Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application
Abstract
1. Introduction
2. Diversity and Characteristics of Marine Bacteriophages
2.1. Spatiotemporal Dynamics and Biogeography
2.2. Morphological Diversity of Phages
2.3. Genomic Composition and Functional Traits
2.4. Life Cycles
2.5. Host Range and Specificity
2.6. Environmental Stability and Adaptation
3. Marine Bacteriophages as a Therapeutic Alternative
3.1. Phage Formulations
3.2. Mechanisms of Action of Lytic Marine Phages
3.3. Application of Marine Phage Therapy
Phage Name | Source | Target Pathogen | Phage Morphotype | Genome Type | Genome Size (kb) | Accession No. | Host Range | Stability | Application Area | Reference |
---|---|---|---|---|---|---|---|---|---|---|
PLgY-16 | Diseased yellowtail (Seriola quinqueradiata) | Lactococcus garvieae | Siphoviridae | dsDNA | NA | NA | Broad | pH > 3.5 | Yellowtail aquaculture | [165] |
PETp9 and PVHp5 | Dead turbot (Scophthalmus maximus) | Edwardsiella tarda, Vibrio harveyi | - | - | - | - | Broad | - | Prevention of ascites and bacterial infection in turbot aquaculture | [171] |
Str-PAP-1 | Olive flounder | Streptococcus parauberis | Siphoviridae | dsDNA | 36.6 | NA | Broad | Stable as a dietary supplement | Prevention and treatment of S. parauberis streptococcosis in olive flounder via dietary supplementation | [167] |
S. iniae phage isolates | Fish culture environment | Streptococcus iniae | - | - | NA | NA | Broad | - | Phage therapy for streptococcosis in fish | [166] |
phT4A | Bivalve culture | E. coli | - | - | NA | NA | Narrow | - | Bivalve depuration (cockles) | [163] |
BONAISHI | Coral reef water (Van Phong Bay, Vietnam) | Vibrio coralliilyticus | Myoviridae | dsDNA | 303 | MH595538 | Narrow | pH 3–10; 4–50 °C; | Coral disease biocontrol/phage therapy | [162] |
Vp1 Vp3 Vp5 Vp7 Vp9 | Shrimp pond water and sediment | Vibrio parahaemolyticus | Myovirus | dsDNA | NA NA NA NA NA | NA NA NA NA NA | Narrow | - | Shrimp aquaculture | [172] |
uVh1 uVh2 uVh3 uVh4 | Shrimp hatcheries | V. harveyi | Siphovirus Siphovirus Podovirus Siphovirus | dsDNA | 85 * 58 * 64 * 107 * | NA NA NA NA | Broad | - | Shrimp hatcheries | [61] |
SIO-2 | Coastal Pacific surface waters | Vibrio sp. SWAT3, V. harveyi ATCC BAA-1116, and Vibrio campbellii ATCC 25920 | Siphovirus | dsDNA | 80.6 | PRJNA42177 | Broad | −196–65 °C; pH 3–10 | Biocontrol agent | [59] |
P3K P4A P7A P8D P9C | Abalone farm | Vibrio owensii | Siphovirus | dsDNA | 31 * 48 * 41 * 30 * 31 * | NA NA NA NA NA | Narrow | ≤50 °C; pH 5–9 | Aquaculture industry | [173] |
SSP002 | Seawater sample from Yellow Sea | Vibrio vulnificus | Siphovirus | dsDNA | 80.8 | JQ801351 | Narrow | 20–50 °C; pH 4–11 | Food industry | [55] |
VP-1 VP-2 VP-3 | Semi-intensive aquaculture system | V. parahaemolyticus | Podovirus | dsDNA | NA | NA | Narrow | - | Aquaculture industry | [150] |
φSt2 φGrn1 | Water samples from north coastline of Crete, Greece | Vibrio alginolyticus | Myovirus | dsDNA | 250.5 248.6 | KT919973 KT919972 | Broad | - | Aquaculture (hatcheries) | [57] |
P4A P4F | Abalone farm | Vibrio spp. | Siphovirus | dsDNA | 49 * 44 * | NA NA | Narrow | - | Marine aquaculture | [30] |
VhKM4 | Marine aquaculture | V. harveyi VHJR7 | Myovirus | dsDNA | NA | NA | Broad | - | Aquaculture industry | [22] |
VHM1 VHM2 VHS1 | Water and sediment samples from shrimp ponds and coastal areas in southeast coast of India | V. harveyi | Myovirus Myovirus Siphovirus | dsDNA | 55 * 66 * 81.5 | NA NA JF713456 | Broad | 4–50 °C; pH 4–10 | Shrimp aquaculture | [128] |
PhVh6 | Shrimp pond water | V. harveyi | Siphovirus | dsDNA | NA | NA | Broad | 25 to 65 °C; pH 2–14; 15 to 45 ppt | Biocontrol agent in shrimp aquaculture | [174] |
VV1 VV2 VV3 VV4 | Hatchery tank water, shrimp culture pond water, and WSSV uninfected Penaeus monodon | V. vulnificus | Tectivirus | dsDNA | NA NA NA NA | NA NA NA NA | Broad | ≤60 °C; pH 6–11 | Biocontrol agents against Vibriosis in shrimp aquaculture environment | [31] |
vB_VhaS-a vB_VhaS-tm | Water and oyster tissue sample | V. harveyi | Siphovirus | dsDNA | 82 59 | KX198614 KX198615 | Narrow | ≥23 °C | Abalone aquaculture | [175] |
Vpms1 A3S Aie F8 F12 | Shrimp aquaculture | V. parahaemolyticus and V. harveyi | Podovirus Siphovirus Levivirus Levivirus Podovius | dsDNA dsDNA ssDNA ssDNA dsDNA | 42.3 | NC_021776 NA NA NA NA | Narrow | 28–30 °C | Brine shrimp (Artemia franciscana) production | [125] |
vB_VpaS_OMN | Atlantic sea | V. parahaemolyticus | Podovirus | dsDNA | 42.2 | NC_048167 | Broad | ≤50 °C; pH 5–9 | Oyster decontamination | [130] |
pVa-21 | Seawater samples from West Sea of South Korea | V. alginolyticus | Myovirus | dsDNA | 232.0 | KY499642 | Narrow | 4–35 °C; pH 7 | Biocontrol agent | [54] |
VP06 | Seawater, sediment, and animals (oysters and clams) | V. parahaemolyticus | Siphovirus | dsDNA | 75.9 | MG893203 | Broad | 4–37 °C; pH 7–11 | Aquaculture systems | [176] |
vB_VpaP_MGD2 | Clam (Meretrix meretrix) | V. parahaemolyticus | Podovirus | dsDNA | 45.1 | MK820013 | Broad | 30–50 °C; pH 3–10 | Shrimp production | [126] |
Φ-5 Φ-6 Φ-7 | Oyster hatchery | V. alginolyticus | Myovirus | dsDNA | 238.1 NA NA | MK358448 NA NA | Broad | - | Biocontrol agent in oyster hatcheries | [62] |
ϕVP-1 | Shrimp pond water | V. parahaemolyticus | Myovirus | dsDNA | 150.8 | MH363700 | Narrow | ≤50 °C; pH 5–9 | Biocontrol agent of biofilm-forming strains | [27] |
pVco-5 pVco-7 pVco-14 | Oyster hatchery | Vibrio coralliilyticus | Podovirus | dsDNA | 74.3 75 59.4 | NC_055717 PP107878 MW114771 | Narrow | 4–37 °C; pH 7–9 | Biocontrol agent in marine bivalve hatcheries | [146,177] |
Φ-1 Φ-2 Φ-3 Φ-4 | Marine water samples from Sunshine Coast region of Queensland, Australia | Vibrio spp. | Myovirus | dsDNA | NA 242.4 NA NA | NA MK368614 NA NA | Broad | - | Microalgae feed for oyster hatcheries | [56] |
vB_VpS_BA3 vB_VpS_CA8 | Sewage from aquatic product market | V. parahaemolyticus | Siphovirus | dsDNA | 58.6 58.5 | MN175679 MN102376 | Narrow Broad | 20–40 °C; pH 5–7 | Biocontrol method for multidrug-resistant V. parahaemolyticus | [178] |
vB_Vc_SrVc9 | Hepatopancreas of Pacific white shrimp (Penaeus vannamei) | V. campbellii | Podovirus | dsDNA | 43.2 | LR794124 | Broad | 20–40 °C; 10 ppt; Sensitive to UV | Brine shrimp (A. franciscana) aquaculture | [160] |
Phage XC31 | Marine environment | Vibrio mediterranei 117-T6 | - | dsDNA | 290.5 | MK308674 | Narrow | - | Seaweed culture as biological control strategy for yellow spot disease | [147] |
Vp33 Vp22 Vp21 Vp02 Vp08 Vp11 | Fresh seafood | V. parahaemolyticus | Podovirus Podovirus Podovirus Podovirus Siphovirus Siphovirus | dsDNA | NA NA NA NA NA NA | NA NA NA NA NA NA | Narrow | −20–50 °C; pH 5–11 | Food safety | [21] |
OY1 | Sewage from aquatic product market | Vibrio spp. | Podovirus | dsDNA | 43.5 | OM799543 | Broad | ≤50 °C; pH 5–10 | Aquaculture industry/food safety control | [129] |
BPVP-3325 | Seawater, wet sand, sea rocks, and suspended solids from Busan, South Korea | V. parahaemolyticus | Myovirus | dsDNA | 222.6 * | NA | Broad | 10–40 °C; pH 5–10 | Oyster culture and food industry | [161] |
vB_VnaS-L3 | Marine aquaculture | Vibrio natriegens AbY-1805 | Siphovirus | dsDNA | 40.0 | ON714422 | Narrow | 4–40 °C; pH 6–10 | Abalone aquaculture | [127] |
VA5 | Aquaculture farms and sewage | V. alginolyticus | Siphovirus | dsDNA | 35.9 * | NA | Broad | −20–70 °C; pH 2–10 | Shrimp aquaculture | [131] |
CAU_VPP01 | Beach mud | V. parahaemolyticus | Siphovirus | dsDNA | 79.8 | OQ858564 | Broad | ≤60 °C; pH 4–10 | Seafood industry | [149] |
VB_VaC_TDDLMAVB_VaC_SRILMA | Water samples from Ilhavo channel, Aveiro, Portugal | V. alginolyticus | Myovirus | dsDNA | 195.8 195.8 | PP083315 PP083314 | Narrow | - | Larviculture—live feed biocontrol | [58] |
IKEM_vK IKEM_v5 IKEM_v14 | Hatchery | Vibrio spp. | Siphovirus | dsDNA | NA NA NA | NA NA NA | Broad | ≤60 °C; pH 5–11 | Aquaculture industry | [179] |
ɸTT1H ɸTT2H ɸA2223 | Shrimp farm | Desulfovibrio spp. and V. parahaemolyticus | - | dsDNA | NA NA NA | NA NA NA | Broad | - | Shrimp aquaculture | [114] |
P122 P125 P160 | Cockles, oysters, water, soil sediments, shrimps, mussels, and green caviar | V. alginolyticus | Siphovirus | dsDNA | 76.3 76.3 76.0 | NA NA NA | Broad | 25 °C | Aquaculture industry | [26] |
vB_VpaS_1601 vB_VpaP_1701 | Oysters | V. parahaemolyticus | Siphovirus Podovirus | dsDNA | 78.5 44.0 | OQ719603 ON872379 | Broad | 4–50 °C; pH 3–11 | Food safety | [29] |
4. Innovations in Marine Phage Therapy
4.1. Synergistic Effects with Antibiotics
4.2. Bioengineered Marine Phages
4.3. Phage-Derived Enzymes
5. Challenges in Phage Therapy
5.1. Development of Phage-Resistant Bacteria
5.2. Pharmacokinetic and Pharmacodynamic Complexities
5.3. Host Immune Responses to Phage Therapy
5.4. Phage Specificity
5.5. Safety Concerns
5.6. Delivery Systems and Dosage Optimization
5.7. Regulatory and Standardization Challenges
6. Conclusions
7. Future Perspectives
- Expanded exploration and the genomic characterization of marine environments should be conducted to harness the largely untapped diversity of marine phages. While high-throughput metagenomics and advanced bioinformatics will continue to uncover novel phages with unique infection mechanisms and broad-spectrum activity, integrating multi-omics approaches will be essential for a more comprehensive understanding of phage–host interactions. Proteomic and metabolomic profiling of phage-infected cells can reveal dynamic changes in host cellular machinery, identify functional viral proteins (including those subject to post-translational modifications), and clarify the biochemical pathways impacted during infection. These will accelerate the translation of marine phages into therapeutic pipelines targeting multidrug-resistant pathogens by not only identifying candidates but also elucidating their mechanisms of action at the systems level.
