Avian Metapneumovirus in Thailand: Molecular Detection, Genetic Diversity, and Its Potential Threat to Poultry
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Clinical Observation
2.2. RNA Extraction and Nested RT-PCR
2.3. Sequencing and Genetic Analysis
2.4. Phylodynamic and Time-Calibrated Phylogenetic Analysis
2.5. TCS Network Construction
2.6. Amino Acid Sequence Comparison
3. Results
3.1. Molecular Detection and Clinical Correlation of aMPV/B in Poultry
3.2. Phylogenetic Structure and Evolutionary Relationships
3.3. Divergence Time Analysis
3.4. TCS Network of aMPV/B Circulated in Thailand
3.5. Amino Acid Variation Between Lineages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buys, S.B.; du Preez, J.H.; Els, H.J. The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. Onderstepoort. J. Vet. Res. 1989, 56, 87–98. [Google Scholar]
- Cook, J.K.; Cavanagh, D. Detection and differentiation of avian pneumoviruses (metapneumoviruses). Avian Pathol. 2002, 31, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Bäyon-Auboyer, M.-H.; Arnauld, C.; Toquin, D.; Eterradossi, N. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. J. Gen. Virol. 2000, 81, 2723–2733. [Google Scholar] [CrossRef] [PubMed]
- Kaboudi, K.; Lachheb, J. Avian metapneumovirus infection in turkeys: A review on turkey rhinotracheitis. J. Appl. Poult. Res. 2021, 30, 100211. [Google Scholar] [CrossRef]
- Nguyen, V.-G.; Chung, H.-C.; Do, H.-Q.; Nguyen, T.-T.; Cao, T.-B.; Truong, H.-T.; Mai, T.-N.; Le, T.-T.; Nguyen, T.-H.; Le, T.-L.; et al. Serological and Molecular Characterization of Avian Metapneumovirus in Chickens in Northern Vietnam. Vet. Sci. 2021, 8, 206. [Google Scholar] [CrossRef]
- Mescolini, G.; Lupini, C.; Franzo, G.; Quaglia, G.; Legnardi, M.; Cecchinato, M.; Tucciarone, C.M.; Blanco, A.; Turblin, V.; Biarnés, M. What is new on molecular characteristics of Avian metapneumovirus strains circulating in Europe? Transbound. Emerg. Dis. 2021, 68, 1314–1322. [Google Scholar] [CrossRef]
- Yu, M.; Xing, L.; Chang, F.; Bao, Y.; Wang, S.; He, X.; Wang, J.; Wang, S.; Liu, Y.; Farooque, M.; et al. Genomic sequence and pathogenicity of the first avian metapneumovirus subtype B isolated from chicken in China. Vet. Microbiol. 2019, 228, 32–38. [Google Scholar] [CrossRef]
- Catelli, E.; Lupini, C.; Cecchinato, M.; Ricchizzi, E.; Brown, P.; Naylor, C.J. Field avian Metapneumovirus evolution avoiding vaccine induced immunity. Vaccine 2010, 28, 916–921. [Google Scholar] [CrossRef]
- Lupini, C.; Cecchinato, M.; Ricchizzi, E.; Naylor, C.J.; Catelli, E. A turkey rhinotracheitis outbreak caused by the environmental spread of a vaccine-derived avian metapneumovirus. Avian Pathol. 2011, 40, 525–530. [Google Scholar] [CrossRef]
- Lim, A.A.S.; Abu, J.; Choo, P.Y.; Seetha, J.; Goh, Y.M. Detection of Avian metapneumovirus field infection via reverse transcriptase polymerase chain reaction (RT-PCR) and ELISA in two-layer farms in Johor. J. Vet. Malays. 2009, 21, 9–13. [Google Scholar]
- Wanarat, S.; Sukmak, M.; Witoonsatian, K. Molecular characterization of avian metapneumovirus isolated from turkey in Thailand. In Proceedings of the 19th KU KPS National Conference, Nakhon Pathom, Thailand, 8–9 December 2022; Office of Kamphaeng Saen Campus, Education Administration Division, Kasetsart University: Nakhon Pathom, Thailand, 2022. [Google Scholar]
- Wanarat, S. Molecular Detection and Genetic Diversity of Avian Metapneumovirus Subtype B in Turkeys in Thailand; Kasetsart University: Nakhon Pathom, Thailand, 2024. [Google Scholar]
- Seal, B.S. Avian pneumoviruses and emergence of a new type in the United States of America. Anim. Heal. Res. Rev. 2000, 1, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Chacón, J.L.; Brandão, P.E.; Buim, M.; Villarreal, L.; Ferreira, A.J.P. Detection by reverse transcriptase-polymerase chain reaction and molecular characterization of subtype B avian metapneumovirus isolated in Brazil. Avian Pathol. 2007, 36, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Salles, G.B.C.; Pilati, G.V.T.; Muniz, E.C.; de Lima Neto, A.J.; Vogt, J.R.; Dahmer, M.; Savi, B.P.; Padilha, D.A.; Fongaro, G. Trends and Challenges in the Surveillance and Control of Avian Metapneumovirus. Viruses 2023, 15, 1960. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, K.; Jones, R.C. Vaccination of Chicks with Live Attenuated Subtype B Avian Metapneumovirus Vaccines: Protection Against Challenge and Immune Responses Can Be Unrelated to Vaccine Dose. Avian Dis. 2007, 51, 733–737. [Google Scholar] [CrossRef]
