Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview
Abstract
1. Introduction and Objectives
2. Baculoviruses as Microbial Pesticides
2.1. Baculovirus General Characteristics
2.2. Baculovirus Pesticides: Strengths and Weaknesses
2.3. Baculovirus-Based Formulations
2.3.1. Production and Quality Control of the Active Ingredient
2.3.2. From Raw Virus to Formulated Product: Carriers, Adjuvants, and Encapsulation
2.3.3. Formulation Types and Application Formats
3. Global Overview of Baculoviruses in Pest Control: Key Lepidopteran Targets, Market Dynamics, and Trends
3.1. Principal Lepidopteran Pests Controlled by Baculoviruses
3.1.1. Cydia pomonella
3.1.2. Helicoverpa armigera
3.1.3. Mamestra brassicae
3.1.4. Plutella xylostella
3.1.5. Spodoptera spp.
3.2. Baculovirus Market Expansion and Trends
3.2.1. Leading Companies in the Sector
3.2.2. Global Disparities and Emerging Trends in Baculovirus Bioinsecticides
4. Regulatory Frameworks for Biopesticides: A Global Comparison with Focus on Baculovirus-Based Products
4.1. United States
4.2. Brazil
4.3. European Union and UK
European Union
4.4. China
4.5. Global Biopesticide Regulation: A Comparative Summary
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ansari, M.S.; Moraiet, M.A.; Ahmad, S. Insecticides: Impact on the Environment and Human Health. In Environmental Deterioration and Human Health; Springer: Dordrecht, The Netherlands, 2014; pp. 99–123. [Google Scholar]
- World Health Organization. Public Health Impact of Pesticides Used in Agriculture; World Health Organization: Geneva, Switzerland, 1990. [Google Scholar]
- Alewu, B.; Nosiri, C. Pesticides and Human Health. In Pesticides in the Modern World-Effects of Pesticides Exposure; Makarfi: Kaduna State, Nigeria, 2011; pp. 231–250. [Google Scholar]
- Sanborn, M.; Kerr, K.J.; Sanin, L.H.; Cole, D.C.; Bassil, K.L.; Vakil, C. Non-Cancer Health Effects of Pesticides: Systematic Review and Implications for Family Doctors. Can. Fam. Physician 2007, 53, 1712–1720. [Google Scholar]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, C.; McConnell, R.; Partanen, T.; Hogstedt, C. Agricultural Pesticide Use in Developing Countries: Health Effects and Research Needs. Int. J. Health Serv. 1997, 27, 273–308. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, J.W.; Carlson, I.H.; Porter, W.P. Endocrine, Immune, and Behavioral Effects of Aldicarb (Carbamate), Atrazine (Triazine) and Nitrate (Fertilizer) Mixtures at Groundwater Concentrations. Toxicol. Ind. Health 1999, 15, 133–151. [Google Scholar] [CrossRef]
- García, A.M. Pesticide Exposure and Women’s Health. Am. J. Ind. Med. 2003, 44, 584–594. [Google Scholar] [CrossRef]
- Salameh, P. Respiratory Diseases and Pesticide Exposure: A Case-Control Study in Lebanon. J. Epidemiol. Community Health 2006, 60, 256–261. [Google Scholar] [CrossRef]
- Bassil, K.L.; Vakil, C.; Sanborn, M.; Cole, D.C.; Kaur, J.S.; Kerr, K.J. Cancer Health Effects of Pesticides: Systematic Review. Can. Fam. Physician 2007, 53, 1704–1711. [Google Scholar]
- Bjørling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential Developmental Neurotoxicity of Pesticides Used in Europe. Environ. Health 2008, 7, 50. [Google Scholar] [CrossRef]
- Duchenne-Moutien, R.A.; Neetoo, H. Climate Change and Emerging Food Safety Issues: A Review. J. Food Prot. 2021, 84, 1884–1897. [Google Scholar] [CrossRef]
- US Department of Health & Human Services Centers. About One Health. Available online: https://www.cdc.gov/onehealth/index.html (accessed on 30 October 2024).
- Falkenberg, T.; Ekesi, S.; Borgemeister, C. Integrated Pest Management (IPM) and One Health—A Call for Action to Integrate. Curr. Opin. Insect Sci. 2022, 53, 100960. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Climate Change Fans Spread of Pests and Threatens Plants and Crops, New FAO Study. Available online: https://www.cbd.int/kb/record/newsHeadlines/128986 (accessed on 10 October 2024).
- Dara, S.K. The New Integrated Pest Management Paradigm for the Modern Age. J. Integr. Pest Manag. 2019, 10, 12. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Pesticides. Our World Data. 2022. Available online: https://ourworldindata.org/pesticides (accessed on 30 October 2024).
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef] [PubMed]
- Vermelho, A.B.; Moreira, J.V.; Akamine, I.T.; Cardoso, V.S.; Mansoldo, F.R.P. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. Plants 2024, 13, 2762. [Google Scholar] [CrossRef]
- Parry, J.M.; Turnbull, P.C.B.; Gibson, J.R. A Colour Atlas of Bacillus Species; Wolfe Medical Publications Ltd.: London, UK, 1983; ISBN 978-0-7234-0777-5. [Google Scholar]
- Heimpel, A.M. A Critical Review of Bacillus thuringiensis Var. Thuringiensis Berliner and Other Crystalliferous Bacteria. Annu. Rev. Entomol. 1967, 12, 287–322. [Google Scholar] [CrossRef]
- Milner, R.J. History of Bacillus thuringiensis. Agric. Ecosyst. Environ. 1994, 49, 9–13. [Google Scholar] [CrossRef]
- Gonzalez-Coloma, A.; Reina, M.; Diaz, C.E.; Fraga, B.M.; Santana-Meridas, O. Natural Product-Based Biopesticides for Insect Control. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3. [Google Scholar]
- Ali, A.M.; Mohamed, D.S.; Shaurub, E.H.; Elsayed, A.M. Antifeedant Activity and Some Biochemical Effects of Garlic and Lemon Essential Oils on Spodoptera littoralis (Boisduval)(Lepidoptera: Noctuidae). J. Entomol. Zool. Stud. 2017, 5, 1476–1482. [Google Scholar]
- Halder, J.; Rai, A.B.; Kodandaram, M.H. Compatibility of Neem Oil and Different Entomopathogens for the Management of Major Vegetable Sucking Pests. Natl. Acad. Sci. Lett. 2013, 36, 19–25. [Google Scholar] [CrossRef]
- Thripathi, A.K.; Upadhyay, S.; Bhuiyan, M.; Bhattacharya, P.R. A Review on Prospects of Essential Oils as Biopesticide in Insect-Pest Management. J. Pharmacog. Phytother. 2009, 15, 52–53. [Google Scholar]