- The development of adaptive, rationally designed phage cocktails should be emphasized to delay or prevent the emergence of phage-resistant bacteria. Incorporating insights from co-evolutionary dynamics and host range profiling will enable the formulation of phage mixtures that leverage evolutionary trade-offs, attenuate bacterial virulence, and restore antibiotic susceptibility.
- Comprehensive pharmacokinetic and pharmacodynamic studies, supported by mathematical modeling and standardized protocols, are essential for optimizing marine phage dosing protocols, ensuring reproducibility, and accurately predicting therapeutic outcomes.
- Efforts to advance encapsulation and delivery systems, particularly those utilizing liposomal or polymer-based carriers, should be expanded to improve marine phage stability, increase resistance to immune clearance, and allow precise, site-specific delivery in therapeutic applications.
- The establishment and curation of expansive marine phage libraries, along with rapid molecular diagnostics and high-throughput host range screening, will facilitate the timely and precise customization of phage therapies for diverse and emerging bacterial pathogens. Continued focus on robust host range prediction and systematic production standardization is necessary for effective and reliable therapeutic deployment.
- Synthetic biology and genetic engineering approaches should be harnessed to expand phage host range, lower immunogenicity, and develop nonlytic or lysis-deficient marine phage variants that attenuate endotoxin release and reduce the risk of inflammatory complications, especially in the treatment of Gram-negative infections.
- International collaboration is needed to create dedicated regulatory frameworks and harmonized quality standards for marine phage therapeutics. This includes developing adaptive manufacturing protocols, robust characterization procedures, and streamlined clinical evaluation pathways to facilitate safe and effective marine phage therapy implementation worldwide.
- Multidisciplinary strategies that leverage advances in synthetic biology, systems microbiology, and environmental virology can expedite the translation of marine phage therapy from laboratory research to mainstream application. Employing these approaches will improve host range prediction, resistance management, scalable manufacturing, and rigorous in vivo safety and efficacy assessments.
- Greater emphasis on the mechanistic details of interactions, such as phage-mediated biofilm disruption, the modulation of bacterial resistance pathways, and effects on host immunity, when combining marine phages with antibiotics, probiotics, and phage-derived enzymes, may help refine and optimize combination strategies and limit the emergence of resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coque, T.M.; Cantón, R.; Pérez-Cobas, A.E.; Fernández-de-Bobadilla, M.D.; Baquero, F. Antimicrobial resistance in the global health network: Known unknowns and challenges for efficient responses in the 21st century. Microorganisms 2023, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Aljeldah, M.M. Antimicrobial resistance and its spread is a global threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef]
- Moo, C.-L.; Yang, S.-K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Lim, S.-H.-E.; Lai, K.-S. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr. Drug Discov. Technol. 2020, 17, 430–447. [Google Scholar] [CrossRef]
- Kumar, S. Antimicrobial resistance: A top ten global public health threat. EClinicalMedicine 2021, 41, 101221. [Google Scholar]
- Kåhrström, C.T. Entering a post-antibiotic era? Nat. Rev. Microbiol. 2013, 11, 146. [Google Scholar] [CrossRef]
- Williams, D. Antimicrobial resistance: Are we at the dawn of the post-antibiotic era? J. R. Coll. Physicians Edinb. 2016, 46, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Pieper, D. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. Curr. Top. Microbiol. Immunol. 2016, 398, 3–33. [Google Scholar]
- Van Duin, D.; Kaye, K.S.; Neuner, E.A.; Bonomo, R.A. Carbapenem-resistant Enterobacteriaceae: A review of treatment and outcomes. Diagn. Microbiol. Infect. Dis. 2013, 75, 115–120. [Google Scholar] [CrossRef]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef]
- Mitra, S.; Sultana, S.A.; Prova, S.R.; Uddin, T.M.; Islam, F.; Das, R.; Nainu, F.; Sartini, S.; Chidambaram, K.; Alhumaydhi, F.A. Investigating forthcoming strategies to tackle deadly superbugs: Current status and future vision. Expert Rev. Anti-Infect. Ther. 2022, 20, 1309–1332. [Google Scholar] [CrossRef]
- Pogue, J.M.; Marchaim, D.; Kaye, D.; Kaye, K.S. Revisiting “older” antimicrobials in the era of multidrug resistance. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2011, 31, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Doss, J.; Culbertson, K.; Hahn, D.; Camacho, J.; Barekzi, N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017, 9, 50. [Google Scholar] [CrossRef]
- Dy, R.L.; Rigano, L.A.; Fineran, P.C. Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem. Soc. Trans. 2018, 46, 1605–1613. [Google Scholar] [CrossRef]
- Rohde, C.; Wittmann, J. Phage diversity for research and application. Antibiotics 2020, 9, 734. [Google Scholar] [CrossRef] [PubMed]
- Gamachu, S.B.; Debalo, M. Review of bacteriophage and its applications. Int. J. Vet. Sci. Res. 2022, 8, 133–147. [Google Scholar]
- Salmond, G.P.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, F.L.; Vlot, M.; De Jonge, P.A.; Dreesens, L.L.; Beaumont, H.J.; Lavigne, R.; Dutilh, B.E.; Brouns, S.J. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 2018, 16, 760–773. [Google Scholar] [CrossRef]
- Rohde, C.; Wittmann, J.; Kutter, E. Bacteriophages: A therapy concept against multi-drug–resistant bacteria. Surg. Infect. 2018, 19, 737–744. [Google Scholar] [CrossRef]
- Venturini, C.; Petrovic Fabijan, A.; Fajardo Lubian, A.; Barbirz, S.; Iredell, J. Biological foundations of successful bacteriophage therapy. EMBO Mol. Med. 2022, 14, e12435. [Google Scholar] [CrossRef]
- Elfadadny, A.; Ragab, R.F.; Abou Shehata, M.A.; Elfadadny, M.R.; Farag, A.; Abd El-Aziz, A.H.; Khalifa, H.O. Exploring Bacteriophage Applications in Medicine and Beyond. Acta Microbiol. Hell. 2024, 69, 167–179. [Google Scholar] [CrossRef]
- Tan, C.W.; Rukayadi, Y.; Hasan, H.; Abdul-Mutalib, N.-A.; Jambari, N.N.; Hara, H.; Thung, T.Y.; Lee, E.; Radu, S. Isolation and characterization of six Vibrio parahaemolyticus lytic bacteriophages from seafood samples. Front. Microbiol. 2021, 12, 616548. [Google Scholar] [CrossRef] [PubMed]
- Lal, T.M.; Sano, M.; Ransangan, J. Isolation and characterization of large marine bacteriophage (Myoviridae), VhKM4 infecting Vibrio harveyi. J. Aquat. Anim. Health 2017, 29, 26–30. [Google Scholar] [CrossRef]
- Paul, J.H. Prophages in marine bacteria: Dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008, 2, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Kalatzis, P.G.; Castillo, D.; Katharios, P.; Middelboe, M. Bacteriophage interactions with marine pathogenic vibrios: Implications for phage therapy. Antibiotics 2018, 7, 15. [Google Scholar] [CrossRef]
- Focardi, A.; Ostrowski, M.; Goossen, K.; Brown, M.V.; Paulsen, I. Investigating the diversity of marine bacteriophage in contrasting water masses associated with the East Australian Current (EAC) system. Viruses 2020, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Chaichana, N.; Rattanaburee, R.; Surachat, K.; Sermwittayawong, D.; Sermwittayawong, N. Isolation, characterization and genomic analysis of bacteriophages for biocontrol of vibriosis caused by Vibrio alginolyticus. Virus Res. 2025, 353, 199529. [Google Scholar] [CrossRef]
- Matamp, N.; Bhat, S.G. Genome characterization of novel lytic Myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Arch. Virol. 2020, 165, 387–396. [Google Scholar] [CrossRef]
- Onarinde, B.A.; Dixon, R.A. Prospects for biocontrol of Vibrio parahaemolyticus contamination in blue mussels (Mytilus edulus)—A year-long study. Front. Microbiol. 2018, 9, 1043. [Google Scholar] [CrossRef]
- Tao, Z.; Sun, Y.; Zhou, M.; Li, T.; Lan, W.; Zhao, Y.; Sun, X. Two Novel Vibrio Parahaemolyticus Phages (Vb_Vpas_1601 and Vb_Vpap_1701) Can Serve as Potential Biocontrol Agents Against Vibrio Parahaemolyticus Infection in Seafood. Int. J. Food Microbiol. 2025, 441, 111303. [Google Scholar] [CrossRef]