- Banet-Noach, C.; Simanov, L.; Laham-Karam, N.; Perk, S.; Bacharach, E. Longitudinal Survey of Avian Metapneumoviruses in Poultry in Israel: Infiltration of Field Strains into Vaccinated Flocks. Avian Dis. 2009, 53, 184–189. [Google Scholar] [CrossRef]
- Sugiyama, M.; Ito, H.; Hata, Y.; Ono, E.; Ito, T. Complete nucleotide sequences of avian metapneumovirus subtype B genome. Virus Genes 2010, 41, 389–395. [Google Scholar] [CrossRef]
- Kariithi, H.M.; Volkening, J.D.; Alves, V.V.; Reis-Cunha, J.L.; Arantes, L.C.R.V.; Fernando, F.S.; Filho, T.F.; da Silva Martins, N.R.; Lemiere, S.; de Freitas Neto, O.C.; et al. Complete Genome Sequences of Avian Metapneumovirus Subtype B Vaccine Strains from Brazil. Genome Announc. 2023, 12, e0023523. [Google Scholar] [CrossRef]
- Jones, R.; Williams, R.; Baxter-Jones, C.; Savage, C.; Wilding, G. Experimental infection of laying turkeys with Rhinotracheitis virus: Distribution of virus in the tissues and serological response. Avian Pathol. 1988, 17, 841–850. [Google Scholar] [CrossRef]
- Cook, J.K.A.; Ellis, M.M.; Huggins, M.B. The pathogenesis of turkey rhinotracheitis virus in Turkey poults inoculated with the virus alone or together with two strains of bacteria. Avian Pathol. 1991, 20, 155–166. [Google Scholar] [CrossRef]
- Rivera-Benitez, J.F.; Martínez-Bautista, R.; Ríos-Cambre, F.; Ramírez-Mendoza, H. Molecular detection and isolation of avian metapneumovirus in Mexico. Avian Pathol. 2014, 43, 217–223. [Google Scholar] [CrossRef]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 109–166. [Google Scholar]
- Cecchinato, M.; Lupini, C.; Ricchizzi, E.; Falchieri, M.; Meini, A.; Jones, R.C.; Catelli, E. Italian Field Survey Reveals a High Diffusion of Avian Metapneumovirus Subtype B in Layers and Weaknesses in the Vaccination Strategy Applied. Avian Dis. 2012, 56, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Awad, F.; Forrester, A.; Baylis, M.; Lemiere, S.; Jones, R.; Ganapathy, K. Immune responses and interactions following simultaneous application of live Newcastle disease, infectious bronchitis and avian metapneumovirus vaccines in specific-pathogen-free chicks. Res. Vet. Sci. 2015, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, K.; Bufton, A.; Pearson, A.; Lemiere, S.; Jones, R.C. Vaccination of commercial broiler chicks against avian metapneumovirus infection: A comparison of drinking-water, spray and oculo-oral delivery methods. Vaccine 2010, 28, 3944–3948. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Drigo, M.; Lupini, C.; Catelli, E.; Laconi, A.; Listorti, V.; Bonci, M.; Naylor, C.J.; Martini, M.; Cecchinato, M. A Sensitive, Reproducible, and Economic Real-Time Reverse Transcription PCR Detecting Avian Metapneumovirus Subtypes A and B. Avian Dis. 2014, 58, 216–222. [Google Scholar] [CrossRef]
- Luqman, M.; Duhan, N.; Temeeyasen, G.; Selim, M.; Jangra, S.; Mor, S.K. Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry. Viruses 2024, 16, 508. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; The UGENE Team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Brister, J.R.; Chan, J.; Comeau, D.C.; Connor, R.; DiCuccio, M.; Farrell, C.M.; Feldgarden, M.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2023, 52, D33–D43. [Google Scholar] [CrossRef] [PubMed]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [PubMed]
- Baele, G.; Lemey, P.; Bedford, T.; Rambaut, A.; Suchard, M.A.; Alekseyenko, A.V. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 2012, 29, 2157–2167. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Legnardi, M.; Faustini, G.; Baston, R.; Poletto, F.; Cecchinato, M.; Tucciarone, C.M. Tracing the Flight: Investigating the Introduction of Avian Metapneumovirus (aMPV) A and B. Animals 2024, 14, 1786. [Google Scholar] [CrossRef]
- Hill, V.; Baele, G. Bayesian Estimation of Past Population Dynamics in BEAST 1.10 Using the Skygrid Coalescent Model. Mol. Biol. Evol. 2019, 36, 2620–2628. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4.4: Tree Figure Drawing Tool; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2019. [Google Scholar]
- Leigh, J.W.; Bryant, D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Clement, M.; Snell, Q.; Walker, P.; Posada, D.; Crandall, K. TCS: Estimating gene genealogies. In Proceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS), Lauderdale, FL, USA, 15–19 April 2001; IEEE: New York, NY, USA, 2002. [Google Scholar]