- Mordue, A.J.; Morgan, E.D.; Nisbet, A.J.; Gilbert, L.I.; Gill, S.S. Azadirachtin, a Natural Product in Insect Control. In Insect Control: Biological and Synthetic Agents; Elsevier/Academic: London, UK, 2010; pp. 185–197. [Google Scholar]
- Gurr, G.; Thwaite, W.; Nicol, H. Field Evaluation of the Effects of the Insect Growth Regulator Tebufenozide on Entomophagous Arthropods and Pests of Apples. Aust. J. Entomol. 1999, 38, 135–140. [Google Scholar] [CrossRef]
- Gwinn, K.D. Bioactive Natural Products in Plant Disease Control. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 56, pp. 229–246. [Google Scholar]
- Parween, T.; Jan, S. Pesticides and Environmental Ecology. In Ecophysiology of Pesticides; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–38. [Google Scholar]
- Parker, K.M.; Barragán Borrero, V.; van Leeuwen, D.M.; Lever, M.A.; Mateescu, B.; Sander, M. Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils. Environ. Sci. Technol. 2019, 53, 3027–3036. [Google Scholar] [CrossRef]
- Popham, H.J.R.; Nusawardani, T.; Bonning, B.C. Introduction to the Use of Baculoviruses as Biological Insecticides. In Methods in Molecular Biology; Murhammer, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 338, pp. 383–407. [Google Scholar]
- Blissard, G.W.; Rohrmann, G.F. Baculovirus Diversity and Molecular Biology. Annu. Rev. Entomol. 1990, 35, 127–155. [Google Scholar] [CrossRef] [PubMed]
- Moscardi, F.; De Souza, M.L.; De Castro, M.E.B.; Lara Moscardi, M.; Szewczyk, B. Baculovirus Pesticides: Present State and Future Perspectives. In Microbes and Microbial Technology: Agricultural and Environmental Applications; Springer: New York, NY, USA, 2011; pp. 415–445. ISBN 9781441979308. [Google Scholar]
- Rohrmann, G.F. Baculovirus Molecular Biology, 4th ed.; National Center for Biotechnology Information: Corvallis, OR, USA, 2019. [Google Scholar]
- Moscardi, F. Assessment of The Application of Bcauloviruses for Control of Lepidoptera. Annu. Rev. Entomol. 1999, 44, 257–289. [Google Scholar] [CrossRef]
- Lacey, L.A.; Thomson, D.; Vincent, C.; Arthurs, S.P. Codling Moth Granulovirus: A Comprehensive Review. Biocontrol Sci. Technol. 2008, 18, 639–663. [Google Scholar] [CrossRef]
- Agathos, S.N. Mass Production of Viral Insecticides. In Biotechnology for Biological Control of Pests and Vectors; Maramorosch, K., Ed.; CRC Press: Boca Raton, FL, USA, 1993; pp. 217–235. ISBN 978-0-8493-4836-5. [Google Scholar]
- Cory, J.S.; Myers, J.H. The Ecology and Evolution of Insect Baculoviruses. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 239–272. [Google Scholar] [CrossRef]
- Grzywacz, D. Basic and Applied Research: Baculovirus. In Microbial Control of Insect and Mite Pests: From Theory to Practice; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 27–46. [Google Scholar]
- Reid, S. Inventions and Trade: The Silk and Spice Routes; Belitha Press Limited: London, UK, 1994; ISBN 0-921921-30-6. [Google Scholar]
- Millward, J.A. The Silk Road: A Very Short Introduction; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Harrison, R.L.; Herniou, E.A.; Jehle, J.A.; Theilmann, D.A.; Burand, J.P.; Krell, P.J.; van Oers, M.M. Create One New Class (Naldaviricetes) Including One New Order (Lefavirales) for Four Families of Arthropod-Specific Large DNA Viruses. 2020. Available online: https://ictv.global/ictv/proposals/2020.006D.R.Naldaviricetes.zip (accessed on 30 October 2024).
- Murphy, F.A.; Fauquet, C.M.; Bishop, D.H.L.; Ghabrial, S.A.; Jarvis, A.W.; Martelli, G. Virus Taxonomy, 6th Report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 1995, 10, 1–586. [Google Scholar]
- Tamošiūnas, R.; Valiuškaitė, A.; Jukna, L.; Tamošiūnas, K.; Žiogas, A.F. Spatial Distribution Patterns of Apple Sawfly Populations in Two Differently Managed Commercial Apple Orchards. Zemdirb.-Agric. 2015, 102, 73–80. [Google Scholar] [CrossRef]
- Jehle, J.A.; Blissard, G.W.; Bonning, B.C.; Cory, J.S.; Herniou, E.A.; Rohrmann, G.F.; Theilmann, D.A.; Thiem, S.M.; Vlak, J.M. On the Classification and Nomenclature of Baculoviruses: A Proposal for Revision. Arch. Virol. 2006, 151, 1257–1266. [Google Scholar] [CrossRef]
- International Union of Microbiological Societies. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-384684-6. [Google Scholar]
- Harrison, R.L.; Herniou, E.A.; Jehle, J.A.; Theilmann, D.A.; Burand, J.P.; Krell, P.J.; Van-Oers, M.M.; Mowery, J.D. ICTV Virus Taxonomy Profile: Baculoviridae. J. Gen. Virol. 2023, 99, 1185–1186. [Google Scholar] [CrossRef]
- Granados, R.R.; Lawler, K.A. In Vivo Pathway of Autographa Californica Baculovirus Invasion and Infection. Virology 1981, 108, 297–308. [Google Scholar] [CrossRef]
- Beas-Catena, A.; Sánchez-Mirón, A.; García-Camacho, F.; Contreras-Gómez, A.; Molina-Grima, E. Baculovirus Biopesticides: An Overview. J. Anim. Plant Sci. 2014, 24, 362–373. [Google Scholar]
- Haase, S.; Sciocco-Cap, A.; Romanowski, V. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives. Viruses 2015, 7, 2230–2267. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, I.; Lobo de Souza, M. Baculoviruses—Re-Emerging Biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, W.D.; Federici, B.A. Isolation, Identification, and Determination of Virulence of a Nuclear Polyhedrosis Virus from the Beet Ermyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 1986, 15, 240–245. [Google Scholar] [CrossRef]
- Gröner, A. Specificity and Safety of Baculoviruses. In The Biology of Baculoviruses; Granados, R.R., Federici, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1986; Volume 1, pp. 177–202. [Google Scholar]
- Thiem, S.M.; Cheng, X.-W. Baculovirus Host-Range. Virol. Sin. 2009, 24, 436–457. [Google Scholar] [CrossRef]
- Moore, S.; Jukes, M. Advances in Microbial Control in IPM: Entomopathogenic Viruses. In Integrated Management of Insect Pests; Kogan, M., Higley, L., Eds.; Burleigh Dodds Science Publishing: London, UK, 2019; ISBN 9780429275395. [Google Scholar]
- One Health Commission. Available online: https://www.onehealthcommission.org (accessed on 1 November 2024).