- Luo, Z.H.; Yu, Y.P.; Jost, G.; Liu, W.H.; Huang, X.L.; Gu, L. Characterization of two bacteriophages for specific treatment of biofilm formed by a Vibrio sp. isolated from an abalone farm. Aquac. Res. 2016, 47, 3964–3972. [Google Scholar] [CrossRef]
- Srinivasan, P.; Ramasamy, P. Morphological characterization and biocontrol effects of Vibrio vulnificus phages against Vibriosis in the shrimp aquaculture environment. Microb. Pathog. 2017, 111, 472–480. [Google Scholar] [CrossRef]
- Torres-Barceló, C.; Arias-Sánchez, F.I.; Vasse, M.; Ramsayer, J.; Kaltz, O.; Hochberg, M.E. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS ONE 2014, 9, e106628. [Google Scholar] [CrossRef]
- Meile, S.; Du, J.; Dunne, M.; Kilcher, S.; Loessner, M.J. Engineering therapeutic phages for enhanced antibacterial efficacy. Curr. Opin. Virol. 2022, 52, 182–191. [Google Scholar] [CrossRef]
- Ajuebor, J.; McAuliffe, O.; O’Mahony, J.; Ross, R.P.; Hill, C.; Coffey, A. Bacteriophage endolysins and their applications. Sci. Prog. 2016, 99, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.D.; Kazimierczak, J.; Sowińska, P.M.; Wójcik, E.A.; Siwicki, A.K.; Dastych, J. Growing trend of fighting infections in aquaculture environment—Opportunities and challenges of phage therapy. Antibiotics 2020, 9, 301. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M. Marine viruses: Truth or dare. Annu. Rev. Mar. Sci. 2012, 4, 425–448. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, V.; Bunk, B.; Meier-Kolthoff, J.P.; Spröer, C.; Poehlein, A.; Dogs, M.; Nguyen, M.; Petersen, J.; Daniel, R.; Overmann, J. Cobaviruses–a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. ISME J. 2019, 13, 1404–1421. [Google Scholar] [CrossRef]
- Filée, J.; Tétart, F.; Suttle, C.A.; Krisch, H. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl. Acad. Sci. USA 2005, 102, 12471–12476. [Google Scholar] [CrossRef]
- Mizuno, C.M.; Rodriguez-Valera, F.; Kimes, N.E.; Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 2013, 9, e1003987. [Google Scholar] [CrossRef]
- Middelboe, M.; Holmfeldt, K.; Riemann, L.; Nybroe, O.; Haaber, J. Bacteriophages drive strain diversification in a marine Flavobacterium: Implications for phage resistance and physiological properties. Environ. Microbiol. 2009, 11, 1971–1982. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, F. Bacteriophages that infect marine roseobacters: Genomics and ecology. Environ. Microbiol. 2019, 21, 1885–1895. [Google Scholar] [CrossRef]
- Sime-Ngando, T.; Colombet, J. Virus et prophages dans les écosystèmes aquatiques. Can. J. Microbiol. 2009, 55, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Luo, E.; Aylward, F.O.; Mende, D.R.; DeLong, E.F. Bacteriophage distributions and temporal variability in the ocean’s interior. MBio 2017, 8, e01903-17. [Google Scholar] [CrossRef]
- Sime-Ngando, T. Environmental bacteriophages: Viruses of microbes in aquatic ecosystems. Front. Microbiol. 2014, 5, 355. [Google Scholar] [CrossRef] [PubMed]
- Bird, D.; Juniper, S.; Ricciardi-Rigault, M.; Martineu, P.; Prairie, Y.; Calvert, S. Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP holes 1033b and 1034b, Leg 169s. Mar. Geol. 2001, 174, 227–239. [Google Scholar] [CrossRef]
- Middelboe, M.; Glud, R.N.; Filippini, M. Viral abundance and activity in the deep sub-seafloor biosphere. Aquat. Microb. Ecol. 2011, 63, 1–8. [Google Scholar] [CrossRef]
- Gu, B.; Wang, H.; Lv, J.; Zheng, Y.; Zhang, X.-H.; Zhan, Y. Identification and genomic analysis of a novel temperate bacteriophage infecting Labrenzia aggregata isolated from the Mariana Trench. Front. Mar. Sci. 2024, 11, 1375684. [Google Scholar] [CrossRef]
- Tang, K.; Lin, D.; Zheng, Q.; Liu, K.; Yang, Y.; Han, Y.; Jiao, N. Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water. BMC Genom. 2017, 18, 485. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, H.; Zhang, S. Diversities and interactions of phages and bacteria in deep-sea sediments as revealed by metagenomics. Front. Microbiol. 2024, 14, 1337146. [Google Scholar] [CrossRef]
- Wang, K.; Chen, F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 2008, 10, 300–312. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, R.; Wang, N.; Cai, L.; Tong, Y.; Sun, Q.; Chen, F.; Jiao, N. Novel phage–host interactions and evolution as revealed by a cyanomyovirus isolated from an estuarine environment. Environ. Microbiol. 2018, 20, 2974–2989. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, F.; Hodson, R.E. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl. Environ. Microbiol. 2001, 67, 3285–3290. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Cai, L.; Jiao, N.; Zhang, R. Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol. J. 2017, 14, 104. [Google Scholar] [CrossRef]
- Kim, S.G.; Jun, J.W.; Giri, S.S.; Yun, S.; Kim, H.J.; Kim, S.W.; Kang, J.W.; Han, S.J.; Jeong, D.; Park, S.C. Isolation and characterisation of pVa-21, a giant bacteriophage with anti-biofilm potential against Vibrio alginolyticus. Sci. Rep. 2019, 9, 6284. [Google Scholar] [CrossRef]
- Lee, H.S.; Choi, S.; Shin, H.; Lee, J.-H.; Choi, S.H. Vibrio vulnificus bacteriophage SSP002 as a possible biocontrol agent. Appl. Environ. Microbiol. 2014, 80, 515–524. [Google Scholar] [CrossRef]
- Southgate, P.C.; Tomer, A.; Shelley, D.; Sang, V.V.; İpek, K.D. Use of Bacteriophages to Control Vibrio Contamination of Microalgae Used as a Food Source for Oyster Larvae During Hatchery Culture. Curr. Microbiol. 2020, 77, 1811–1820. [Google Scholar]
- Kalatzis, P.G.; Bastías, R.; Kokkari, C.; Katharios, P. Isolation and characterization of two lytic bacteriophages, φSt2 and φGrn1; phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS ONE 2016, 11, e0151101. [Google Scholar] [CrossRef]
- Tadeu, A.D.; Duarte, J.; Trindade, D.; Costa, P.; Venâncio, C.; Lopes, I.; Oliveira, V.; Gomes, N.C.; Almeida, A.; Pereira, C. Bacteriophages to control Vibrio alginolyticus in live feeds prior to their administration in larviculture. J. Appl. Microbiol. 2024, 135, lxae115. [Google Scholar] [CrossRef]
- Baudoux, A.C.; Hendrix, R.; Lander, G.; Bailly, X.; Podell, S.; Johnson, J.; Potter, C.; Carragher, B.; Azam, F. Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses. Environ. Microbiol. 2012, 14, 2071–2086. [Google Scholar] [CrossRef]
- Kang, I.; Oh, H.-M.; Kang, D.; Cho, J.-C. Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proc. Natl. Acad. Sci. USA 2013, 110, 12343–12348. [Google Scholar] [CrossRef]
- Thiyagarajan, S.; Chrisolite, B.; Alavandi, S.V.; Poornima, M.; Kalaimani, N.; Santiago, T.C. Characterization of four lytic transducing bacteriophages of luminescent Vibrio harveyi isolated from shrimp (Penaeus monodon) hatcheries. FEMS Microbiol. Lett. 2011, 325, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Le, T.S.; Southgate, P.C.; O’Connor, W.; Vu, S.V.; Kurtböke, D.İ. Application of bacteriophages to control Vibrio alginolyticus contamination in oyster (Saccostrea glomerata) larvae. Antibiotics 2020, 9, 415. [Google Scholar] [CrossRef]
- Wommack, K.E.; Colwell, R.R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [CrossRef]
- Wilhelm, S.W.; Matteson, A.R. Freshwater and marine virioplankton: A brief overview of commonalities and differences. Freshw. Biol. 2008, 53, 1076–1089. [Google Scholar] [CrossRef]
- Roux, S.; Enault, F.; Robin, A.; Ravet, V.; Personnic, S.; Theil, S.; Colombet, J.; Sime-Ngando, T.; Debroas, D. Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS ONE 2012, 7, e33641. [Google Scholar] [CrossRef]
- Breitbart, M.; Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005, 13, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, H.-W. 5500 Phages examined in the electron microscope. Arch. Virol. 2007, 152, 227–243. [Google Scholar] [CrossRef]
- Yang, F.; Wang, L.; Zhou, J.; Xiao, H.; Liu, H. In situ structures of the ultra-long extended and contracted tail of myoviridae phage P1. Viruses 2023, 15, 1267. [Google Scholar] [CrossRef]
- Wilson, J.S.; Fortier, L.-C.; Fagan, R.P.; Bullough, P.A. Molecular mechanism of bacteriophage contraction structure of an S-layer-penetrating bacteriophage. Life Sci. Alliance 2025, 8, e202403088. [Google Scholar] [CrossRef]
- Maghsoodi, A.; Chatterjee, A.; Andricioaei, I.; Perkins, N.C. How the phage T4 injection machinery works including energetics, forces, and dynamic pathway. Proc. Natl. Acad. Sci. USA 2019, 116, 25097–25105. [Google Scholar] [CrossRef]