- Jones, R.C.; Rautenschlein, S. Avian Metapneumovirus. In Diseases of Poultry; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., de Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 125–138. [Google Scholar]
- Aung, Y.H.; Liman, M.; Neumann, U.; Rautenschlein, S. Reproducibility of swollen sinuses in broilers by experimental infection with avian metapneumovirus subtypes A and B of turkey origin and their comparative pathogenesis. Avian Pathol. 2008, 37, 65–74. [Google Scholar] [CrossRef]
- Jones, R.C. Viral respiratory diseases (ILT, aMPV infections, IB): Are they ever under control? Br. Poult. Sci. 2010, 51, 1–11. [Google Scholar] [CrossRef]
- Alkahalaf, A.N.; Halvorson, D.A.; Saif, Y.M. Comparison of Enzyme-Linked Immunosorbent Assays and Virus Neutralization Test for Detection of Antibodies to Avian Pneumovirus. Avian Dis. 2002, 46, 700–703. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; Von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Song, M.-S.; Shin, J.-Y.; Lee, Y.M.; Kim, C.-J.; Lee, Y.S.; Kim, H.; Choi, Y.K. Genetic characterization of avian metapneumovirus subtype C isolated from pheasants in a live bird market. Virus Res. 2007, 128, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.K.A. Avian metapneumovirus—Nearly 30 Years of Vaccination; Heffels-Redmann, U., Sommer, D., Kaleta, E.F., Eds.; VVB Laufersweiler Verlag: Wettenberg, Germany, 2009; pp. 326–333. [Google Scholar]
- To, T.-H.; Jung, M.; Lycett, S.; Gascuel, O. Fast Dating Using Least-Squares Criteria and Algorithms. Syst. Biol. 2015, 65, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Cecchinato, M.; Catelli, E.; Lupini, C.; Ricchizzi, E.; Clubbe, J.; Battilani, M.; Naylor, C.J. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction. Vet. Microbiol. 2010, 146, 24–34. [Google Scholar] [CrossRef]
- Tucciarone, C.M.; Franzo, G.; Lupini, C.; Alejo, C.T.; Listorti, V.; Mescolini, G.; Brandão, P.E.; Martini, M.; Catelli, E.; Cecchinato, M. Avian Metapneumovirus circulation in Italian broiler farms. Poult. Sci. 2018, 97, 503–509. [Google Scholar] [CrossRef]
- Kwon, J.-S.; Lee, H.-J.; Jeong, S.-H.; Park, J.-Y.; Hong, Y.-H.; Lee, Y.-J.; Youn, H.-S.; Lee, D.-W.; Do, S.-H.; Park, S.-Y.; et al. Isolation and characterization of avian metapneumovirus from chickens in Korea. J. Vet. Sci. 2010, 11, 59–66. [Google Scholar] [CrossRef]
- Bennett, R.S.; LaRue, R.; Shaw, D.; Yu, Q.; Nagaraja, K.V.; Halvorson, D.A.; Njenga, M.K. A Wild Goose Metapneumovirus Containing a Large Attachment Glycoprotein Is Avirulent but Immunoprotective in Domestic Turkeys. J. Virol. 2005, 79, 14834–14842. [Google Scholar] [CrossRef]
Group | Amino Acid Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vaccine | Hipraviar®_MZ574138 | V | I | S | I | C | I | S | V | E | Q | V | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | |
Nemovac®_MZ574139 | V | I | S | I | C | I | S | V | E | Q | V | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
aMPV/B Thailand Lineage I | KU07_PP116992 | V | I | S | I | C | I | S | V | E | Q | V | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | |
KU10_PP116995 | V | I | S | I | C | I | S | V | E | Q | V | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
KU11_PP116996 | V | I | S | I | C | I | S | V | E | Q | V | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
KU18_PP117000 | V | I | S | I | C | I | S | V | E | Q | V | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
KU28_PP117008 | V | I | S | I | C | I | S | V | E | Q | V | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
aMPV/B Thailand Lineage II | KU06_PP116991 | V | I | S | I | C | I | S | V | E | Q | A | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | |
KU13_PP117013 | V | I | S | I | C | I | S | V | E | Q | A | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
KU19_PP117001 | V | I | S | I | C | I | S | V | E | Q | A | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
KU27_PP117019 | V | I | S | I | C | I | S | V | E | Q | A | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
KU21_PP117003 | V | I | S | I | C | I | S | V | E | Q | A | K | L | R | Q | C | V | D | T | Y | W | A | E | N | G | S | L | H | P | ||
Group | Amino acid position | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | |
Vaccine | Hipraviar®_MZ574138 | G | Q | S | T | E | N | T | S | T | R | G | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | |
Nemovac®_MZ574139 | G | Q | S | T | E | N | T | S | T | R | G | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
aMPV/B Thailand Lineage I | KU07_PP116992 | G | Q | S | T | E | N | T | S | T | R | G | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | |
KU10_PP116995 | G | Q | S | T | E | N | T | S | T | R | G | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
KU11_PP116996 | G | Q | S | T | E | N | T | S | T | R | G | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
KU18_PP117000 | G | Q | S | T | E | N | T | S | T | R | G | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
KU28_PP117008 | G | Q | S | T | E | N | T | S | T | R | G | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
aMPV/B Thailand Lineage II | KU06_PP116991 | G | Q | S | T | E | N | T | S | T | R | D | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | |
KU13_PP117013 | G | Q | S | T | E | N | T | S | T | R | D | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
KU19_PP117001 | G | Q | S | T | E | N | T | S | T | R | D | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
KU27_PP117019 | G | Q | S | T | E | N | T | S | T | R | D | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
KU21_PP117003 | G | Q | S | T | E | N | T | S | T | R | D | K | T | T | T | K | D | P | R | R | L | Q | A | T | G | A | G | K | F | ||
Group | Amino acid position | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 |
Vaccine | Hipraviar®_MZ574138 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | R | S | Y | A | V | L | G | G | V | D | C | L | G | L | L |
Nemovac®_MZ574139 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | R | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
aMPV/B Thailand Lineage I | KU07_PP116992 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | R | S | Y | A | V | L | G | G | V | D | C | L | G | L | L |
KU10_PP116995 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | R | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
KU11_PP116996 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | R | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
KU18_PP117000 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | R | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
KU28_PP117008 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | R | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
aMPV/B Thailand Lineage II | KU06_PP116991 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | H | S | Y | A | V | L | G | G | V | D | C | L | G | L | L |
KU13_PP117013 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | H | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
KU19_PP117001 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | H | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
KU27_PP117019 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | H | S | Y | A | V | L | G | G | V | D | C | L | G | L | L | |
KU21_PP117003 | E | S | C | G | Y | V | Q | V | V | D | G | D | M | H | D | H | S | Y | A | V | L | G | G | V | D | C | L | G | L | L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanarat, S.; Sukmak, M.; Soda, N.; Suwan, P.; Satayaphongpan, N.; Klinsawat, W.; Chumsing, W.; Janmeethat, C.; Songserm, T.; Sinwat, N.; et al. Avian Metapneumovirus in Thailand: Molecular Detection, Genetic Diversity, and Its Potential Threat to Poultry. Viruses 2025, 17, 965. https://doi.org/10.3390/v17070965
Wanarat S, Sukmak M, Soda N, Suwan P, Satayaphongpan N, Klinsawat W, Chumsing W, Janmeethat C, Songserm T, Sinwat N, et al. Avian Metapneumovirus in Thailand: Molecular Detection, Genetic Diversity, and Its Potential Threat to Poultry. Viruses. 2025; 17(7):965. https://doi.org/10.3390/v17070965
Chicago/Turabian StyleWanarat, Sudarat, Manakorn Sukmak, Nantana Soda, Pimpakarn Suwan, Natchaya Satayaphongpan, Worata Klinsawat, Wilairat Chumsing, Chatnapa Janmeethat, Taweesak Songserm, Nuananong Sinwat, and et al. 2025. "Avian Metapneumovirus in Thailand: Molecular Detection, Genetic Diversity, and Its Potential Threat to Poultry" Viruses 17, no. 7: 965. https://doi.org/10.3390/v17070965
APA StyleWanarat, S., Sukmak, M., Soda, N., Suwan, P., Satayaphongpan, N., Klinsawat, W., Chumsing, W., Janmeethat, C., Songserm, T., Sinwat, N., Kulprasertsri, S., Panomwan, P., & Witoonsatian, K. (2025). Avian Metapneumovirus in Thailand: Molecular Detection, Genetic Diversity, and Its Potential Threat to Poultry. Viruses, 17(7), 965. https://doi.org/10.3390/v17070965