C. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res. 2006, 66, 7724–7733. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhu, Y.; Chen, L. Advances in targeting cell surface signalling molecules for immune modulation. Nat. Rev. Drug Discov. 2013, 12, 130–146. [Google Scholar] [CrossRef]
- Kuhlmann, L.; Cummins, E.; Samudio, I.; Kislinger, T. Cell-surface proteomics for the identification of novel therapeutic targets in cancer. Expert Rev. Proteom. 2018, 15, 259–275. [Google Scholar] [CrossRef]
- Herz, J.M.; Thomsen, W.J.; Yarbrough, G.G. Molecular approaches to receptors as targets for drug discovery. J. Recept. Signal Transduct. 1997, 17, 671–776. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.I.; Clemmensen, L.S.; Bredt, D.S.; Bettler, B.; Strømgaard, K. Targeting receptor complexes: A new dimension in drug discovery. Nat. Rev. Drug Discov. 2020, 19, 884–901. [Google Scholar] [CrossRef]
- Arinaminpathy, Y.; Khurana, E.; Engelman, D.M.; Gerstein, M.B. Computational analysis of membrane proteins: The largest class of drug targets. Drug Discov. Today 2009, 14, 1130–1135. [Google Scholar] [CrossRef]
- Safari-Alighiarloo, N.; Taghizadeh, M.; Rezaei-Tavirani, M.; Goliaei, B.; Peyvandi, A.A. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench 2014, 7, 17–31. [Google Scholar] [PubMed]
- Harikumar, K.G.; Dong, M.; Cheng, Z.; Pinon, D.I.; Lybrand, T.P.; Miller, L.J. Transmembrane segment peptides can disrupt cholecystokinin receptor oligomerization without affecting receptor function. Biochemistry 2006, 45, 14706–14716. [Google Scholar] [CrossRef]
- Westerfield, J.M.; Barrera, F.N. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J. Biol. Chem. 2020, 295, 1792–1814. [Google Scholar] [CrossRef]
- Molek, P.; Strukelj, B.; Bratkovic, T. Peptide phage display as a tool for drug discovery: Targeting membrane receptors. Molecules 2011, 16, 857–887. [Google Scholar] [CrossRef] [PubMed]
- Lorente, J.S.; Sokolov, A.V.; Ferguson, G.; Schiöth, H.B.; Hauser, A.S.; Gloriam, D.E. GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2025, 24, 458–479. [Google Scholar] [CrossRef] [PubMed]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Wrighton, N.C.; Farrell, F.X.; Chang, R.; Kashyap, A.K.; Barbone, F.P.; Mulcahy, L.S.; Johnson, D.L.; Barrett, R.W.; Jolliffe, L.K.; Dower, W.J. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996, 273, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Cwirla, S.E.; Balasubramanian, P.; Duffin, D.J.; Wagstrom, C.R.; Gates, C.M.; Singer, S.C.; Davis, A.M.; Tansik, R.L.; Mattheakis, L.C.; Boytos, C.M. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997, 276, 1696–1699. [Google Scholar] [CrossRef]
- Cines, D.B.; Yasothan, U.; Kirkpatrick, P. Romiplostim. Nat. Rev. Drug Discov. 2008, 7, 887–889. [Google Scholar] [CrossRef]
- Frampton, J.E.; Lyseng-Williamson, K.A. Romiplostim. Drugs 2009, 69, 307–317. [Google Scholar] [CrossRef]
- Sun, Y.; Qian, Y.; Qiu, L.; Zhu, X.; Ning, H.; Pang, L.; Niu, X.; Liu, Y.; Zhou, X.; Chen, G. A novel peptide targeting CCR7 inhibits tumor cell lymph node metastasis. Cancer Immunol. Immunother. 2025, 74, 153. [Google Scholar] [CrossRef]
- Ammous-Boukhris, N.; Rached, N.; Mosbah, A.; Ayadi, W.; Gargouri, A.; Mokdad-Gargouri, R. Selection of Peptides Targeting the LMP1 Oncoprotein Via Phage Display Differential Screening on Cancer Cells. Int. J. Pept. Res. Ther. 2025, 31, 40. [Google Scholar] [CrossRef]
- Quilumba-Dutan, V.; Carreón-Álvarez, C.; Sanabria-Ayala, V.; Hidalgo-Figueroa, S.; Chakraborty, S.; Valsami-Jones, E.; López-Revilla, R.; Rodríguez-López, J.L. Assessment of Phage-Displayed Peptides Targeting Cancer Cell Surface Proteins: A Comprehensive Molecular Docking Study. J. Pept. Sci. 2025, 31, e70004. [Google Scholar] [CrossRef]
- Jirwankar, Y.; Nair, A.; Marathe, S.; Dighe, V. Phage Display Identified Novel Leydig Cell Homing Peptides for Testicular Targeting. ACS Pharmacol. Transl. Sci. 2024, 7, 809–822. [Google Scholar] [CrossRef]
- Yun, S.K.; Yang, S.M.; Kwak, M.H.; Park, J.M. Development and validation of cyclic peptide probe for gastric cancer based on phage display technique. Pept. Sci. 2024, 116, e24339. [Google Scholar] [CrossRef]