- Spinelli, S.; Veesler, D.; Bebeacua, C.; Cambillau, C. Structures and host-adhesion mechanisms of lactococcal siphophages. Front. Microbiol. 2014, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.R.; Cardarelli, L.; Pell, L.G.; Radford, D.R.; Maxwell, K.L. Long noncontractile tail machines of bacteriophages. Viral Mol. Mach. 2012, 726, 115–142. [Google Scholar]
- Goulet, A.; Spinelli, S.; Mahony, J.; Cambillau, C. Conserved and diverse traits of adhesion devices from Siphoviridae recognizing proteinaceous or saccharidic receptors. Viruses 2020, 12, 512. [Google Scholar] [CrossRef]
- Seul, A.; Brasilès, S.; Petitpas, I.; Lurz, R.; Campanacci, V.; Cambillau, C.; Weise, F.; Zairi, M.; Tavares, P.; Auzat, I. Biogenesis of a bacteriophage long non-contractile tail. J. Mol. Biol. 2021, 433, 167112. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Olia, A.S.; Cingolani, G. Architecture of viral genome-delivery molecular machines. Curr. Opin. Struct. Biol. 2014, 25, 1–8. [Google Scholar] [CrossRef]
- Cuervo, A.; Pulido-Cid, M.; Chagoyen, M.; Arranz, R.; González-García, V.A.; Garcia-Doval, C.; Castón, J.R.; Valpuesta, J.M.; van Raaij, M.J.; Martín-Benito, J. Structural Characterization of the Bacteriophage T7 Tail Machinery. J. Biol. Chem. 2013, 288, 26290–26299. [Google Scholar] [CrossRef]
- Volozhantsev, N.V.; Oakley, B.B.; Morales, C.A.; Verevkin, V.V.; Bannov, V.A.; Krasilnikova, V.M.; Popova, A.V.; Zhilenkov, E.L.; Garrish, J.K.; Schegg, K.M. Molecular characterization of podoviral bacteriophages virulent for Clostridium perfringens and their comparison with members of the Picovirinae. PLoS ONE 2012, 7, e38283. [Google Scholar] [CrossRef]
- Casjens, S.R.; Molineux, I.J. Short noncontractile tail machines: Adsorption and DNA delivery by podoviruses. In Viral Molecular Machines; Springer: Boston, MA, USA, 2011; pp. 143–179. [Google Scholar]
- González-García, V.A.; Bocanegra, R.; Pulido-Cid, M.; Martín-Benito, J.; Cuervo, A.; Carrascosa, J.L. Characterization of the initial steps in the T7 DNA ejection process. Bacteriophage 2015, 5, e1056904. [Google Scholar] [CrossRef]
- Oliveira, H.; Costa, A.R.; Konstantinides, N.; Ferreira, A.; Akturk, E.; Sillankorva, S.; Nemec, A.; Shneider, M.; Dötsch, A.; Azeredo, J. Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains. Environ. Microbiol. 2017, 19, 5060–5077. [Google Scholar] [CrossRef]
- Ongenae, V.; Briegel, A.; Claessen, D. Cell wall deficiency as an escape mechanism from phage infection. Open Biol. 2021, 11, 210199. [Google Scholar] [CrossRef]
- Dicks, L.M.; Vermeulen, W. Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses 2024, 16, 478. [Google Scholar] [CrossRef] [PubMed]
- Williamson, K.E.; Helton, R.R.; Wommack, K.E. Bias in bacteriophage morphological classification by transmission electron microscopy due to breakage or loss of tail structures. Microsc. Res. Tech. 2012, 75, 452–457. [Google Scholar] [CrossRef]
- Roux, S.; Solonenko, N.E.; Dang, V.T.; Poulos, B.T.; Schwenck, S.M.; Goldsmith, D.B.; Coleman, M.L.; Breitbart, M.; Sullivan, M.B. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 2016, 4, e2777. [Google Scholar] [CrossRef]
- Székely, A.J.; Breitbart, M. Single-stranded DNA phages: From early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol. Lett. 2016, 363, fnw027. [Google Scholar] [CrossRef]
- Holmfeldt, K.; Odić, D.; Sullivan, M.B.; Middelboe, M.; Riemann, L. Cultivated single-stranded DNA phages that infect marine Bacteroidetes prove difficult to detect with DNA-binding stains. Appl. Environ. Microbiol. 2012, 78, 892–894. [Google Scholar] [CrossRef] [PubMed]
- White, H.E.; Orlova, E.V. Bacteriophages: Their structural organisation and function. In Bacteriophages-Perspectives and Future; IntechOpen: London, UK, 2019. [Google Scholar]
- Silveira, C.B.; Coutinho, F.H.; Cavalcanti, G.S.; Benler, S.; Doane, M.P.; Dinsdale, E.A.; Edwards, R.A.; Francini-Filho, R.B.; Thompson, C.C.; Luque, A. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genom. 2020, 21, 126. [Google Scholar] [CrossRef]
- Schmidt, H.; Hensel, M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 2004, 17, 14–56. [Google Scholar] [CrossRef] [PubMed]
- Alex, A.; Antunes, A. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS ONE 2018, 13, e0194368. [Google Scholar] [CrossRef]
- Millard, A.D.; Zwirglmaier, K.; Downey, M.J.; Mann, N.H.; Scanlan, D.J. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: Implications for mechanisms of cyanophage evolution. Environ. Microbiol. 2009, 11, 2370–2387. [Google Scholar] [CrossRef]
- Rohwer, F.; Segall, A.; Steward, G.; Seguritan, V.; Breitbart, M.; Wolven, F.; Farooq Azam, F. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 2000, 45, 408–418. [Google Scholar] [CrossRef]
- Sullivan, M.B.; Coleman, M.L.; Weigele, P.; Rohwer, F.; Chisholm, S.W. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. PLoS Biol. 2005, 3, e144. [Google Scholar] [CrossRef] [PubMed]
- Weigele, P.R.; Pope, W.H.; Pedulla, M.L.; Houtz, J.M.; Smith, A.L.; Conway, J.F.; King, J.; Hatfull, G.F.; Lawrence, J.G.; Hendrix, R.W. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ. Microbiol. 2007, 9, 1675–1695. [Google Scholar] [CrossRef]
- Sullivan, M.B.; Huang, K.H.; Ignacio-Espinoza, J.C.; Berlin, A.M.; Kelly, L.; Weigele, P.R.; DeFrancesco, A.S.; Kern, S.E.; Thompson, L.R.; Young, S. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 2010, 12, 3035–3056. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M.; Bonnain, C.; Malki, K.; Sawaya, N.A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 2018, 3, 754–766. [Google Scholar] [CrossRef]
- Parada, V.; Herndl, G.J.; Weinbauer, M.G. Viral burst size of heterotrophic prokaryotes in aquatic systems. J. Mar. Biol. Assoc. 2006, 86, 613–621. [Google Scholar] [CrossRef]
- Cai, L.; Ma, R.; Chen, H.; Yang, Y.; Jiao, N.; Zhang, R. A newly isolated roseophage represents a distinct member of Siphoviridae family. Virol. J. 2019, 16, 128. [Google Scholar] [CrossRef]
- Flores-Uribe, J.; Philosof, A.; Sharon, I.; Fridman, S.; Larom, S.; Béjà, O. A novel uncultured marine cyanophage lineage with lysogenic potential linked to a putative marine Synechococcus ‘relic’prophage. Environ. Microbiol. Rep. 2019, 11, 598–604. [Google Scholar] [CrossRef]
- Abdulrahman Ashy, R.; Agustí, S. Low host abundance and high temperature determine switching from lytic to lysogenic cycles in planktonic microbial communities in a tropical sea (Red Sea). Viruses 2020, 12, 761. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Yu, M.; Chen, Y.-L.; Jin, M. The life cycle transitions of temperate phages: Regulating factors and potential ecological implications. Viruses 2022, 14, 1904. [Google Scholar] [CrossRef]
- Shitrit, D.; Hackl, T.; Laurenceau, R.; Raho, N.; Carlson, M.C.; Sabehi, G.; Schwartz, D.A.; Chisholm, S.W.; Lindell, D. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022, 16, 488–499. [Google Scholar] [CrossRef]
- Dang, V.T.; Howard-Varona, C.; Schwenck, S.; Sullivan, M.B. Variably lytic infection dynamics of large B acteroidetes podovirus phi38: 1 against two C ellulophaga baltica host strains. Environ. Microbiol. 2015, 17, 4659–4671. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, L.; Paul, J. Effect of nutrient addition and environmental factors on prophage induction in natural populations of marine Synechococcus species. Appl. Environ. Microbiol. 2005, 71, 842–850. [Google Scholar] [CrossRef]
- Williamson, S.J.; Paul, J. Environmental factors that influence the transition from lysogenic to lytic existence in the ϕHSIC/Listonella pelagia marine phage–host system. Microb. Ecol. 2006, 52, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.J.; Cary, S.C.; Williamson, K.E.; Helton, R.R.; Bench, S.R.; Winget, D.; Wommack, K.E. Lysogenic virus–host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J. 2008, 2, 1112–1121. [Google Scholar] [CrossRef]
- Marei, E.; Elbaz, R.; Hammad, A. Induction of temperate cyanophages using heavy metal-copper. Int. J. Microbiol. Res. 2013, 5, 472. [Google Scholar]
- Bettarel, Y.; Bouvier, T.; Bouvier, C.; Carré, C.; Desnues, A.; Domaizon, I.; Jacquet, S.; Robin, A.; Sime-Ngando, T. Ecological traits of planktonic viruses and prokaryotes along a full-salinity gradient. FEMS Microbiol. Ecol. 2011, 76, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.L. Phages tune in to host cell quorum sensing. Cell 2019, 176, 7–8. [Google Scholar] [CrossRef]