- Carruthers, W.R.; Cory, J.S.; Entwistle, P.F. Recovery of Pine Beauty Moth (Panolis Flammea) Nuclear Polyhedrosis Virus from Pine Foliage. J. Invertebr. Pathol. 1988, 52, 27–32. [Google Scholar] [CrossRef]
- Thompson, C.G.; Scott, D.W.; Wickman, B.E. Long-Term Persistence of the Nuclear Polyhedrosis Virus of the Douglas-Fir Tussock Moth, Orgyia Pseudotsugata (Lepidoptera: Lymantriidae), in Forest Soil. Environ. Entomol. 1981, 10, 254–255. [Google Scholar] [CrossRef]
- Federici, B.A. Baculovirus Pathogenesis. In The Baculoviruses; Miller, L.K., Ed.; Springer: Boston, MA, USA, 1997; pp. 33–59. ISBN 978-1-4899-1834-5. [Google Scholar]
- Volkman, L.E. Nucleopolyhedrovirus Interactions with Their Insect Hosts. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 1997; Volume 48, pp. 313–348. [Google Scholar]
- Evans, H.F. Viruses. In Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests; Lacey, L.A., Kaya, H.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 179–208. [Google Scholar]
- Williams, T. Soil as an Environmental Reservoir for Baculoviruses: Persistence, Dispersal and Role in Pest Control. Soil Syst. 2023, 7, 29. [Google Scholar] [CrossRef]
- Black, J.L.; Lorenz, G.M.; Cato, A.J.; Faske, T.R.; Popham, H.J.R.; Paddock, K.J.; Bateman, N.R.; Seiter, N.J. Field Studies on the Horizontal Transmission Potential by Voluntary and Involuntary Carriers of Helicoverpa armigera Nucleopolyhedrovirus (Baculoviridae). J. Econ. Entomol. 2019, 112, 1098–1104. [Google Scholar] [CrossRef]
- Hochberg, M.E. The Potential Role of Pathogens in Biological Control. Nature 1989, 337, 262–265. [Google Scholar] [CrossRef]
- Cunningham, J.P. Baculoviruses as Microbial Insecticides. In Novel Approaches to Integrate Pest Management; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 261–292. [Google Scholar]
- Hostetter, D.L.; Puttler, B. A New Broad Host Spectrum Nuclear Polyhedrosis Virus Isolated from a Celery Looper, Anagrapha falcifera (Kirby), (Lepidoptera: Noctuidae). Environ. Entomol. 1991, 20, 1480–1488. [Google Scholar] [CrossRef]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.-A.; Day, R.; Desneux, N.; Harrison, R.D.; Kriticos, D.; Rwomushana, I.; van den Berg, J.; et al. Invasiveness, Biology, Ecology, and Management of the Fall Armyworm, Spodoptera frugiperda. Entomol. Gen. 2023, 43, 187–241. [Google Scholar] [CrossRef]
- Archer, T.L.; Bynum, E.D., Jr. Corn Earworm (Lepidoptera: Noctuidae) Biology on Food Corn on the High Plains. Environ. Entomol. 1994, 23, 343–348. [Google Scholar] [CrossRef]
- Wiseman, B.R.; Widstrom, N.W. Resistance of Dent Corn Inbreds to Larvae of the Corn Earworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 1992, 85, 289–292. [Google Scholar] [CrossRef]
- Pond, D.D. Life History Studies of the Armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae), in New Brunswick. Ann. Entomol. Soc. Am. 1960, 53, 661–665. [Google Scholar] [CrossRef]
- Cayrol, R.A. Famille Des Noctuidae. In Entomologie Appliquée à l’Agriculture; Balachowsky, A.S., Ed.; Masson et Cie: Paris, France, 1972. [Google Scholar]
- Guo, B.Z.; Zhang, Z.J.; Li, R.G.; Widstrom, N.W.; Snook, M.E.; Lynch, R.E.; Plaisted, D. Restriction Fragment Length Polymorphism Markers Associated with Silk Maysin, Antibiosis to Corn Earworm (Lepidoptera: Noctuidae) Larvae, in a Dent and Sweet Corn Cross. J. Econ. Entomol. 2001, 94, 564–571. [Google Scholar] [CrossRef]
- Foresti, J.; Bernardi, O.; Zart, M.; Garcia, M.S. Comportamento de Oviposição de Helicoverpa zea (Boddie, 1850) (Lepidoptera: Noctuidae) Em Milho Semente e Simulação de Controle. Rev. Bras. Milho E Sorgo 2013, 12, 78–84. [Google Scholar] [CrossRef]
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.G.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C.A.; González-Cabrera, J.; Catalán Ruescas, D.; Tabone, E.; Frandon, J.; et al. Biological Invasion of European Tomato Crops by Tuta absoluta: Ecology, Geographic Expansion and Prospects for Biological Control. J. Pest Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Picanço, M.C. The Tomato Borer Tuta absoluta in South America: Pest Status, Management and Insecticide Resistance. EPPO Bull. 2012, 42, 211–216. [Google Scholar] [CrossRef]
- Selvanarayanan, V. Host Plant Resistance in Tomato Against Fruit Borer, H. Armigera (Hub.). Ph.D. Thesis, Annamalai University, Annamalainayar, India, 2000. [Google Scholar]
- Brewer, M.J.; Trumble, J.T.; Alvarado-Rodriguez, B.; Chaney, W.E. Beet Armyworm (Lepidoptera: Noctuidae) Adult and Larval Susceptibility to Three Insecticides in Managed Habitats and Relationship to Laboratory Selection for Resistance. J. Econ. Entomol. 1990, 83, 2136–2146. [Google Scholar] [CrossRef]
- Gelaye, Y.; Negash, B. The Role of Baculoviruses in Controlling Insect Pests: A Review. Cogent Food Agric. 2023, 9, 2254139. [Google Scholar] [CrossRef]
- Villamizar, L.; Barrera, G.; Cotes, A.M.; Martínez, F. Eudragit S100 Microparticles Containing Spodoptera frugiperda Nucleopolyehedrovirus: Physicochemical Characterization, Photostability and in Vitro Virus Release. J. Microencapsul. 2010, 27, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Recent Advances in Downstream Processing and Formulations of Bacillus thuringiensis Based Biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar] [CrossRef]
- Jones, K.A.; Burges, H.D. Technology of Formulation and Application. In Formulation of Microbial Biopesticides; Springer: Dordrecht, The Netherlands, 1998; pp. 7–30. [Google Scholar]
- Lasa, R.; Williams, T.; Caballero, P. Insecticidal Properties and Microbial Contaminants in a Spodoptera exigua Multiple Nucleopolyhedrovirus (Baculoviridae) Formulation Stored at Different Temperatures. J. Econ. Entomol. 2008, 101, 42–49. [Google Scholar] [CrossRef]