- Wu, X.; Feng, S.; Chang, T.-S.; Zhang, R.; Jaiswal, S.; Choi, E.-Y.K.; Duan, Y.; Jiang, H.; Wang, T.D. Detection of Hepatocellular Carcinoma in an Orthotopic Patient-Derived Xenograft with an Epithelial Cell Adhesion Molecule-Specific Peptide. Cancers 2024, 16, 2818. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wang, S.H.; Zhao, L.; Wang, H.M.; Wang, L.; Shi, R.R.; Liang, S.C.; Li, B.F.; Chen, B. Screening and identification of vascular endothelial cell targeting peptide in gastric cancer through novel integrated in vitro and in vivo strategy. BMC Cancer 2024, 24, 1595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zheng, L.; Wu, K.; Zhang, B. Identification and validation of a new peptide targeting pancreatic beta cells. Molecules 2022, 27, 2286. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Xiao, Y.; Wang, L.; Liang, M.; Li, Z.; Wu, X.; Cao, Q. Identification of an IGF2BP2-Targeted Peptide for Near-Infrared Imaging of Esophageal Squamous Cell Carcinoma. Molecules 2022, 27, 7609. [Google Scholar] [CrossRef] [PubMed]
- Furman, O.; Zaporozhets, A.; Tobi, D.; Bazylevich, A.; Firer, M.A.; Patsenker, L.; Gellerman, G.; Lubin, B.C.R. Novel cyclic peptides for targeting EGFR and EGRvIII mutation for drug delivery. Pharmaceutics 2022, 14, 1505. [Google Scholar] [CrossRef]
- Jin, H.; Gao, X.; Xiao, L.; He, H.; Cheng, S.; Zhang, C.; Hou, Y.; Song, F.; Su, X.; Gao, Q. Screening and identification of a specific peptide binding to breast cancer cells from a phage-displayed peptide library. Biotechnol. Lett. 2021, 43, 153–164. [Google Scholar] [CrossRef]
- Tooyserkani, R.; Rasaee, M.J.; Bandehpour, M.; WPM Löwik, D. Novel anti-PD-L1 peptide selected from combinatorial phage library inhibits tumor cell growth and restores T-cell activity. J. Drug Target. 2021, 29, 771–782. [Google Scholar] [CrossRef]
- Yan, J.; Yu, X.; Chen, X.; Liu, F.; Chen, F.; Ding, N.; Yu, L.; Meng, F.; Shen, J.; Wei, J. Identification of a glypican-3 binding peptide from a phage-displayed peptide library for PET imaging of hepatocellular carcinoma. Front. Oncol. 2021, 11, 679336. [Google Scholar] [CrossRef]
- Simón-Gracia, L.; Kiisholts, K.; Petrikaitė, V.; Tobi, A.; Saare, M.; Lingasamy, P.; Peters, M.; Salumets, A.; Teesalu, T. Homing peptide-based targeting of tenascin-C and fibronectin in endometriosis. Nanomaterials 2021, 11, 3257. [Google Scholar] [CrossRef]
- Kwak, M.H.; Yi, G.; Yang, S.M.; Choe, Y.; Choi, S.; Lee, H.S.; Kim, E.; Lim, Y.B.; Na, K.; Choi, M.G.; et al. A dodecapeptide selected by phage display as a potential theranostic probe for colon cancers. Transl. Oncol. 2020, 13, 100798. [Google Scholar] [CrossRef]
- Asar, M.C.; Franco, A.; Soendergaard, M. Phage display selection, identification, and characterization of novel pancreatic cancer targeting peptides. Biomolecules 2020, 10, 714. [Google Scholar] [CrossRef] [PubMed]
- Rahn, J.J.; Lun, X.; Jorch, S.K.; Hao, X.; Venugopal, C.; Vora, P.; Ahn, B.Y.; Babes, L.; Alshehri, M.M.; Cairncross, J.G. Development of a peptide-based delivery platform for targeting malignant brain tumors. Biomaterials 2020, 252, 120105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Huang, J.; Li, W.; Zhang, Z.; Zhu, M.; Feng, Y.; Zhao, Y.; Li, Y.; Lu, S.; He, S. Screening and identification of a CD44v6 specific peptide using improved phage display for gastric cancer targeting. Ann. Transl. Med. 2020, 8, 1442. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Ito, S.; Masuda, T.; Couraud, P.-O.; Ohtsuki, S. Novel cyclic peptides facilitating transcellular blood-brain barrier transport of macromolecules in vitro and in vivo. J. Control. Release 2020, 321, 744–755. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Hong, A.; Chen, X. Screening and identification of small peptides targeting fibroblast growth factor receptor2 using a phage display peptide library. J. Vis. Exp. (JoVE) 2019, 30, e60189. [Google Scholar] [CrossRef] [PubMed]
- Munisso, M.C.; Yamaoka, T. Evolution of phage display approaches to select highly specific hemocompatible peptides. Tissue Eng. Part C Methods 2019, 25, 288–295. [Google Scholar] [CrossRef]
- Bakhshinejad, B.; Nasiri, H. Identification of a novel tumor-binding peptide for lung Cancer through in-vitro panning. Iran. J. Pharm. Res. IJPR 2018, 17, 396–407. [Google Scholar] [PubMed]
- Hou, L.; Zhu, D.; Liang, Y.; Tian, X.; Li, L.; Wang, P.; Zhu, L.; Weng, X.; Wang, Y.; Li, Y. Identification of a specific peptide binding to colon cancer cells from a phage-displayed peptide library. Br. J. Cancer 2018, 118, 79–87. [Google Scholar] [CrossRef]