- Wilhelm, S.W.; Weinbauer, M.G.; Suttle, C.A.; Jeffrey, W.H. The role of sunlight in the removal and repair of viruses in the sea. Limnol. Oceanogr. 1998, 43, 586–592. [Google Scholar] [CrossRef]
- Suttle, C.A. Marine viruses—Major players in the global ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef]
- Breitbart, M.; Thompson, L.R.; Suttle, C.A.; Sullivan, M.B. Exploring the vast diversity of marine viruses. Oceanography 2007, 20, 135–139. [Google Scholar] [CrossRef]
- Hyman, P.; Abedon, S.T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. [Google Scholar]
- Van, T.T.B.; Anh, N.T.L.; Nguyen, H.T.; Tuan, C.T. Isolation of H2S-generating Bacterium (Desulfovibrio sp.) and Vibrio parahaemolyticus From Aquatic Farming and In Vitro Evaluation of the Ability of Bacteriophages as Biocontrol. J. Ilm. Perikan. Dan Kelaut. 2025, 17, 167. [Google Scholar] [CrossRef]
- de Jonge, P.A.; Nobrega, F.L.; Brouns, S.J.; Dutilh, B.E. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2019, 27, 51–63. [Google Scholar] [CrossRef]
- Khan Mirzaei, M.; Nilsson, A.S. Isolation of phages for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Mathieu, J.; Li, M.; Dai, Z.; Alvarez, P.J. Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl. Environ. Microbiol. 2016, 82, 808–815. [Google Scholar] [CrossRef]
- Ross, A.; Ward, S.; Hyman, P. More is better: Selecting for broad host range bacteriophages. Front. Microbiol. 2016, 7, 1352. [Google Scholar] [CrossRef] [PubMed]
- Ford, B.E.; Sun, B.; Carpino, J.; Chapler, E.S.; Ching, J.; Choi, Y.; Jhun, K.; Kim, J.D.; Lallos, G.G.; Morgenstern, R. Frequency and fitness consequences of bacteriophage Φ6 host range mutations. PLoS ONE 2014, 9, e113078. [Google Scholar] [CrossRef] [PubMed]
- Keen, E.C. Tradeoffs in bacteriophage life histories. Bacteriophage 2014, 4, e28365. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, K.M.; Hussain, F.A.; Yang, J.; Arevalo, P.; Brown, J.M.; Chang, W.K.; VanInsberghe, D.; Elsherbini, J.; Sharma, R.S.; Cutler, M.B. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 2018, 554, 118–122. [Google Scholar] [CrossRef]
- Avrani, S.; Schwartz, D.A.; Lindell, D. Virus-host swinging party in the oceans: Incorporating biological complexity into paradigms of antagonistic coexistence. Mob. Genet. Elem. 2012, 2, 88–95. [Google Scholar] [CrossRef]
- Letchumanan, V.; Chan, K.-G.; Pusparajah, P.; Saokaew, S.; Duangjai, A.; Goh, B.-H.; Ab Mutalib, N.-S.; Lee, L.-H. Insights into bacteriophage application in controlling Vibrio species. Front. Microbiol. 2016, 7, 1114. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.M.; Liau, X.L.; Tang, S.S. Bacteriophages and their host range in multidrug-resistant bacterial disease treatment. Pharmaceuticals 2023, 16, 1467. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Guzmán, E.; Peña-Rodriguez, A.; Vázquez-Juárez, R.; Barajas-Sandoval, D.R.; Balcázar, J.L.; Martínez-Díaz, S.F. Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture 2018, 492, 273–279. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.; Lan, W.; Sun, X. Characterization of vB_VpaP_MGD2, a newly isolated bacteriophage with biocontrol potential against multidrug-resistant Vibrio parahaemolyticus. Arch. Virol. 2021, 166, 413–426. [Google Scholar] [CrossRef]
- Li, X.; Liang, Y.; Wang, Z.; Yao, Y.; Chen, X.; Shao, A.; Lu, L.; Dang, H. Isolation and characterization of a novel Vibrio natriegens—Infecting phage and its potential therapeutic application in abalone aquaculture. Biology 2022, 11, 1670. [Google Scholar] [CrossRef]
- Stalin, N.; Srinivasan, P. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet. Microbiol. 2017, 207, 83–96. [Google Scholar] [CrossRef]
- Gao, L.; Ouyang, M.; Li, Y.; Zhang, H.; Zheng, X.-F.; Li, H.-X.; Rao, S.-Q.; Yang, Z.-Q.; Gao, S. Isolation and Characterization of a Lytic Vibriophage OY1 and Its Biocontrol Effects Against Vibrio spp. Front. Microbiol. 2022, 13, 830692. [Google Scholar]
- Zhang, H.; Yang, Z.; Zhou, Y.; Bao, H.; Wang, R.; Li, T.; Pang, M.; Sun, L.; Zhou, X. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. Int. J. Food Microbiol. 2018, 275, 24–31. [Google Scholar] [CrossRef]
- Hao, Q.; Bai, Y.; Zhou, H.; Bao, X.; Wang, H.; Zhang, L.; Lyu, M.; Wang, S. Isolation and characterization of bacteriophage VA5 against Vibrio alginolyticus. Microorganisms 2023, 11, 2822. [Google Scholar] [CrossRef]
- Silva, Y.J.; Costa, L.; Pereira, C.; Cunha, Â.; Calado, R.; Gomes, N.C.; Almeida, A. Influence of environmental variables in the efficiency of phage therapy in aquaculture. Microb. Biotechnol. 2014, 7, 401–413. [Google Scholar] [CrossRef]
- Wells, L.E.; Deming, J.W. Effects of temperature, salinity and clay particles on inactivation and decay of cold-active marine Bacteriophage 9A. Aquat. Microb. Ecol. 2006, 45, 31–39. [Google Scholar] [CrossRef]
- Wdowiak, M.; Paczesny, J.; Raza, S. Enhancing the stability of bacteriophages using physical, chemical, and nano-based approaches: A review. Pharmaceutics 2022, 14, 1936. [Google Scholar] [CrossRef]
- Sousa, J.A.M.d.; Rocha, E.P. Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation. Sci. Rep. 2019, 9, 3149. [Google Scholar] [CrossRef] [PubMed]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.; Garton, N.J.; Stapley, A.G.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef]
- Parasion, S.; Kwiatek, M.; Gryko, R.; Mizak, L.; Malm, A. Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol. 2014, 63, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Schumacher, T.; Guajardo-Leiva, S.; Martinez-Garcia, M.; Díez, B. Ecogenomics and adaptation strategies of Southern Ocean viral communities. Msystems 2021, 6, e00396-21. [Google Scholar] [CrossRef]
- Finke, J.F.; Suttle, C.A. The environment and cyanophage diversity: Insights from environmental sequencing of DNA polymerase. Front. Microbiol. 2019, 10, 167. [Google Scholar] [CrossRef]
- Huang, D.; Xia, R.; Chen, C.; Liao, J.; Chen, L.; Wang, D.; Alvarez, P.J.; Yu, P. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends Microbiol. 2024, 32, 902–916. [Google Scholar] [CrossRef]
- Nishimura, Y.; Watai, H.; Honda, T.; Mihara, T.; Omae, K.; Roux, S.; Blanc-Mathieu, R.; Yamamoto, K.; Hingamp, P.; Sako, Y. Environmental viral genomes shed new light on virus-host interactions in the ocean. Msphere 2017, 2, e00359-16. [Google Scholar] [CrossRef]
- Rørbo, N.; Rønneseth, A.; Kalatzis, P.G.; Rasmussen, B.B.; Engell-Sørensen, K.; Kleppen, H.P.; Wergeland, H.I.; Gram, L.; Middelboe, M. Exploring the effect of phage therapy in preventing Vibrio anguillarum infections in cod and turbot larvae. Antibiotics 2018, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fan, J.; Yan, T.; Liu, Q.; Yuan, S.; Zhang, H.; Yang, J.; Deng, D.; Huang, S.; Ma, Y. Isolation and characterization of specific phages to prepare a cocktail preventing Vibrio sp. Va-F3 infections in shrimp (Litopenaeus vannamei). Front. Microbiol. 2019, 10, 2337. [Google Scholar] [CrossRef] [PubMed]
- Bolsan, A.C.; Sampaio, G.V.; Rodrigues, H.C.; De Souza, S.S.; Edwiges, T.; De Prá, M.C.; Gabiatti, N.C. Phage formulations and delivery strategies: Unleashing the potential against antibiotic-resistant bacteria. Microbiol. Res. 2024, 282, 127662. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jun, J.W.; Giri, S.S.; Kim, S.G.; Kim, S.W.; Kwon, J.; Lee, S.B.; Chi, C.; Park, S.C. Bacteriophage cocktail for the prevention of multiple-antibiotic-resistant and mono-phage-resistant Vibrio coralliilyticus infection in pacific oyster (Crassostrea gigas) larvae. Pathogens 2020, 9, 831. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, M.; Liu, Q.; Li, D.; Yang, R.; Chen, H. Bacteriophage therapy on the conchocelis of Pyropia haitanensis (Rhodophyta) infected by Vibrio mediterranei 117-T6. Aquaculture 2021, 531, 735853. [Google Scholar] [CrossRef]
- Li, Z.; Ren, H.; Li, Q.; Murtaza, B.; Li, X.; Zhang, J.; Xu, Y. Exploring the effects of phage cocktails in preventing Vibrio infections in juvenile sea cucumber (Apostichopus japonicus) farming. Aquaculture 2020, 515, 734599. [Google Scholar] [CrossRef]
- Kim, B.H.; Ashrafudoulla, M.; Shaila, S.; Park, H.J.; Sul, J.D.; Park, S.H.; Ha, S.-D. Isolation, characterization, and application of bacteriophage on Vibrio parahaemolyticus biofilm to control seafood contamination. Int. J. Antimicrob. Agents 2024, 64, 107194. [Google Scholar] [CrossRef]