- Ferrelli, M.L.; Salvador, R. Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis. Viruses 2023, 15, 1838. [Google Scholar] [CrossRef]
- Wu, C.; Deng, Z.; Long, Z.; Cai, Y.; Ying, Z.; Yin, H.; Yuan, M.; Clem, R.J.; Yang, K.; Pang, Y. Generating a Host Range-Expanded Recombinant Baculovirus. Sci. Rep. 2016, 6, 28072. [Google Scholar] [CrossRef]
- Harish, S.; Murugan, M.; Kannan, M.; Parthasarathy, S.; Prabhukarthikeyan, S.R.; Elango, K. Entomopathogenic Viruses. In Microbial Approaches for Insect Pest Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–58. ISBN 9789811635953. [Google Scholar]
- Erlandson, M. Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology. Virol. Sin. 2009, 24, 458–469. [Google Scholar] [CrossRef]
- Cory, J.S. Ecological Impacts of Virus Insecticides: Host Range and Non-Target Organisms. In Environmental Impacts of Microbial Insecticides: Need and Methods for Risk Assessment; Hokkanen, H.M.T., Hajek, A.E., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 73–91. ISBN 978-94-017-1441-9. [Google Scholar]
- Arrizubieta, M.; Simón, O.; Williams, T.; Caballeroa, P. A Novel Binary Mixture of Helicoverpa armigera Single Nucleopolyhedrovirus Genotypic Variants Has Improved Insecticidal Characteristics for Control of Cotton Bollworms. Appl. Environ. Microbiol. 2015, 81, 3984–3993. [Google Scholar] [CrossRef]
- Aguirre, E.; Beperet, I.; Williams, T.; Caballero, P. Genetic Variability of Chrysodeixis Includens Nucleopolyhedrovirus (ChinNPV) and the Insecticidal Characteristics of Selected Genotypic Variants. Viruses 2019, 11, 581. [Google Scholar] [CrossRef]
- Bernal, A.; Simón, O.; Williams, T.; Caballero, P. Stage-Specific Insecticidal Characteristics of a Nucleopolyhedrovirus Isolate from Chrysodeixis Chalcites Enhanced by Optical Brighteners. Pest Manag. Sci. 2014, 70, 798–804. [Google Scholar] [CrossRef]
- Tumilasci, V.F.; Leal, È.; Zanotto, P.M.A.; Luque, T.; Wolff, J.L.C. Sequence Analysis of a 5.1 Kbp Region of the Spodoptera frugiperda Multicapsid Nucleopolyhedrovirus Genome That Comprises a Functional Ecdysteroid UDP-Glucosyltransferase (Egt) Gene. Virus Genes 2003, 27, 137–144. [Google Scholar] [CrossRef]
- Maeda, S. Increased Insecticidal Effect by a Recombinant Baculovirus Carrying a Synthetic Diuretic Hormone Gene. Biochem. Biophys. Res. Commun. 1989, 165, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.W.K.; Davis, T.R.; Wood, H.A.; Knipple, D.C.; Roelofs, W.L. Baculovirus Expression of an Insect Gene That Encodes Multiple Neuropeptides. Insect Biochem. Mol. Biol. 1998, 28, 239–249. [Google Scholar] [CrossRef]
- Eldridge, R.; Horodyski, F.M.; Morton, D.B.; O’Reilly, D.R.; Truman, J.W.; Riddiford, L.M.; Miller, L.K. Expression of an Eclosion Hormone Gene in Insect Cells Using Baculovirus Vectors. Insect Biochem. 1991, 21, 341–351. [Google Scholar] [CrossRef]
- O’reilly, D.R.; Kelly, T.J.; Masler, E.P.; Thyagaraja, B.S.; Moy Robson, R.; Shaw, T.C.; Miller, L.K. Overexpression of Bombyx mori Prothoracicotropic Hormone Using Baculovirus Vectors. Insect Biochem. Mol. Biol. 1995, 25, 475–485. [Google Scholar] [CrossRef]
- Bonning, B.C.; Roelvink, P.W.; Vlak, J.M.; Possee, R.D.; Hammock, B.D. Superior Expression of Juvenile Hormone Esterase and β-Galactosidase from the Basic Protein Promoter of Autographa Californica Nuclear Polyhedrosis Virus Compared to the P10 Protein and Polyhedrin Promoters. J. Gen. Virol. 1994, 75, 1551–1556. [Google Scholar] [CrossRef]
- Kroemer, J.; Bonning, B.; Harrison, R. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses. Viruses 2015, 7, 422–455. [Google Scholar] [CrossRef]
- Voeikova, T.A.; Zhuravliova, O.A.; Debabov, V.G. Comparative Analysis of Legal Regulation of Industrial Use of Genetic-Engineering-Modified Microorganisms in the United States, European Union, and Russian Federation. Mol. Genet. Microbiol. Virol. 2020, 35, 69–77. [Google Scholar] [CrossRef]
- Wesseler, J.; Kleter, G.; Meulenbroek, M.; Purnhagen, K.P. EU Regulation of Genetically Modified Microorganisms in Light of New Policy Developments: Possible Implications for EU Bioeconomy Investments. Appl. Econ. Perspect. Policy 2022, 45, 839–859. [Google Scholar] [CrossRef]
- Mwanza, P.; Jukes, M.; Dealtry, G.; Lee, M.; Moore, S. Selection for and Analysis of UV-Resistant Cryptophlebia Leucotreta Granulovirus-SA as a Biopesticide for Thaumatotibia leucotreta. Viruses 2021, 14, 28. [Google Scholar] [CrossRef]
- Brassel, J.; Benz, G. Selection of a Strain of the Granulosis Virus of the Codling Moth with Improved Resistance against Artificial Ultraviolet Radiation and Sunlight. J. Invertebr. Pathol. 1979, 33, 358–363. [Google Scholar] [CrossRef]
- Ibrahim Ali, M.; Young, S.; Felton, G.; McNew, R. Influence of the Host Plant on Occluded Virus Production and Lethal Infectivity of a Baculovirus. J. Invertebr. Pathol. 2002, 81, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, S.P.; Lacey, L.A.; Behle, R.W. Evaluation of Spray-Dried Lignin-Based Formulations and Adjuvants as Solar Protectants for the Granulovirus of the Codling Moth, Cydia pomonella (L). J. Invertebr. Pathol. 2006, 93, 88–95. [Google Scholar] [CrossRef]
- Tamez-guerra, P.; McGuire, M.R.; Behle, R.W.; Hamm, J.J.; Sumner, H.R.; Shasha, B.S. Sunlight Persistence and Rainfastness of Spray-Dried Formulations of Baculovirus Isolated from Anagrapha falcifera (Lepidoptera: Noctuidae). J. Econ. Entomol. 2000, 93, 210–218. [Google Scholar] [CrossRef]
- Winder, R.S.; Wheeler, J.J.; Conder, N.; Otvos, I.S.; Nevill, R.; Duan, L. Microencapsulation: A Strategy for Formulation of Inoculum. Biocontrol Sci. Technol. 2003, 13, 155–169. [Google Scholar] [CrossRef]