- Li, G.; Yin, Q.; Ji, H.; Wang, Y.; Liu, H.; Jiang, L.; Zhu, F.; Li, B. A study on screening and antitumor effect of CD55-specific ligand peptide in cervical cancer cells. Drug Des. Dev. Ther. 2018, 12, 3899–3912. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, J.; He, J.; Li, Q.; Zhou, J.; Liang, X.; Tang, S. Selection and identification of novel peptides specifically targeting human cervical cancer. Amino Acids 2018, 50, 577–592. [Google Scholar] [CrossRef]
- Xing, L.; Xu, Y.; Sun, K.; Wang, H.; Zhang, F.; Zhou, Z.; Zhang, J.; Zhang, F.; Caliskan, B.; Qiu, Z. Identification of a peptide for folate receptor alpha by phage display and its tumor targeting activity in ovary cancer xenograft. Sci. Rep. 2018, 8, 8426. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Ito, S.; Kurogi-Hirayama, M.; Ohtsuki, S. Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J. Control. Release 2017, 262, 232–238. [Google Scholar] [CrossRef]
- Fukuta, T.; Asai, T.; Kiyokawa, Y.; Nakada, T.; Bessyo-Hirashima, K.; Fukaya, N.; Hyodo, K.; Takase, K.; Kikuchi, H.; Oku, N. Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells. Int. J. Pharm. 2017, 524, 364–372. [Google Scholar] [CrossRef]
- Yu, C.-W.; Fu, C.-Y.; Hung, L.-Y.; Wang, C.-H.; Chiang, N.-J.; Wang, Y.-C.; Shan, Y.-S.; Lee, G.-B. Screening of peptide specific to cholangiocarcinoma cancer cells using an integrated microfluidic system and phage display technology. Microfluid. Nanofluid 2017, 21, 145. [Google Scholar] [CrossRef]
- Li, C.; Gao, N.; Xue, Q.; Ma, N.; Hu, Y.; Zhang, J.; Chen, B.; Hou, Y. Screening and identification of a specific peptide binding to cervical cancer cells from a phage-displayed peptide library. Biotechnol. Lett. 2017, 39, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.-H.; Hsiao, J.-K.; Lin, M.-H.; Chang, C.; Lan, C.-H.; Wu, H.-C. Lung cancer-targeting peptides with multi-subtype indication for combinational drug delivery and molecular imaging. Theranostics 2017, 7, 1612–1632. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, F.L.; Ferreira, D.; Martins, I.M.; Suarez-Diez, M.; Azeredo, J.; Kluskens, L.D.; Rodrigues, L.R. Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies. BMC Cancer 2016, 16, 881. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, X.; Wang, Y.; Li, X.; Zhou, G.; Liang, H.; Feng, G.; Zheng, C. Screening and identification of a specific peptide for targeting hypoxic hepatoma cells. Mol. Cell. Probes 2016, 30, 246–253. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Li, W.; Wang, F.; Lu, X.; Han, X.; Lv, J.; Chen, J. Identification of a peptide specifically targeting ovarian cancer by the screening of a phage display peptide library. Oncol. Lett. 2016, 11, 4022–4026. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Qi, C.L.; Kong, M.; Liu, T.T.; Li, L.; Li, B.J. Screening specific polypeptides of breast cancer stem cells from a phage display random peptide library. Oncol. Lett. 2016, 12, 4727–4731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jia, H.; Li, W.; Hou, Y.; Lu, S.; He, S. Screening and identification of a phage display derived peptide that specifically binds to the CD44 protein region encoded by variable exons. J. Biomol. Screen. 2016, 21, 44–53. [Google Scholar] [CrossRef]
- Jin, W.; Qin, B.; Chen, Z.; Liu, H.; Barve, A.; Cheng, K. Discovery of PSMA-specific peptide ligands for targeted drug delivery. Int. J. Pharm. 2016, 513, 138–147. [Google Scholar] [CrossRef]
- Cornelison, G.L.; Pflanz, N.C.; Tipps, M.E.; Mihic, S.J. Identification and characterization of heptapeptide modulators of the glycine receptor. Eur. J. Pharmacol. 2016, 780, 252–259. [Google Scholar] [CrossRef]
- Bozovičar, K.; Jenko Bizjan, B.; Meden, A.; Kovač, J.; Bratkovič, T. Focused peptide library screening as a route to a superior affinity ligand for antibody purification. Sci. Rep. 2021, 11, 11650. [Google Scholar] [CrossRef] [PubMed]
- Kepler, T.B.; Munshaw, S.; Wiehe, K.; Zhang, R.; Yu, J.-S.; Woods, C.W.; Denny, T.N.; Tomaras, G.D.; Alam, S.M.; Moody, M.A. Reconstructing a B-cell clonal lineage. II. Mutation, selection, and affinity maturation. Front. Immunol. 2014, 5, 170. [Google Scholar] [CrossRef]
- Bhat, A.; Roberts, L.R.; Dwyer, J.J. Lead discovery and optimization strategies for peptide macrocycles. Eur. J. Med. Chem. 2015, 94, 471–479. [Google Scholar] [CrossRef]
- Labrou, N.E. Random mutagenesis methods for in vitro directed enzyme evolution. Curr. Protein Pept. Sci. 2010, 11, 91–100. [Google Scholar] [CrossRef]