- Mateus, L.; Costa, L.; Silva, Y.; Pereira, C.; Cunha, A.; Almeida, A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture 2014, 424, 167–173. [Google Scholar] [CrossRef]
- Castillo, D.; Rørbo, N.; Jørgensen, J.; Lange, J.; Tan, D.; Kalatzis, P.G.; Svenningsen, S.L.; Middelboe, M. Phage defense mechanisms and their genomic and phenotypic implications in the fish pathogen Vibrio anguillarum. FEMS Microbiol. Ecol. 2019, 95, fiz004. [Google Scholar] [CrossRef]
- Hussain, F.A.; Dubert, J.; Elsherbini, J.; Murphy, M.; VanInsberghe, D.; Arevalo, P.; Kauffman, K.; Rodino-Janeiro, B.K.; Gavin, H.; Gomez, A. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 2021, 374, 488–492. [Google Scholar] [CrossRef]
- Skliros, D.; Kalatzis, P.G.; Kalloniati, C.; Komaitis, F.; Papathanasiou, S.; Kouri, E.D.; Udvardi, M.K.; Kokkari, C.; Katharios, P.; Flemetakis, E. The development of bacteriophage resistance in Vibrio alginolyticus depends on a complex metabolic adaptation strategy. Viruses 2021, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shi, T.; Sun, Y.; Zhang, Y. A novel method to create efficient phage cocktails via use of phage-resistant bacteria. Appl. Environ. Microbiol. 2022, 88, e02323-21. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, L.; Steiner, L.X.; Giez, C.; Lachnit, T. Optimizing bacteriophage treatment of resistant Pseudomonas. Msphere 2024, 9, e00707-23. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.R.; De Vos, D.; Friman, V.-P.; Pirnay, J.-P.; Buckling, A. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl. Environ. Microbiol. 2012, 78, 5646–5652. [Google Scholar] [CrossRef]
- Wang, Z.; Fokine, A.; Guo, X.; Jiang, W.; Rossmann, M.G.; Kuhn, R.J.; Luo, Z.-H.; Klose, T. Structure of Vibrio phage XM1, a simple contractile DNA injection machine. Viruses 2023, 15, 1673. [Google Scholar] [CrossRef]
- Wang, Z.; Hardies, S.C.; Fokine, A.; Klose, T.; Jiang, W.; Cho, B.C.; Rossmann, M.G. Structure of the marine siphovirus TW1: Evolution of capsid-stabilizing proteins and tail spikes. Structure 2018, 26, 238–248.e3. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Murata, K.; Baker, M.L.; Sullivan, M.B.; Fu, C.; Dougherty, M.T.; Schmid, M.F.; Osburne, M.S.; Chisholm, S.W. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat. Struct. Mol. Biol. 2010, 17, 830–836. [Google Scholar] [CrossRef]
- Lomelí-Ortega, C.; Martínez-Sández, A.; Barajas-Sandoval, D.; Reyes, A.; Magallón-Barajas, F.; Veyrand-Quíros, B.; Gannon, L.; Harrison, C.; Michniewski, S.; Millard, A. Isolation and characterization of vibriophage vB_Vc_SrVc9: An effective agent in preventing Vibrio campbellii infections in brine shrimp nauplii (Artemia franciscana). J. Appl. Microbiol. 2021, 131, 36–49. [Google Scholar] [CrossRef]
- Jang, W.J.; Kim, T.-Y.; Lee, S.-J.; Jeon, M.-H.; Noh, D.-I.; Lee, Y.-S.; Kim, C.-H.; Lim, E.-S.; Lee, J.M.; Lee, E.-W. Identification and characterization of the novel bacteriophage BPVP-3325 for the biocontrol of Vibrio parahaemolyticus infection in seafood. Aquaculture 2022, 561, 738669. [Google Scholar] [CrossRef]
- Jacquemot, L.; Bettarel, Y.; Monjol, J.; Corre, E.; Halary, S.; Desnues, C.; Bouvier, T.; Ferrier-Pagès, C.; Baudoux, A.-C. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen. Front. Microbiol. 2018, 9, 2501. [Google Scholar] [CrossRef]
- Pereira, C.; Moreirinha, C.; Teles, L.; Rocha, R.J.; Calado, R.; Romalde, J.L.; Nunes, M.L.; Almeida, A. Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food Microbiol. 2017, 61, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Moreirinha, C.; Rocha, R.J.; Calado, R.; Romalde, J.L.; Nunes, M.L.; Almeida, A. Application of bacteriophages during depuration reduces the load of Salmonella Typhimurium in cockles. Food Res. Int. 2016, 90, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Nakai, T.; Sugimoto, R.; Park, K.-H.; Matsuoka, S.; Mori, K.; Nishioka, T.; Maruyama, K. Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis. Aquat. Org. 1999, 37, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, S.; Hashizume, T.; Kanzaki, H.; Iwamoto, E.; Park, S.C.; Yoshida, T.; Nakai, T. Phage therapy against β-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus. Fish Pathol. 2007, 42, 181–189. [Google Scholar] [CrossRef]
- Kwon, A.S.; Kang, B.J.; Jun, S.Y.; Yoon, S.J.; Lee, J.H.; Kang, S.H. Evaluating the effectiveness of Streptococcus parauberis bacteriophage Str-PAP-1 as an environmentally friendly alternative to antibiotics for aquaculture. Aquaculture 2017, 468, 464–470. [Google Scholar] [CrossRef]
- Hyman, P. Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef]
- Samir, S.; El-Far, A.; Okasha, H.; Mahdy, R.; Samir, F.; Nasr, S. Isolation and characterization of lytic bacteriophages from sewage at an egyptian tertiary care hospital against methicillin-resistant Staphylococcus aureus clinical isolates. Saudi J. Biol. Sci. 2022, 29, 3097–3106. [Google Scholar] [CrossRef]
- Bibi, Z.; Abbas, Z.; Rehman, S.U. The phage P. E1 isolated from hospital sewage reduces the growth of Escherichia coli. Biocontrol Sci. Technol. 2016, 26, 181–188. [Google Scholar] [CrossRef]
- Cui, H.; Xu, Y.; Cong, C.; Li, C.; Li, X.; Li, S.; Li, J.; Wang, L. Evaluation of the preventive effect of phage cocktails on turbot ascites and its influence on main physiological indicators. Aquaculture 2022, 547, 737539. [Google Scholar] [CrossRef]
- Alagappan, K.; Deivasigamani, B.; Somasundaram, S.; Kumaran, S. Occurrence of Vibrio parahaemolyticus and its specific phages from shrimp ponds in east coast of India. Curr. Microbiol. 2010, 61, 235–240. [Google Scholar] [CrossRef]
- Yu, Y.-P.; Gong, T.; Jost, G.; Liu, W.-H.; Ye, D.-Z.; Luo, Z.-H. Isolation and characterization of five lytic bacteriophages infecting a Vibrio strain closely related to Vibrio owensii. FEMS Microbiol. Lett. 2013, 348, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.N.W.; Aznan, A.S.; Saari, N.A.; Leong, L.K.; Musa, N.; Razzak, L.A.; Danish-Daniel, M.; Zainathan, S.C.; Din, M.S.M.; Ghaffar, M.A. In-vitro characterization of lytic bacteriophage PhVh6 as potential biocontrol agent against pathogenic Vibrio harveyi. Aquac. Aquar. Conserv. Legis. 2017, 10, 64–76. [Google Scholar]
- Wang, Y.; Barton, M.; Elliott, L.; Li, X.; Abraham, S.; O’Dea, M.; Munro, J. Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 2017, 473, 251–258. [Google Scholar] [CrossRef]
- Wong, H.-c.; Wang, T.-Y.; Yang, C.-W.; Tang, C.-T.; Ying, C.; Wang, C.-H.; Chang, W.-H. Characterization of a lytic vibriophage VP06 of Vibrio parahaemolyticus. Res. Microbiol. 2019, 170, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Giri, S.S.; Kim, S.G.; Kim, S.W.; Kwon, J.; Lee, S.B.; Park, S.C. Isolation and characterization of two bacteriophages and their preventive effects against pathogenic Vibrio coralliilyticus causing mortality of Pacific oyster (Crassostrea gigas) larvae. Microorganisms 2020, 8, 926. [Google Scholar] [CrossRef]
- Yang, M.; Liang, Y.; Huang, S.; Zhang, J.; Wang, J.; Chen, H.; Ye, Y.; Gao, X.; Wu, Q.; Tan, Z. Isolation and characterization of the novel phages vB_VpS_BA3 and vB_VpS_CA8 for lysing Vibrio parahaemolyticus. Front. Microbiol. 2020, 11, 259. [Google Scholar] [CrossRef]
- Yaşa, İ.; Evran, S.; Eren Eroğlu, A.E.; Önder, C.; Allahyari, M.; Menderes, G.; Kullay, M. Partial Characterization of Three Bacteriophages Isolated from Aquaculture Hatchery Water and Their Potential in the Biocontrol of Vibrio spp. Microorganisms 2024, 12, 895. [Google Scholar] [CrossRef]
- Fathima, B.; Archer, A.C. Bacteriophage therapy: Recent developments and applications of a renaissant weapon. Res. Microbiol. 2021, 172, 103863. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Wang, Z.; Wei, J.; Hu, T.; Si, J.; Tao, G.; Zhang, L.; Xie, L.; Abdalla, A.E. A combination therapy of Phages and Antibiotics: Two is better than one. Int. J. Biol. Sci. 2021, 17, 3573. [Google Scholar] [CrossRef]
- Huss, P.; Raman, S. Engineered bacteriophages as programmable biocontrol agents. Curr. Opin. Biotechnol. 2020, 61, 116–121. [Google Scholar] [CrossRef]
- Matamp, N.; Bhat, S.G. Phage endolysins as potential antimicrobials against multidrug resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current status of research and challenges ahead. Microorganisms 2019, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Diallo, K.; Dublanchet, A. Benefits of combined phage–antibiotic therapy for the control of antibiotic-resistant bacteria: A literature review. Antibiotics 2022, 11, 839. [Google Scholar] [CrossRef]