- Adel-Sattar, M.M.; El-Malla, M.A.; Ghoneim, Y.F.; Singab, M. Pyrethroids and Biocides Resistance in Field Strains of the Cotton Leaf Worm, Spodoptera littoralis (Boisd.) during 2006-2008 Cotton Seasons. Aust. J. Basic Appl. Sci. 2012, 6, 305–308. [Google Scholar]
- Alfy, H.; Ghareeb, R.Y.; Aziz, W.Z. Semi-Field Application of a New Formulation Based on Spodoptera litura Nuclear Polyhedrosis Virus and Bacillus thuringiensis subsp. Mexicanensis Against Cotton Leaf Worm, Spodoptera littoralis and Root Knot Nematode, Meloidogyne Incognita in Egypt. Curr. Appl. Sci. Technol. 2020, 20, 512–527. [Google Scholar] [CrossRef]
- Williams, T.; Cisneros, J. Formulación y Aplicación de Los Baculovirus Bioinsecticidas. In Los Baculovirus Y Sus Aplicaciones Como Bioinsecticidas En El Control Biológico de Plagas; Phytoma-España: Barcelona, Spain, 2001; pp. 313–372. ISBN 84-932056-0-5. [Google Scholar]
- Hesketh, H.; Hails, R.S. Bacillus thuringiensis Impacts on Primary and Secondary Baculovirus Transmission Dynamics in Lepidoptera. J. Invertebr. Pathol. 2015, 132, 171–181. [Google Scholar] [CrossRef]
- Black, B.C.; Brennan, L.A.; Dierks, P.M.; Gard, I.E. Commercialization of Baculoviral Insecticides. In The Baculoviruses; Miller, L.K., Ed.; Springer: Boston, MA, USA, 1997; pp. 341–387. ISBN 978-1-4899-1836-9. [Google Scholar]
- Behle, R.W.; Tamez-Guerra, P.; McGuire, M.R. Field Activity and Storage Stability of Anagrapha falcifera Nucleopolyhedrovirus (AfMNPV) in Spray-Dried Lignin-Based Formulations. J. Econ. Entomol. 2003, 96, 1066–1075. [Google Scholar] [CrossRef]
- Haile, F.; Nowatzki, T.; Storer, N. Overview of Pest Status, Potential Risk, and Management Considerations of Helicoverpa armigera (Lepidoptera: Noctuidae) for U.S. Soybean Production. J. Integr. Pest Manag. 2021, 12, 3. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect Pathogens as Biological Control Agents: Back to the Future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef]
- Behle, R.; Birthisel, T. Formulations of Entomopathogens as Bioinsecticides. In Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens; Elsevier: Amsterdam, The Netherlands, 2023; pp. 407–429. ISBN 9780128221068. [Google Scholar]
- Szewczyk, B.; Rabalski, L.; Krol, E.; Sihler, W.; de Souza, M.L. Baculovirus Biopesticides-a Safe Alternative to Chemical Protection of Plants. J. Biopestic. 2009, 2, 209–216. [Google Scholar] [CrossRef]
- Shapiro, M. Radiation Protection and Activity Enhancement of Viruses. In Biorational Pest Control Agents; ACS Publications: Washington, DC, USA, 1995; pp. 153–164. [Google Scholar]
- Morales, L.; Moscardi, F.; Sosa-go, D.R.; Paro, F.E.; Soldorio, I.L.; Bry, D.; Bht, U.; Nfw, U. Fluorescent Brighteners Improve Anticarsia gemmatalis ( Lepidoptera: Noctuidae ) Nucleopolyhedrovirus (AgMNPV) Activity on AgMNPV- Susceptible and Resistant Strains of the Insect. Biol. Control 2001, 20, 247–253. [Google Scholar] [CrossRef]
- Shapiro, M. In Vivo Production of Baculoviruses. In The Biology of Baculoviruses; Granados, R.R., Federici, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1986; Volume II, pp. 31–62. [Google Scholar]
- Eberle, K.E.; Jehle, J.A.; Huber, J. Microbial Control of Crop Pests Using Insect Viruses; Abrol, D.P., Shankar, U., Eds.; CAB International: Wallingford, UK, 2012; ISBN 978-1-84593-808-6. [Google Scholar]
- Grzywacz, D.; Moore, S. Production, Formulation, and Bioassay of Baculoviruses for Pest Control. In Microbial Control of Insect and Mite Pests: From Theory to Practice; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 109–124. [Google Scholar] [CrossRef]
- Hunter-Fujita, F.R.; Entwistle, P.F.; Evans, H.F.; Crook, N.E. Insect Viruses and Pest Management; Wiley: Hoboken, NJ, USA, 1998; ISBN 9780471968788. [Google Scholar]
- van Beek, N.; Davis, D.C. Baculovirus Insecticide Production in Insect Larvae. In Baculovirus and Insect Cell Expression Protocols; Murhammer, D.W., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 367–378. ISBN 1-58829-537-0. [Google Scholar]
- Grzywacz, D.; Rabindra, R.J.; Brown, M.; Jones, K.A.; Parnell, M. The Helicoverpa armigera Nucleopolyhedrovirus Production Manual. NRI Report 2706; Natural Resources Institute, University of Greenwich: Greenwich, UK, 2002; 107p. [Google Scholar]
- Arrizubieta, M.; Simón, O.; Williams, T.; Caballero, P. Determinant Factors in the Production of a Co-Occluded Binary Mixture of Helicoverpa armigera Alphabaculovirus (HearNPV) Genotypes with Desirable Insecticidal Characteristics. PLoS ONE 2016, 11, e0164486. [Google Scholar] [CrossRef] [PubMed]
- Bernal, A.; Simón, O.; Williams, T.; Muñoz, D.; Caballero, P. Remarkably Efficient Production of a Highly Insecticidal Chrysodeixis Chalcites Nucleopolyhedrovirus (ChchNPV) Isolate in Its Homologous Host. Pest Manag. Sci. 2018, 74, 1586–1592. [Google Scholar] [CrossRef]
- Subramanian, S.; Santharam, G.; Sathiah, N.; Kennedy, J.S.; Rabindra, R.J. Influence of Incubation Temperature on Productivity and Quality of Spodoptera litura Nucleopolyhedrovirus. Biol. Control 2006, 37, 367–374. [Google Scholar] [CrossRef]
- Moore, S.D. The Development and Evaluation of Cryptophlebia Leucotreta Granulovirus (CrleGV) as a Biological Control Agent for the Management of False Codling Moth, Cryptophlebia Leucotreta, on Citrus. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2002. [Google Scholar]
- Glen, D.M.; Payne, C.C. Production and Field Evaluation of Codling Moth Granulosis Virus for Control of Cydia pomonella in the United Kingdom. Ann. Appl. Biol. 1984, 104, 87–98. [Google Scholar] [CrossRef]
- Chambers, C.B. Production of Cydia pomonella Granulovirus (CpGV) in a Heteralogous Host, Thaumatotibia leucotreta (Meyrick)(False Codling Moth). Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2014. [Google Scholar]