- Harayama, S. Artificial evolution by DNA shuffling. Trends Biotechnol. 1998, 16, 76–82. [Google Scholar] [CrossRef]
- Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 1994, 370, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, J. Research progress in structure-activity relationship of bioactive peptides. J. Med. Food 2015, 18, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, M.G.; Gelain, F. Structure–activity relationships of antibacterial peptides. Microb. Biotechnol. 2023, 16, 757–777. [Google Scholar] [CrossRef]
- Guha, R. On exploring structure–activity relationships. In Silico Models for Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2013; pp. 81–94. [Google Scholar]
- Jamieson, A.G.; Boutard, N.; Sabatino, D.; Lubell, W.D. Peptide scanning for studying structure-activity relationships in drug discovery. Chem. Biol. Drug Des. 2013, 81, 148–165. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem. 2013, 20, 1985–1996. [Google Scholar] [CrossRef]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef]
- Raguine, L.; Ali, M.; Bender, V.; Diefenbach, E.; Doddareddy, M.R.; Hibbs, D.; Manolios, N. Alanine scan of an immunosuppressive peptide (CP): Analysis of structure–function relationships. Chem. Biol. Drug Des. 2013, 81, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Haskell-Luevano, C.; Sawyer, T.K.; Hendrata, S.; North, C.; Panahinia, L.; Stum, M.; Staples, D.J.; Castrucci, A.M.D.L.; Hadley, M.E.; Hruby, V.J. Truncation studies of α-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity. Peptides 1996, 17, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Carrigan, P.E.; Ballar, P.; Tuzmen, S. Site-directed mutagenesis. In Disease Gene Identification: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2010; pp. 107–124. [Google Scholar]
- Ladner, R.C.; Sato, A.K.; Gorzelany, J.; de Souza, M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov. Today 2004, 9, 525–529. [Google Scholar] [CrossRef]
- Deshayes, K.; Schaffer, M.L.; Skelton, N.J.; Nakamura, G.R.; Kadkhodayan, S.; Sidhu, S.S. Rapid identification of small binding motifs with high-throughput phage display: Discovery of peptidic antagonists of IGF-1 function. Chem. Biol. 2002, 9, 495–505. [Google Scholar] [CrossRef]
- Alteen, M.G.; Meek, R.W.; Kolappan, S.; Busmann, J.A.; Cao, J.; O’Gara, Z.; Chou, Y.; Derda, R.; Davies, G.J.; Vocadlo, D.J. Phage display uncovers a sequence motif that drives polypeptide binding to a conserved regulatory exosite of O-GlcNAc transferase. Proc. Natl. Acad. Sci. USA 2023, 120, e2303690120. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Onishi, A.; Saito, T.; Shimada, A.; Inoue, H.; Taki, T.; Nagata, K.; Okahata, Y.; Sato, T. Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J. Med. Chem. 2010, 53, 4441–4449. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Smith, G.P. Affinity maturation of phage-displayed peptide ligands. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1996; Volume 267, pp. 3–27. [Google Scholar]
- Smith, G.P.; Yu, J. In search of dark horses: Affinity maturation of phage-displayed ligands. Mol. Divers. 1996, 2, 2–4. [Google Scholar] [CrossRef]
- Zambrano-Mila, M.S.; Blacio, K.E.S.; Vispo, N.S. Peptide phage display: Molecular principles and biomedical applications. Ther. Innov. Regul. Sci. 2020, 54, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Cimen, A.N.; Porsuk, M.H.; Kutlu, O.; Cetinel, S. Phage Display–Selected Peptides: Research and Clinical Applications in Cancer Imaging. J. Pept. Sci. 2025, 31, e70034. [Google Scholar] [CrossRef]
- Angelini, A.; Cendron, L.; Chen, S.; Touati, J.; Winter, G.; Zanotti, G.; Heinis, C. Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem. Biol. 2012, 7, 817–821. [Google Scholar] [CrossRef]
- Rebollo, I.R.; Heinis, C. Phage selection of bicyclic peptides. Methods 2013, 60, 46–54. [Google Scholar] [CrossRef]
- Chen, F.J.; Pinnette, N.; Gao, J. Strategies for the construction of multicyclic phage display libraries. ChemBioChem 2024, 25, e202400072. [Google Scholar] [CrossRef]
- Allen, G.L.; Grahn, A.K.; Kourentzi, K.; Willson, R.C.; Waldrop, S.; Guo, J.; Kay, B.K. Expanding the chemical diversity of M13 bacteriophage. Front. Microbiol. 2022, 13, 961093. [Google Scholar] [CrossRef]
- Hampton, J.T.; Liu, W.R. Diversification of phage-displayed peptide libraries with noncanonical amino acid mutagenesis and chemical modification. Chem. Rev. 2024, 124, 6051–6077. [Google Scholar] [CrossRef]