- Iqbal, M.; Narulita, E.; Zahra, F.; Murdiyah, S. Effect of Phage-Antibiotic Synergism (PAS) in increasing antibiotic inhibition of bacteria caused of foodborne diseases. J. Infect. Dev. Ctries. 2020, 14, 488–493. [Google Scholar] [CrossRef]
- Kamal, F.; Dennis, J.J. Burkholderia cepacia complex phage-antibiotic synergy (PAS): Antibiotics stimulate lytic phage activity. Appl. Environ. Microbiol. 2015, 81, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Comeau, A.M.; Tétart, F.; Trojet, S.N.; Prère, M.-F.; Krisch, H. Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS ONE 2007, 2, e799. [Google Scholar] [CrossRef]
- Manohar, P.; Madurantakam Royam, M.; Loh, B.; Bozdogan, B.; Nachimuthu, R.; Leptihn, S. Synergistic effects of phage–antibiotic combinations against Citrobacter amalonaticus. ACS Infect. Dis. 2022, 8, 59–65. [Google Scholar] [CrossRef]
- Eroğlu, A.E.E.; Yaşa, İ. Genomic overview of the N4-like TEMp-D1 phage and the efficacy of antibiotic-phage synergy for the biocontrol of Photobacterium damselae subsp. damselae. Aquac. Int. 2025, 33, 72. [Google Scholar] [CrossRef]
- Lopes, A.; Pereira, C.; Almeida, A. Sequential combined effect of phages and antibiotics on the inactivation of Escherichia coli. Microorganisms 2018, 6, 125. [Google Scholar] [CrossRef]
- Doron, S.; Melamed, S.; Ofir, G.; Leavitt, A.; Lopatina, A.; Keren, M.; Amitai, G.; Sorek, R. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 2018, 359, eaar4120. [Google Scholar] [CrossRef]
- Kilcher, S.; Loessner, M.J. Engineering bacteriophages as versatile biologics. Trends Microbiol. 2019, 27, 355–367. [Google Scholar] [CrossRef]
- Yoichi, M.; Abe, M.; Miyanaga, K.; Unno, H.; Tanji, Y. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157: H7. J. Biotechnol. 2005, 115, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Mahichi, F.; Synnott, A.J.; Yamamichi, K.; Osada, T.; Tanji, Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett. 2009, 295, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.K.; Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 2007, 104, 11197–11202. [Google Scholar] [CrossRef]
- Born, Y.; Fieseler, L.; Thöny, V.; Leimer, N.; Duffy, B.; Loessner, M.J. Engineering of bacteriophages Y2:: dpoL1-C and Y2:: luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 2017, 83, e00341-17. [Google Scholar] [CrossRef]
- Krom, R.J.; Bhargava, P.; Lobritz, M.A.; Collins, J.J. Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett. 2015, 15, 4808–4813. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, F.; Easwaran, M.; Daramola, O.I.; Ragab, S.; Lynch, S.; Oduselu, T.J.; Khan, F.M.; Ayobami, A.; Adnan, F.; Torrents, E. Phage-encoded endolysins. Antibiotics 2021, 10, 124. [Google Scholar] [CrossRef]
- Soto Lopez, M.E.; Mendoza-Corvis, F.; Salgado-Behaine, J.J.; Hernandez-Arteaga, A.M.; González-Peña, V.; Burgos-Rivero, A.M.; Cortessi, D.; Vidigal, P.M.; Pérez-Sierra, O. Phage Endolysins as an Alternative Biocontrol Strategy for Pathogenic and Spoilage Microorganisms in the Food Industry. Viruses 2025, 17, 564. [Google Scholar] [CrossRef]
- Li, M.; Jin, Y.; Lin, H.; Wang, J.; Jiang, X. Complete genome of a novel lytic Vibrio parahaemolyticus phage VPp1 and characterization of its endolysin for antibacterial activities. J. Food Prot. 2018, 81, 1117–1125. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Lin, H.; Wang, J.; Mao, X. The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: Genome sequence and endolysin with a modular structure. Arch. Virol. 2016, 161, 2645–2652. [Google Scholar] [CrossRef]
- Chamblee, J.S.; Ramsey, J.; Chen, Y.; Maddox, L.T.; Ross, C.; To, K.H.; Cahill, J.L.; Young, R. Endolysin regulation in phage Mu lysis. MBio 2022, 13, e00813-22. [Google Scholar] [CrossRef]
- Khan, F.M.; Chen, J.-H.; Zhang, R.; Liu, B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: Recent advances, challenges, and future perspective. Front. Microbiol. 2023, 14, 1259210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, W.; Shi, K.; Fang, Z.; Yang, Y.; Zhang, R. Isolation and characterization of a novel phage belonging to a new genus against Vibrio parahaemolyticus. Virol. J. 2023, 20, 81. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, V.A. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 2008, 11, 393–400. [Google Scholar] [CrossRef]
- Zermeño-Cervantes, L.A.; Makarov, R.; Lomelí-Ortega, C.O.; Martínez-Díaz, S.F.; Cardona-Félix, C.S. Recombinant LysVPMS1 as an endolysin with broad lytic activity against Vibrio parahaemolyticus strains associated to acute hepatopancreatic necrosis disease. Aquac. Res. 2018, 49, 1723–1726. [Google Scholar] [CrossRef]
- Xia, H.; Yang, H.; Yan, N.; Hou, W.; Wang, H.; Wang, X.; Wang, H.; Zhou, M. Bacteriostatic effects of phage F23s1 and its endolysin on Vibrio parahaemolyticus. J. Basic Microbiol. 2022, 62, 963–974. [Google Scholar] [CrossRef]
- Srinivasan, R.; Chaitanyakumar, A.; Subramanian, P.; Mageswari, A.; Gomathi, A.; Aswini, V.; Sankar, A.M.; Ramya, M.; Gothandam, K.M. Recombinant engineered phage-derived enzybiotic in Pichia pastoris X-33 as whole cell biocatalyst for effective biocontrol of Vibrio parahaemolyticus in aquaculture. Int. J. Biol. Macromol. 2020, 154, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, Z.; Mu, X.; Wang, M.; Tang, J.; Bi, Q. Characterization of a marine endolysin LysVPB against Vibrio parahaemolyticus. Protein Expr. Purif. 2025, 226, 106608. [Google Scholar] [CrossRef]
- Topka-Bielecka, G.; Dydecka, A.; Necel, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.; Węgrzyn, A. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics 2021, 10, 175. [Google Scholar] [CrossRef]
- Jun, S.Y.; Jang, I.J.; Yoon, S.; Jang, K.; Yu, K.-S.; Cho, J.Y.; Seong, M.-W.; Jung, G.M.; Yoon, S.J.; Kang, S.H. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother. 2017, 61, e02629-16. [Google Scholar] [CrossRef]
- Lai, W.C.B.; Chen, X.; Ho, M.K.Y.; Xia, J.; Leung, S.S.Y. Bacteriophage-derived endolysins to target gram-negative bacteria. Int. J. Pharm. 2020, 589, 119833. [Google Scholar] [CrossRef]
- Khan, F.M.; Rasheed, F.; Yang, Y.; Liu, B.; Zhang, R. Endolysins: A new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front. Pharmacol. 2024, 15, 1385261. [Google Scholar] [CrossRef] [PubMed]
- Schmelcher, M.; Loessner, M.J. Bacteriophage endolysins—Extending their application to tissues and the bloodstream. Curr. Opin. Biotechnol. 2021, 68, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.J.; Khan Mirzaei, M.; Nilsson, A.S. Adapting drug approval pathways for bacteriophage-based therapeutics. Front. Microbiol. 2016, 7, 1209. [Google Scholar] [CrossRef]
- Murray, E.; Draper, L.A.; Ross, R.P.; Hill, C. The advantages and challenges of using endolysins in a clinical setting. Viruses 2021, 13, 680. [Google Scholar] [CrossRef]
- Torres-Barceló, C.; Turner, P.E.; Buckling, A. Mitigation of evolved bacterial resistance to phage therapy. Curr. Opin. Virol. 2022, 53, 101201. [Google Scholar] [CrossRef]
- Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef]
- Caflisch, K.M.; Suh, G.A.; Patel, R. Biological challenges of phage therapy and proposed solutions: A literature review. Expert Rev. Anti-Infect. Ther. 2019, 17, 1011–1041. [Google Scholar] [CrossRef]
- Colavecchio, A.; Goodridge, L.D. Phage therapy approaches to reducing pathogen persistence and transmission in animal production environments: Opportunities and challenges. In Preharvest Food Safety; ASM Press: Washington, DC, USA, 2018; pp. 289–308. [Google Scholar]
- Zalewska-Piątek, B. Phage therapy—Challenges, opportunities and future prospects. Pharmaceuticals 2023, 16, 1638. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage therapy for antibiotic-resistant bacterial infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef]
- Li, L.; Zhou, M.; Yu, M.; Ren, X.; Li, L.; Shen, C.; Deng, C.; Liu, Y.; Yang, B. Correlation between the development of phage resistance and the original antibiotic resistance of host bacteria under the co-exposure of antibiotic and bacteriophage. Environ. Res. 2024, 252, 118921. [Google Scholar] [CrossRef]