- Cherry, A.J.; Parnell, M.A.; Grzywacz, D.; Jones, K.A. The Optimization of in Vivo Nuclear Polyhedrosis Virus Production in Spodoptera exempta (Walker) and Spodoptera exigua (Hübner). J. Invertebr. Pathol. 1997, 70, 50–58. [Google Scholar] [CrossRef]
- Ignoffo, C.M.; Shapiro, M. Characteristics of Baculovirus Preparations Processed from Living and Dead Larvae. J. Econ. Entomol. 1978, 71, 186–188. [Google Scholar] [CrossRef]
- Bell, M.R. In Vivo Production of a Nuclear Polyhedrosis Virus Utilizing Tobacco Budworm and a Multicellular Larval Rearing Container. J. Entomol. Sci. 1991, 26, 69–75. [Google Scholar]
- Ramírez-Arias, F.G.; Lasa, R.; Murillo, R.; Navarro-de-la-Fuente, L.; Mercado, G.; Williams, T. Post-Mortem Incubation Influences Occlusion Body Production in Nucleopolyhedrovirus-Infected Larvae of Spodoptera frugiperda. Biol. Control 2019, 135, 33–40. [Google Scholar] [CrossRef]
- Grzywacz, D.; Moore, S.; Luke, B.; Subramanian, S.; Moore, D.; Rabindra, R.J. Mass Production of Entomopathogens in Less Industrialized Countries. In Mass Production of Beneficial Organisms; Elsevier: Amsterdam, The Netherlands, 2023; pp. 431–462. [Google Scholar]
- Granados, R.R.; Li, G.; Blissard, G.W. Insect Cell Culture and Biotechnology. Virol. Sin. 2007, 22, 83–93. [Google Scholar] [CrossRef]
- Claus, J.D.; Gioria, V.V.; Micheloud, G.A.; Visnovsky, G. Production of Insecticidal Baculoviruses in Insect Cell Cultures: Potential and Limitations. In Insecticides-Basic and Other Applications; Soloneski, S., Larramendy, M., Eds.; InTech: Rijeka, Croatia, 2012; pp. 127–152. ISBN 978-953-51-0007-2. [Google Scholar]
- Reid, S.; de Malmanche, H.; Chan, L.; Popham, H.; van Oers, M.M. Production of Entomopathogenic Viruses. In Mass Production of Beneficial Organisms; Elsevier: Amsterdam, The Netherlands, 2023; pp. 375–406. ISBN 9780128221068. [Google Scholar]
- Hawtin, R.E.; Zarkowska, T.; Arnold, K.; Thomas, C.J.; Gooday, G.W.; King, L.A.; Kuzio, J.A.; Possee, R.D. Liquefaction of Autographa Californica Nucleopolyhedrovirus Infected Insects Is Dependent on the Integrity of Virus-Encoded Chitinase and Cathepsin Genes. Virology 1997, 238, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Jiang, L.; Hashimoto, Y.; Granados, R.R.; Li, G.X. Establishment, Growth Kinetics, and Susceptibility to AcMNPV of Heat Tolerant Lepidopteran Cell Lines. Virol. Sin. 2011, 26, 198–205. [Google Scholar] [CrossRef]
- Jenkins, N.E.; Grzywacz, D. Quality Control of Fungal and Viral Biocontrol Agents-Assurance of Product Performance. Biocontrol Sci. Technol. 2000, 10, 753–777. [Google Scholar] [CrossRef]
- Moscardi, F. A Nucleopolyhedrovirus for Control of the Velvetbean Caterpillar in Brazilian Soybeans. In Biological Control: A Global Perspective: Case Studies from Around the World; Vincent, C., Goettel, M.S., Lazarovits, G., Eds.; CAB International: Wallingford, UK, 2007; pp. 344–352. ISBN 978-1-84593-265-7. [Google Scholar]
- Burges, H.D.; Jones, K.A. Formulation of Bacteria, Viruses and Protozoa to Control Insects. In Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments; Burges, H.D., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 33–127. ISBN 978-94-011-4926-6. [Google Scholar]
- Knowles, A. Recent Developments of Safer Formulations of Agrochemicals. Environmentalist 2008, 28, 35–44. [Google Scholar] [CrossRef]
- Dhladhla, B.I.R.; Mwanza, P.; Lee, M.E.; Moore, S.; Dealtry, G.B. Comparison of Microscopic and Molecular Enumeration Methods for Insect Viruses: Cryptophlebia Leucotreta Granulovirus as a Case Study. J. Virol. Methods 2018, 256, 107–110. [Google Scholar] [CrossRef]
- Behle, R.W. In Vivo Production of Agrotis Ipsilon Nucleopolyhedrovirus for Quantity and Quality. J. Econ. Entomol. 2018, 111, 101–107. [Google Scholar] [CrossRef]
- Fabre, M.L.; Masson, T.; Haase, S.; Ferrelli, M.L.; Romanowski, V. A Simplified Strategy to Package Foreign Proteins into Baculovirus Occlusion Bodies without Engineering the Viral Genome. J. Biotechnol. 2020, 307, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Quiroga-Cubides, G.; Araque-Echeverry, G.; Moreno, C.R.; Cubillos, G.P.B.; Gómez-Valderrama, J.; Cuartas-Otálora, P.E.; Álvarez, M.I.G.; Cortés-Rojas, D. Formulation Process Analysis of a Virus-Based Biopesticide to Control the Tomato Leafminer Tuta absoluta. Brazilian Arch. Biol. Technol. 2022, 65, e22210342. [Google Scholar] [CrossRef]
- de Moraes, R.R.; Maruniak, J.E. Detection and Identification of Multiple Baculoviruses Using the Polymerase Chain Reaction (PCR) and Restriction Endonuclease Analysis. J. Virol. Methods 1997, 63, 209–217. [Google Scholar] [CrossRef]
- Grzywacz, D.; McKinley, D.; Jones, K.A.; Moawad, G. Microbial Contamination in Spodoptera littoralis Nuclear Polyhedrosis Virus Produced in Insects in Egypt. J. Invertebr. Pathol. 1997, 69, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Podgwaite, J.D.; Bruen, R.B.; Shapiro, M. Microorganisms Associated with Production Lots of the Nucleopolyhedrosis Virus of the Gypsy Moth, Lymantria dispar (Lep.: Lymantriidae). Entomophaga 1983, 28, 9–15. [Google Scholar] [CrossRef]
- Ruiz, C.; Gómez-Valderrama, J.; Chaparro, M.; Sotelo, P.; Villamizar, L. Adjusting the Conditions of a System for the in Vivo Production of a Nucleopolyhedrovirus of Spodoptera frugiperda (Lepidoptera: Noctuidae). Biotecnol. Apl. 2015, 32, 4311–4316. [Google Scholar]
- Environment Directorate. OECD Issue Paper on Microbial Contaminant Limits for Microbial Pest Control Products. No. 65; Organisation for Economic Co-Operation and Development: Paris, France, 2011. [Google Scholar]
- US Environmental Protection Agency EPA. Biopesticides. Available online: https://www.epa.gov/pesticides/biopesticides (accessed on 10 October 2024).