- Croce, G.; Lani, R.; Tardivon, D.; Bobisse, S.; de Tiani, M.; Bragina, M.; Perez, M.A.; Michaux, J.; Pak, H.S.; Michel, A. Phage display enables machine learning discovery of cancer antigen–specific TCRs. Sci. Adv. 2025, 11, eads5589. [Google Scholar] [CrossRef] [PubMed]
- Bakhshinejad, B.; Kjaer, A. On the origin of non-specific binders isolated in the selection of phage display peptide libraries. Front. Microbiol. 2025, 16, 1571679. [Google Scholar] [CrossRef] [PubMed]
- Bakhshinejad, B.; Zade, H.M.; Shekarabi, H.S.Z.; Neman, S. Phage display biopanning and isolation of target-unrelated peptides: In search of nonspecific binders hidden in a combinatorial library. Amino Acids 2016, 48, 2699–2716. [Google Scholar] [CrossRef] [PubMed]
- Gray, B.P.; Brown, K.C. Combinatorial peptide libraries: Mining for cell-binding peptides. Chem. Rev. 2014, 114, 1020–1081. [Google Scholar] [CrossRef] [PubMed]
Number of Fully Randomized Positions | Number of Possible Sequences | Coverage Percentage |
---|---|---|
6 | 6.4 × 107 | 100 |
7 | 1.28 × 109 | 78.125 |
8 | 2.56 × 1010 | 3.90625 |
9 | 5.12 × 1011 | 0.1953125 |
10 | 1.024 × 1013 | 0.009765625 |
11 | 2.048 × 1014 | 0.00048828125 |
12 | 4.096 × 1015 | 0.0000244140625 |
13 | 8.192 × 1016 | 0.000001220703125 |
14 | 1.6384 × 1018 | 0.00000006103515625 |
15 | 3.2768 × 1019 | 0.0000000030517578125 |
16 | 6.5536 × 1020 | 0.000000000152587890625 |
17 | 1.31072 × 1022 | 0.00000000000762939453125 |
18 | 2.62144 × 1023 | 0.0000000000003814697265625 |
19 | 5.24288 × 1024 | 0.000000000000019073486328125 |
20 | 1.048576 × 1026 | 0.00000000000000095367431640625 |
Peptide Sequence(s) | Target | Indication | Notes | Reference |
---|---|---|---|---|
LSPLIFVTTPDT | B16 C-C chemokine receptor type 7 (CCR7) cells | Various cancers | D-amino acid was introduced into the peptide to increase its resistance to proteolysis. The modified peptide blocked the CCR7 pathway, inhibiting tumor growth and tumor lymph node metastasis in vivo. The Kd of the modified peptide with mCCR7-EGFP fusion protein was 403 nM, but without interaction with the control EGFP protein, it was >1000 nM. | [105] |
SQHWTQASTARS SYDQRNFSQIRY | HeLa cells transfected with latent membrane protein 1 (LMP1), synthetic peptides representing the LMP1 extracellular domain, and Balb/C male mice intravenously injected with the phage output from in vitro biopanning | LMP1-overexpressing malignancies, such as nasopharyngeal carcinoma (NPC) | The interaction energy score was determined by molecular docking. SQHW exhibited an interaction energy of −8.6 kcal/mol, and SYDQ showed an interaction energy of −8.9 kcal/mol. | [106] |
FKQDAWEAVDIR DSSPRMWPNRIT | HeLa cervical cancer and MDA-MB-231 breast cancer cells | Breast and cervical cancers | Peptides were selected by combining phage display with in silico molecular docking analysis. Peptides were suggested to bind to common receptors on both cell lines. The interaction energy score calculated by docking was −551.26 for FKQD and −916.32 for DSSP. | [107] |
HHGANSLGLVQS YALGRPSLQGPN | Mouse Leydig cells (TM3) | Testicular disorders (such as male infertility) | The output of in vitro biopanning was used as input for in vivo biopanning in a mouse model. Phage display was combined with NGS. Peptides indicated accumulation in the mouse testis in vivo. | [108] |
YLASRVH | Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) recombinant protein | Gastric cancer | The fluorescently labeled cyclic peptide exhibited high accumulation in a gastric cancer xenograft mouse model. | [109] |
HPDMFTRTHSHN | Epithelial cell adhesion molecule (EpCAM) recombinant protein | Hepatocellular carcinoma (HCC) | The peptide labeled with an NIR fluorophore exhibited high uptake in orthotopic human HCC patient-derived xenograft (PDX) tumor as well as local and distant metastases. The apparent Kd of the labeled peptide to Hep3B HCC cells was 67 nM. | [110] |
NTGSPYE | Human gastric cancer xenograft tumor (vasculature) in nude mice | Gastric cancer | In vitro negative screening was combined with in vivo positive screening. The cyclic peptide exhibited selective accumulation in the vasculature of gastric cancer in vivo. | [111] |