- Seed, K.D. Battling phages: How bacteria defend against viral attack. PLoS Pathog. 2015, 11, e1004847. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R. The roles of CRISPR–Cas systems in adaptive immunity and beyond. Curr. Opin. Immunol. 2015, 32, 36–41. [Google Scholar] [CrossRef] [PubMed]
- McDonald, N.D.; Regmi, A.; Morreale, D.P.; Borowski, J.D.; Boyd, E.F. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genom. 2019, 20, 105. [Google Scholar] [CrossRef] [PubMed]
- León, M.; Kokkari, C.; García, K.; Castillo, D.; Katharios, P.; Bastías, R. Diversification of Vibrio anguillarum Driven by the Bacteriophage CHOED. Front. Microbiol. 2019, 10, 1396. [Google Scholar] [CrossRef]
- Tan, D.; Dahl, A.; Middelboe, M. Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains. Appl. Environ. Microbiol. 2015, 81, 4489–4497. [Google Scholar] [CrossRef]
- Hasan, M.; Ahn, J. Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics 2022, 11, 915. [Google Scholar] [CrossRef]
- Oromí-Bosch, A.; Antani, J.D.; Turner, P.E. Developing phage therapy that overcomes the evolution of bacterial resistance. Annu. Rev. Virol. 2023, 10, 503–524. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Kasprzak, H.; Letkiewicz, S.; Rogóż, P.; Żaczek, M.; Thomas, J.; Górski, A. Pharmacokinetic and pharmacodynamic obstacles for phage therapy from the perspective of clinical practice. Clin. Infect. Dis. 2023, 77, S395–S400. [Google Scholar] [CrossRef]
- Nang, S.C.; Lin, Y.-W.; Fabijan, A.P.; Chang, R.Y.; Rao, G.G.; Iredell, J.; Chan, H.-K.; Li, J. Pharmacokinetics/pharmacodynamics of phage therapy: A major hurdle to clinical translation. Clin. Microbiol. Infect. 2023, 29, 702–709. [Google Scholar] [CrossRef]
- Qadir, M.I.; Mobeen, T.; Masood, A. Phage therapy: Progress in pharmacokinetics. Braz. J. Pharm. Sci. 2018, 54, e17093. [Google Scholar] [CrossRef]
- Abedon, S.T.; Thomas-Abedon, C. Phage therapy pharmacology. Curr. Pharm. Biotechnol. 2010, 11, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.G.; Vallé, Q.; Mahadevan, R.; Sharma, R.; Barr, J.J.; Van Tyne, D. Crossing the Chasm: How to Approach Translational Pharmacokinetic–Pharmacodynamic Modeling of Phage Dosing. Clin. Pharmacol. Ther. 2025, 117, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef]
- Manohar, P.; Tamhankar, A.J.; Leptihn, S.; Ramesh, N. Pharmacological and immunological aspects of phage therapy. Infect. Microbes Dis. 2019, 1, 34–42. [Google Scholar] [CrossRef]
- Ramos-Vivas, J.; Superio, J.; Galindo-Villegas, J.; Acosta, F. Phage therapy as a focused management strategy in aquaculture. Int. J. Mol. Sci. 2021, 22, 10436. [Google Scholar] [CrossRef]
- Miernikiewicz, P.; Kłopot, A.; Soluch, R.; Szkuta, P.; Kęska, W.; Hodyra-Stefaniak, K.; Konopka, A.; Nowak, M.; Lecion, D.; Kaźmierczak, Z. T4 phage tail adhesin gp12 counteracts LPS-induced inflammation in vivo. Front. Microbiol. 2016, 7, 1112. [Google Scholar] [CrossRef]
- Cafora, M.; Deflorian, G.; Forti, F.; Ferrari, L.; Binelli, G.; Briani, F.; Ghisotti, D.; Pistocchi, A. Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci. Rep. 2019, 9, 1527. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Jun, J.W.; Giri, S.S.; Kim, H.J.; Chi, C.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J. Immunostimulation of Cyprinus carpio using phage lysate of Aeromonas hydrophila. Fish Shellfish. Immunol. 2019, 86, 680–687. [Google Scholar] [CrossRef]
- Kim, K.P.; Cha, J.D.; Jang, E.H.; Klumpp, J.; Hagens, S.; Hardt, W.D.; Lee, K.Y.; Loessner, M.J. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microb. Biotechnol. 2008, 1, 247–257. [Google Scholar] [CrossRef]
- Lin, J.; Du, F.; Long, M.; Li, P. Limitations of phage therapy and corresponding optimization strategies: A review. Molecules 2022, 27, 1857. [Google Scholar] [CrossRef]
- Bono, L.M.; Mao, S.; Done, R.E.; Okamoto, K.W.; Chan, B.K.; Turner, P.E. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv. Virus Res. 2021, 111, 63–110. [Google Scholar]
- Tanji, Y.; Shimada, T.; Yoichi, M.; Miyanaga, K.; Hori, K.; Unno, H. Toward rational control of Escherichia coli O157: H7 by a phage cocktail. Appl. Microbiol. Biotechnol. 2004, 64, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, F.L.; Costa, A.R.; Kluskens, L.D.; Azeredo, J. Revisiting phage therapy: New applications for old resources. Trends Microbiol. 2015, 23, 185–191. [Google Scholar] [CrossRef]
- Dufour, N.; Delattre, R.; Ricard, J.-D.; Debarbieux, L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin than by β-lactams. Clin. Infect. Dis. 2017, 64, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Tetz, G.V.; Ruggles, K.V.; Zhou, H.; Heguy, A.; Tsirigos, A.; Tetz, V. Bacteriophages as potential new mammalian pathogens. Sci. Rep. 2017, 7, 7043. [Google Scholar] [CrossRef] [PubMed]
- Boratyński, J.; Syper, D.; Weber-Dabrowska, B.; Łusiak-Szelachowska, M.; Poźniak, G.; Górski, A. Preparation of endotoxin-free bacteriophages. Cell. Mol. Biol. Lett. 2004, 9, 253–259. [Google Scholar]
- Moradpour, Z.; Sepehrizadeh, Z.; Rahbarizadeh, F.; Ghasemian, A.; Yazdi, M.T.; Shahverdi, A.R. Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol. Lett. 2009, 296, 67–71. [Google Scholar] [CrossRef]
- Hagens, S.; Habel, A.; Von Ahsen, U.; Von Gabain, A.; Bläsi, U. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob. Agents Chemother. 2004, 48, 3817–3822. [Google Scholar] [CrossRef]
- Paul, V.D.; Sundarrajan, S.; Rajagopalan, S.S.; Hariharan, S.; Kempashanaiah, N.; Padmanabhan, S.; Sriram, B.; Ramachandran, J. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol. 2011, 11, 195. [Google Scholar] [CrossRef]
- Liu, S.; Quek, S.-Y.; Huang, K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit. Rev. Food Sci. Nutr. 2024, 64, 12574–12598. [Google Scholar] [CrossRef]
- Yin, Y.; Ni, P.’e.; Liu, D.; Yang, S.; Almeida, A.; Guo, Q.; Zhang, Z.; Deng, L.; Wang, D. Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control 2019, 98, 156–163. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, X.; Baxi, S.; Chambers, J.R.; Sabour, P.M.; Wang, Q. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Res. Int. 2013, 52, 460–466. [Google Scholar] [CrossRef]
- Ma, Y.; Pacan, J.C.; Wang, Q.; Xu, Y.; Huang, X.; Korenevsky, A.; Sabour, P.M. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl. Environ. Microbiol. 2008, 74, 4799–4805. [Google Scholar] [CrossRef]
- Nieth, A.; Verseux, C.; Barnert, S.; Süss, R.; Römer, W. A first step toward liposome-mediated intracellular bacteriophage therapy. Expert Opin. Drug Deliv. 2015, 12, 1411–1424. [Google Scholar] [CrossRef]
- Lu, T.K.; Koeris, M.S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 2011, 14, 524–531. [Google Scholar] [CrossRef]
- Ng, R.N.; Tai, A.S.; Chang, B.J.; Stick, S.M.; Kicic, A. Overcoming challenges to make bacteriophage therapy standard clinical treatment practice for cystic fibrosis. Front. Microbiol. 2021, 11, 593988. [Google Scholar] [CrossRef] [PubMed]
- Fauconnier, A. Phage therapy regulation: From night to dawn. Viruses 2019, 11, 352. [Google Scholar] [CrossRef]
- Vázquez, R.; Díez-Martínez, R.; Domingo-Calap, P.; García, P.; Gutiérrez, D.; Muniesa, M.; Ruiz-Ruigómez, M.; Sanjuán, R.; Tomás, M.; Tormo-Mas, M.Á. Essential topics for the regulatory consideration of phages as clinically valuable therapeutic agents: A perspective from Spain. Microorganisms 2022, 10, 717. [Google Scholar] [CrossRef]
- Pelfrene, E.; Willebrand, E.; Cavaleiro Sanches, A.; Sebris, Z.; Cavaleri, M. Bacteriophage therapy: A regulatory perspective. J. Antimicrob. Chemother. 2016, 71, 2071–2074. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banicod, R.J.S.; Javaid, A.; Tabassum, N.; Jo, D.-M.; Hassan, M.I.; Kim, Y.-M.; Khan, F. Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application. Viruses 2025, 17, 971. https://doi.org/10.3390/v17070971
Banicod RJS, Javaid A, Tabassum N, Jo D-M, Hassan MI, Kim Y-M, Khan F. Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application. Viruses. 2025; 17(7):971. https://doi.org/10.3390/v17070971
Chicago/Turabian StyleBanicod, Riza Jane S., Aqib Javaid, Nazia Tabassum, Du-Min Jo, Md. Imtaiyaz Hassan, Young-Mog Kim, and Fazlurrahman Khan. 2025. "Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application" Viruses 17, no. 7: 971. https://doi.org/10.3390/v17070971
APA StyleBanicod, R. J. S., Javaid, A., Tabassum, N., Jo, D.-M., Hassan, M. I., Kim, Y.-M., & Khan, F. (2025). Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application. Viruses, 17(7), 971. https://doi.org/10.3390/v17070971