- Klafke, K.; Sanches, M.M.; Sihler, W.; de Souza, M.L.; Tonso, A. Bioreactor Production Process of Spodoptera frugiperda Multiple Nucleopolyhedrovirus Biopesticide. Pathogens 2023, 12, 1001. [Google Scholar] [CrossRef]
- Murillo, R.; Elvira, S.; Muñoz, D.; Williams, T.; Caballero, P. Genetic and Phenotypic Variability in Spodoptera exigua Nucleopolyhedrovirus Isolates from Greenhouse Soils in Southern Spain. Biol. Control 2006, 38, 157–165. [Google Scholar] [CrossRef]
- Boyetchko, S.; Pedersen, E.; Punja, Z.; Reddy, M. Formulations of Biopesticides. In Biopesticides: Use and Delivery; Springer: Berlin/Heidelberg, Germany, 2003; pp. 487–508. [Google Scholar] [CrossRef]
- Udemezue, J.C.; Azodo, N.T.; Eluagu, C.J.; Odia, F.N.; Onwuneme, N.A.; Mbah, C.G.; Onuba, M.N. Bio-Pesticides: Natural Strategies for Agricultural Sustainability in the Developing Countries. Agric. Ext. J. 2021, 5, 117–126. [Google Scholar]
- Verma, M.L.; Kumar, A.; Chintagunta, A.D.; Samudrala, P.J.K.; Bardin, M.; Lichtfouse, E. Microbial Production of Biopesticides for Sustainable Agriculture. Sustainability 2024, 16, 7496. [Google Scholar] [CrossRef]
- Heijnen, C.E.; Burgers, S.L.G.E.; Veen, J.A. Van Metabolic Activity and Population Dynamics of Rhizobia Introduced into Unamended and Bentonite-Amended Loamy Sand. Appl. Environ. Microbiol. 1993, 59, 743–747. [Google Scholar] [CrossRef]
- Montoya, E.L.; Ignoffo, C.M.; McGarr, R.L. A Feeding Stimulant to Increase Effectiveness of, and a Field Test with, a Nuclear-Polyhedrosis Virus of Heliothis. J. Invertebr. Pathol. 1966, 8, 320–324. [Google Scholar] [CrossRef]
- Shapiro, M. Use of Optical Brighteners as Radiation Protectants for Gypsy Moth (Lepidoptera: Lymantriidae) Nuclear Polyhedrosis Virus. J. Econ. Entomol. 1992, 85, 1682–1686. [Google Scholar] [CrossRef]
- Tadesse Mawcha, K.; Malinga, L.; Muir, D.; Ge, J.; Ndolo, D. Recent Advances in Biopesticide Research and Development with a Focus on Microbials. F1000Research 2025, 13, 1071. [Google Scholar] [CrossRef]
- Monobrullah, M. Optical Brighteners-Pathogenicity of Entomopathogenic Viruses. Curr. Sci. 2003, 84, 640–645. [Google Scholar]
- Schisler, D.A.; Slininger, P.J.; Behle, R.W.; Jackson, M.A. Formulation of Bacillus spp. for Biological Control of Plant Diseases. Phytopathology 2004, 94, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.; Robertson, J.L. Enhancement of Gypsy Moth (Lepidoptera: Lymantriidae) Baculovirus Activity by Optical Brighteners. J. Econ. Entomol. 1992, 85, 1120–1124. [Google Scholar] [CrossRef]
- Tamez-Guerra, P.; McGuire, M.R.; Behle, R.W.; Shasha, B.S.; Pingel, R.L. Storage Stability of Anagrapha falcifera Nucleopolyhedrovirus in Spray-Dried Formulations. J. Invertebr. Pathol. 2002, 79, 7–16. [Google Scholar] [CrossRef]
- Bédard, M.F.; De Geest, B.G.; Skirtach, A.G.; Möhwald, H.; Sukhorukov, G.B. Polymeric Microcapsules with Light Responsive Properties for Encapsulation and Release. Adv. Colloid Interface Sci. 2010, 158, 2–14. [Google Scholar] [CrossRef]
- Nikam, V.K.; Kotade, K.B.; Gaware, V.M.; Dolas, R.T.; Dhamak, K.; Somwanshi, S.; Khadse, A.; Kashid, V. Eudragit a Versatile Polymer: A Review. Pharmacologyonline 2011, 1, 152–164. [Google Scholar]
- Wang, X.-Q.; Zhang, Q. PH-Sensitive Polymeric Nanoparticles to Improve Oral Bioavailability of Peptide/Protein Drugs and Poorly Water-Soluble Drugs. Eur. J. Pharm. Biopharm. 2012, 82, 219–229. [Google Scholar] [CrossRef]
- Wilson, K.; Grzywacz, D.; Curcic, I.; Scoates, F.; Harper, K.; Rice, A.; Paul, N.; Dillon, A. A Novel Formulation Technology for Baculoviruses Protects Biopesticide from Degradation by Ultraviolet Radiation. Sci. Rep. 2020, 10, 13301. [Google Scholar] [CrossRef]
- Gómez, J.; Guevara, J.; Cuartas, P.; Espinel, C.; Villamizar, L. Microencapsulated Spodoptera frugiperda Nucleopolyhedrovirus: Insecticidal Activity and Effect on Arthropod Populations in Maize. Biocontrol Sci. Technol. 2013, 23, 829–846. [Google Scholar] [CrossRef]
- Mulqueen, P. Recent Advances in Agrochemical Formulation. Adv. Colloid Interface Sci. 2003, 106, 83–107. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.; Chreil, R. Codling Moth (Cydia pomonella) Biology, and Integrated Pest Management. Tree Fruit Insects 2023, 1, 1–12. [Google Scholar]
- Riaz, S.; Johnson, J.B.; Ahmad, M.; Fitt, G.P.; Naiker, M. A Review on Biological Interactions and Management of the Cotton Bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Appl. Entomol. 2021, 145, 467–498. [Google Scholar] [CrossRef]
- Omkar (Ed.) Polyphagous Pests of Crops; Springer: Singapore, 2021; ISBN 978-981-15-8074-1. [Google Scholar]
- Rodriguez, V.M.; Velasco, P.; Abilleira, R.; Cartea, E. Metabolomic Fingerprint of Cabbage Resistance to Mamestra brassicae L. (Lepidoptera: Noctuidae); John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2023; Volume 79. [Google Scholar]
- Mason, P. Plutella xylostella (Diamondback Moth). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.42318 (accessed on 17 October 2023).
- Overton, K.; Maino, J.L.; Day, R.; Umina, P.A.; Bett, B.; Carnovale, D.; Ekesi, S.; Meagher, R.; Reynolds, O.L. Global Crop Impacts, Yield Losses and Action Thresholds for Fall Armyworm (Spodoptera frugiperda): A Review. Crop Prot. 2021, 145, 105641. [Google Scholar] [CrossRef]
- Ismail, S.M.; Abo-Shanab, A.S.H.; El-Malla, M.A. Field Evaluation of Certain Compounds against Spodoptera littoralis (Lepidoptera: Noctuidae): Their Impact on Its Predator, Chrysoperlacarnea (Neuroptera: Chrysopidae). In Proceedings of the National Academy of Sciences India Section B-Biological Sciences; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- CABI. Cydia pomonella (Codling Moth); PlantwisePlus Knowledge Bank: Wallingford, UK, 2021. [Google Scholar] [CrossRef]
- Tanada, Y. A Granulosis Virus of the Codling Moth, Carpocapsa Cydia pomonella (Linnaeus)(Olethreutidae, Lepidoptera)[from Mexico]. J. Insect Pathol. 1964, 6, 378–380. [Google Scholar]
- Asser-Kaiser, S.; Fritsch, E.; Undorf-Spahn, K.; Kienzle, J.; Eberle, K.E.; Gund, N.A.; Reineke, A.; Zebitz, C.P.W.; Heckel, D.G.; Huber, J.; et al. Rapid Emergence of Baculovirus Resistance in Codling Moth Due to Dominant, Sex-Linked Inheritance. Science 2007, 317, 1916–1918. [Google Scholar] [CrossRef]
- Sauer, A.J.; Fritsch, E.; Undorf-Spahn, K.; Nguyen, P.; Marec, F.; Heckel, D.G.; Jehle, J.A. Novel Resistance to Cydia pomonella Granulovirus (CpGV) in Codling Moth Shows Autosomal and Dominant Inheritance and Confers Cross-Resistance to Different CpGV Genome Groups. PLoS ONE 2017, 12, e0179157. [Google Scholar] [CrossRef]
- Jehle, J.A.; Schulze-Bopp, S.; Undorf-Spahn, K.; Fritsch, E. Evidence for a Second Type of Resistance against Cydia pomonella Granulovirus in Field Populations of Codling Moths. Appl. Environ. Microbiol. 2017, 83, e02330-16. [Google Scholar] [CrossRef]
- Schmitt, A.; Bisutti, I.L.; Ladurner, E.; Benuzzi, M.; Sauphanor, B.; Kienzle, J.; Zingg, D.; Undorf-Spahn, K.; Fritsch, E.; Huber, J.; et al. The Occurrence and Distribution of Resistance of Codling Moth to Cydia pomonella Granulovirus in Europe. J. Appl. Entomol. 2013, 137, 641–649. [Google Scholar] [CrossRef]
- Mishra, G. Omkar Gram Pod Borer (Helicoverpa armigera). In Polyphagous Pests of Crops; Omkar, Ed.; Springer: Singapore, 2021; pp. 311–348. [Google Scholar]
- Li, H.; Huang, X.; Yang, L.; Liu, H.; Liu, B.; Lu, Y. Behavioral, Physiological, and Molecular Mechanisms Underlying the Adaptation of Helicoverpa armigera to the Fruits of a Marginal Host: Walnut (Juglans Regia). Plants 2024, 13, 2761. [Google Scholar] [CrossRef]
- Tay, W.T.; Soria, M.F.; Walsh, T.; Thomazoni, D.; Silvie, P.; Behere, G.T.; Anderson, C.; Downes, S. A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 2013, 8, e80134. [Google Scholar] [CrossRef] [PubMed]
- Specht, A.; Sosa-Gómez, D.R.; Rios, D.A.M.; Claudino, V.C.M.; Paula-Moraes, S.V.; Malaquias, J.V.; Silva, F.A.M.; Roque-Specht, V.F. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil: The Big Outbreak Monitored by Light Traps. Neotrop. Entomol. 2021, 50, 53–67. [Google Scholar] [CrossRef]
- Malinga, L.N.; Laing, M.D. Efficacy of Biopesticides in the Management of the Cotton Bollworm, Helicoverpa amigera (Noctuidae), under Field Conditions. Insects 2022, 13, 673. [Google Scholar] [CrossRef]
- AgriBusiness Global. AgBiTech’s Biological Solution Approved on Emergency Basis. Available online: https://www.agribusinessglobal.com/agrochemicals/insecticides/agbitechs-biological-solution-approved-on-emergency-basis/ (accessed on 1 November 2024).