VLGREEWSTSYW | Epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII) recombinant protein | Various cancers | Phage display was combined with NGS. The estimated Kd of the peptide for the target was 361.5 ± 1172.0 µM. The docking score of the peptide was −186.5 kcal/mol. | [53] |
HAMRAQP | SW480 colon adenocarcinoma cells | Colon cancer | A rigorous negative selection was applied before positive selection by exposing the naïve library to an empty well, a serum-treated well, and multiple control cells. | [64] |
LNTPLKS | Mouse pancreatic islet β cell line MIN6 | Diabetes | The FITC-labeled peptide exhibited specific accumulation in the tumor in the insulinoma animal model. | [112] |
LSMPWSPTTYAS | Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) recombinant protein | Esophageal squamous cell carcinoma (ESCC) | The NIRF-conjugated peptide exhibited high tumor accumulation in KYSE-30-bearing esophageal cancer xenograft animal models. | [113] |
HVPGSYI VNAMQSY | Three types of EGFR- expressing cells derived from non-small cell lung cancer (NSCLC) (H1299 and H1297) and glioblastoma (DKMG) | Various cancers | Phage display was combined with NGS. The cyclic peptide conjugated to camptothecin (CPT) indicated toxicity in EGFR-overexpressing cells. In silico docking showed binding of peptides at the active site of EGFR. The binding energies of peptides to EGFR were −13.0 kcal/mol for HVPG and −11.9 kcal/mol for VNAM. | [114] |
DPFYSMLQRLAH | MCF-7 breast cancer cells | Breast cancer | Bioinformatics analysis suggested that the peptide targets 5-lipoxygenase-activating protein (FLAP), involved in breast cancer progression through arachidonate metabolism. | [115] |
GLEASRHPHGSW GDGNSVLKPGNW AMSDHHWTQRDK (Pep-39 as the most potent PD-L1 inhibitor) | Programmed death-ligand 1 (PD-L) recombinant protein | Various cancers | In-solution panning strategy using magnetic beads was used. All three peptides had interactions with PD-L1 in the vicinity of the PD-1 binding site. One of the peptides exhibited inhibitory potential against PD-1/PD-L1 interaction, reducing the survival of MDA-MB-231, CT 26, and DU-145 cells. The binding energy of this peptide, determined through docking analysis, was −35.5 kcal/mol for van der Waals and −130.8 kcal/mol for electrostatic interactions. | [116] |
F3 peptide (peptide sequence not mentioned in the paper) | Glypican-3 (GPC-3) recombinant protein | Hepatocellular carcinoma (HCC) | The cyclic peptide indicated high accumulation in HepG-2 tumors in xenograft mouse models. The peptide labeled with 68Ga, the peptide tracer, enabled the specific detection of tumors in HCC tumor models with PET imaging. | [117] |
PPRRGLIKLKTS | Human immortalized epithelial-like ectopic endometriotic cells (12Z) and human immortalized eutopic endometrial stromal cells (HESC) | Endometriosis | The peptide promoted the penetration and cytotoxicity of silver nanoparticles (AgNPs) in endometriotic spheroids. | [118] |
ANLNLWTDYIRW | Colon cancer cells | Colon cancer | The peptide was conjugated to hematoporphyrin, a photosensitizer, which showed a significantly enhanced cellular uptake and high photodynamic effect to kill tumor cells. A nanoparticle modified with the peptide delivered SN-38 (an anti-cancer drug) into tumor cells, and its targeting ability was observed in vivo after intravenous injection into xenograft animal models. Structural modeling and MD simulation showed that the peptide is expected to form an amphipathic α-helix conformation, leading to its strong cell attachment. | [119] |
MC1 peptide (peptide sequence not mentioned in the paper) | Pancreatic cancer (Mia Paca-2) cells | Pancreatic cancer | Phage display was combined with NGS. Two peptides had the EC50 values of 16.11 M and 97.01 M, suggesting them to be appropriate for detection and imaging purposes. | [120] |
PSPHRQRQHILR QTIRIIIRRSRT SLHMRHKRKPRR SSRSMQRTLIIS | Patient-derived brain tumor initiating cells (BTICs) | Glioblastoma | Cargo-conjugated peptides delivered contrast-enhancing agents to highly infiltrative tumor populations in intracranial xenograft models without the obvious need for blood–brain barrier (BBB) disruption. The peptides could cross the BBB and home to their respective cellular targets in vivo. Simultaneous use of five independent targeting peptides provided greater coverage of this complex tumor, and selected peptides had the capacity to deliver a therapeutic cargo (oncolytic virus VSVΔM51) to the tumor cells in vivo. Gadolinium-peptides enhanced MRI of compact and diffuse GBMs in vivo. | [121] |
ELTVMGYYPGMS | HEK-293 cells overexpressing CD44v6 | Gastric cancer | The Kd of the peptide to the target protein was 611.2 nM. The FITC-labeled peptide accumulated in tumors in subcutaneous GC xenograft models. | [122] |
SLSHSPQ | Human cerebral microvascular endothelial cell line (hCMEC/D3 cells) | A model for permeability/delivery across the human blood–brain barrier (BBB) | Phage display was combined with a transcellular permeability assay. The cyclic peptide facilitated BBB permeation of M13 phage using a transcellular permeability assay with hCMEC/D3 cell monolayers (a human BBB model). Phage-peptide internalization into monolayer cells was suggested to be mediated via receptor-mediated macropinocytosis. Peptide–phage distribution into the brain parenchyma was observed in mice after intravenous administration. Furthermore, liposomes functionalized with the peptide permeated across the BBB in mice in vivo. | [123] |
WRARVPL | Fibroblast growth factor receptor 2 (FGFR2) | Various cancers | The peptide might possess the potential to be an inhibitor for FGFR2. The Kd of the peptide for the target protein was ≈1.4 µM. | [124] |
SFKIPYHYDSGQ | Endothelial progenitor cells (EPCs) | Increasing EPC proliferation and reducing thrombogenicity (thrombus formation) | Phage binding index (PBI) was used to evaluate the quality as well as to measure the target affinity of selected peptides. The peptide was able to reduce platelet activation and decrease thrombus formation. | [125] |
AWRTHTP | A549 non-small cell lung carcinoma cells | Lung cancer | A rigorous negative selection was used by exposing the naïve unselected library to an empty well, a serum-treated well, and multiple control cells before positive selection. | [126] |
DWSSWVYRDPQT | COLO320HSR colon cancer cells | Colon cancer | Bioinformatics analyses suggested that the peptide targets human glypican-3, which is involved in the development of multiple cancer types. | [127] |
QVNGLGERSQQM | HeLa cervical cancer cells with high CD55 expression | Cervical cancer | The peptide could bind to CD55 on the surface of HeLa and SiHa cells. It could also effectively inhibit the proliferation and induce apoptosis in several cervical cancer cells. The IC50 values of the peptide on SiHa and HeLa cells were 208.4 ± 13.5 µg/mL and 230.3 ± 20.1 µg/mL, respectively. | [128] |
GDALFSVPLEVY FTPGGNTYAGQP SIDDQRDVGEWG KQNLAEG | Cervical cancer xenograft model in mouse | Cervical cancer | Peptides exhibited tumor targeting in cervical cancer xenograft mouse models. | [129] |
MHTAPGWGYRLS | Folate receptor alpha (FRα) recombinant protein | Various epithelial cancers (such as ovarian cancer) | The peptide exhibited tumor targeting in vivo by both phage homing experiment (phage-displayed peptide) and fluorescence imaging (synthetic peptide labeled with FITC) in ovarian cancer xenograft mouse models. The Kd of the peptide for the target protein was 0.3 µM. It could be internalized into SKOV3 cells. Computational docking analysis indicated that amino acids at the C-terminus of the peptide form more stable hydrogen bonds with the target protein, and the peptide could bind to the target at the entrance of the folate-binding pocket, but does not stick into the pocket. | [130] |
DNPGNET | Caco-2 colon carcinoma cells | Colon cancer | The Kd of the peptide for Caco-2 cells was around 10 µM. The peptide could facilitate transcellular permeation of phages across a Caco-2 cell monolayer in vitro due to reduced cell viability arising from cytotoxicity and/or opening of the tight junctions between cells, as well as the permeability of phages across mouse intestinal epithelium. The transcellular transport of peptide–phage was suggested to be mediated by micropinocytosis, with the involvement of the αvβ3 receptor. | [131] |
ASSHN | Human endothelial progenitor cells (EPCs) and angiogenesis mouse model prepared by the dorsal air sac (DAS) method | Various cancers (tumor angiogenic vessels) | A combined in vitro and in vivo biopanning was conducted. Peptide-modified liposomes could accumulate in tumor tissue in vivo, likely via binding to tumor vessels and the EPR effect. Also, peptide-modified liposomes carrying doxorubicin significantly reduced tumor growth in Colon26 NL-17-bearing mice. | [132] |
YIAPPHTSEDSN | HuCCT-1 human cholangiocarcinoma cells | Bile duct cancer | On-chip phage display screening was performed on the integrated microfluidic chip using magnetic beads. The Kd of the fluorescently labeled peptide toward HuCCT-1 was 3 µM. | [133] |
QQLPSSSTSTYP | SiHa human cervical cancer cells | Cervical cancer | Cell immunofluorescence assay indicated binding of the peptide to the membrane of SiHa cells. | [134] |
GAMHLPWHMGTL NPWEEQGYRYSM NNPWREMMYIEI | H460 large cell carcinoma (LCC) cells | Lung cancer | All peptides specifically bound to lung cancer cells and exhibited tumor-homing ability in vivo. Kd values were as follows: ~5.72 µM for GAMH peptide, ~12.5 µM for NPWE, and ~5.52 μM for NNPW peptide. Liposomal doxorubicin conjugated to the peptides exhibited great therapeutic efficacy in orthotopic lung cancer animal models. In vivo optimal imaging of phage homing and MRI of peptide–super-paramagnetic iron oxide nanoparticles (SPIONs) indicated that GAMH peptide is the most favorable probe for multimodal molecular imaging, while NPWE and NNPW peptides significantly improved intracellular drug delivery in vivo due to their endocytosis, resulting in longer overall survival in treated mice. | [135] |
PRWAVSP DTFNSFGRVRIE | MDA-MB-231 human breast cancer (claudin-low breast cancer) | Claudin-low breast carcinomas | Phage display selection was performed through direct coating and BRASIL methods. Bioinformatics analyses indicated that the PRWA peptide could bind to metalloproteinase inhibitor 1 (TIMP-1), and the DTFN peptide could bind to plasminogen activator inhibitor 1 (PAI1) precursor, both related to breast cancer. Docking of peptides against the predicted binding partners indicated the lowest energy weighted score of −1127 for TIMP-1 and −1046.5 for PAI1. | [136] |
GSTSFSK | HepG2 hypoxic hepatoma cells and hypoxic HepG2-made hepatocarcinoma model in mouse | Hepatocellular carcinoma | A combined in vitro and in vivo panning was used. The peptide indicated a clear selectivity toward the tumor tissue in HCC tumor-bearing mice. | [137] |
NPMIRRQ | HO-8910 human ovarian cancer cells | Ovarian cancer | Peptide binding to HO-8910 cells was confirmed by immunocytochemical and immunohistochemical staining. | [138] |
GYSASRSTIPGK | Breast cancer stem cells (isolated from the MDA-MB-231 cell line) | Breast cancer | Target cells were isolated using the serum-free suspension culture technique, resulting in minimal damage to the isolated stem cells. Dual-subtract biopanning was applied by using Hs 578Bst and MDA-MB-231 for library subtraction. | [139] |
THENWPA | CD44v3-v10 recombinant protein | Gastric cancer (CD44v-positive stomach tumors) | Subtractive biopanning was performed by incubating the phage library with bovine serum albumin (BSA) and CD44. | [140] |
GTIQPYPFSWGY | Prostate-specific membrane antigen (PSMA) recombinant protein, PSMA-positive LNCaP cells, and LNCaP xenografts in nude mice | Prostate cancer | The apparent Kd values of the peptide for PSMA-positive LNCaP and C4-2 cells were 8.22 µM and 8.91 µM, respectively. The peptide could specifically deliver the proapoptotic peptide D(KLAKLAK)2 to LNCaP cells to induce cell death. In biodistribution studies, the peptide indicated the highest uptake in human prostate xenograft tumors in mouse models. | [141] |
TTMPIDS TTPTKSA | HEK 293 cells expressing the α1β glycine receptor | Inflammatory pain and alcoholism | A negative selection was performed on HEK 293 cells expressing alternative glycine receptor subtypes before positive selection on HEK 293 cells expressing the α1β subtype. The peptides might present potential for potentiating the receptor function, acting as allosteric enhancers. | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhshinejad, B.; Ghiasvand, S. A Beautiful Bind: Phage Display and the Search for Cell-Selective Peptides. Viruses 2025, 17, 975. https://doi.org/10.3390/v17070975
Bakhshinejad B, Ghiasvand S. A Beautiful Bind: Phage Display and the Search for Cell-Selective Peptides. Viruses. 2025; 17(7):975. https://doi.org/10.3390/v17070975
Chicago/Turabian StyleBakhshinejad, Babak, and Saeedeh Ghiasvand. 2025. "A Beautiful Bind: Phage Display and the Search for Cell-Selective Peptides" Viruses 17, no. 7: 975. https://doi.org/10.3390/v17070975
APA StyleBakhshinejad, B., & Ghiasvand, S. (2025). A Beautiful Bind: Phage Display and the Search for Cell-Selective Peptides. Viruses, 17(7), 975. https://doi.org/10.3390/v17070975