- Muraro, D.S.; Gonçalves, T.M.; Amado, D.; Lima, M.F.; Popham, H.J.R.; Marçon, P.G.; Omoto, C. Baseline Susceptibility and Cross-Resistance of HearNPV in Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. Insects 2022, 13, 820. [Google Scholar] [CrossRef]
- AgBiTech. Surtivo™. Available online: https://www.agbitech.us/surtivo (accessed on 1 November 2024).
- Biological-Insecticide. Available online: https://www.biological-insecticide.com/sale-26481105-unioasis-natural-vegetable-insecticides-onion-thrips-control-pesticide-sinpv-3-beta-cypermethrin.html (accessed on 16 June 2025).
- Badenes-Pérez, F. Mamestra brassicae (Cabbage Moth); CABI Compendium: Wallingford, UK, 2022. [Google Scholar]
- Wu, X.; Fu, X.; Guo, J.; Zhao, X.; Wu, K. Annual Migration of Cabbage Moth, Mamestra brassicae L. (Lepidoptera: Noctuidae), over the Sea in Northern China. PLoS ONE 2015, 10, e0132904. [Google Scholar] [CrossRef]
- Gröner, A. Das Kernpolyedervirus Der Kohleule (Mamestra brassicae [L.]): Seine Produktion Und Erprobung Für Die Biologische Schädlingsbekämpfung. Z. Angew. Entomol. 1976, 82, 138–143. [Google Scholar] [CrossRef]
- Point Andina. En Vivo SC. Available online: https://pointandina.pe/producto/en-vivo-sc-insecticida-biologico/?srsltid=AfmBOopfFukmYzDyJy_bhtZDu4jjl2e_h5OExbnKc1y1q2t-Y9KDaj7A (accessed on 1 November 2024).
- Cai, Y.; Hu, X.; Wang, P.; Xie, Y.; Lin, Z.; Zhang, Z. Biological Activity and Safety Profile of Monoterpenes against Plutella xylostella L. (Lepidoptera: Plutellidae). Environ. Sci. Pollut. Res. 2020, 27, 24889–24901. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Cushing, N.L.; Finson, N.; Johnson, M.W. Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 1990, 83, 1671–1676. [Google Scholar] [CrossRef]
- Andermatt. Available online: https://www.andermatt.com/product/plutex/ (accessed on 1 November 2024).
- Insecticide Resistance Action Committee Arthropod Pesticide Resistance Database. Available online: https://www.pesticideresistance.org (accessed on 1 December 2024).
- CABI. Spodoptera exigua (Beet Armyworm); CABI Compendium: Wallingford, UK, 2019. [Google Scholar] [CrossRef]
- Whalon, M.E.; Mota-Sanchez, D.; Hollingworth, R.M. Global Pesticide Resistance in Arthropods; CAB International: Wallingford, UK, 2008; ISBN 978-1-84593-353-1. [Google Scholar]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest Categorisation of Spodoptera litura. EFSA J. 2019, 17, e05765. [Google Scholar] [CrossRef]
- CABI. Spodoptera littoralis (Cotton Leafworm); CABI Compendium: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- Sun, X.; Hu, C.; Jia, H.; Wu, Q.; Shen, X.; Zhao, S.; Jiang, Y.; Wu, K. Case Study on the First Immigration of Fall Armyworm, Spodoptera frugiperda Invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Piggott, M.P.; Tadle, F.P.J.; Patel, S.; Cardenas Gomez, K.; Thistleton, B. Corn-Strain or Rice-Strain? Detection of Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in Northern Australia. Int. J. Trop. Insect Sci. 2021, 41, 2607–2615. [Google Scholar] [CrossRef]
- Rwomushana, I. Spodoptera frugiperda (Fall Armyworm); CABI Compendium: Wallingford, UK, 2019. [Google Scholar] [CrossRef]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Yan, X.R.; Wang, Z.Y.; Feng, S.Q.; Zhao, Z.H.; Li, Z.H. Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. Insects 2022, 13, 981. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, A.R.B.; Farias, J.R.; Bernardi, D.; Horikoshi, R.J.; Omoto, C. Genetic Basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) Resistance to the Chitin Synthesis Inhibitor Lufenuron. Pest Manag. Sci. 2016, 72, 810–815. [Google Scholar] [CrossRef]
- Simbiose. Vircontrol Sf. Available online: https://simbiose-agro.com.br/produto/vircontrol-s-f/ (accessed on 1 November 2024).
- AgBiTech. Cartugen. Available online: https://www.agbitech.com/synergistic-control-article-1 (accessed on 1 November 2024).
- Andermatt. Spodovir Plus: Biological Alternative for Fall Armyworm Control. Available online: https://www.andermatt.com/es/producto/spodovir-plus/ (accessed on 1 November 2024).
- AgBiTech. Fawligen®: Biological Insecticide for Fall Armyworm. Available online: https://www.agbitech.us/fawligen (accessed on 1 November 2024).
- PR Newswire AgriBusiness Global. Brazil: AgBiTech Launches Lepidoptera Biocontrol Options. Available online: https://www.agribusinessglobal.com/es/bioplaguicidas/brasil-agbitech-lanza-lepidopteros-biocontrol-opciones/ (accessed on 1 November 2024).
- Hussain, A.G.; Wennmann, J.T.; Goergen, G.; Bryon, A.; Ros, V.I.D. Viruses of the Fall Armyworm Spodoptera frugiperda: A Review with Prospects for Biological Control. Viruses 2021, 13, 2220. [Google Scholar] [CrossRef]
- ElShahed, S.M.; Mostafa, Z.K.; Radwan, M.H.; Hosni, E.M. Modeling the Potential Global Distribution of the Egyptian Cotton Leafworm, Spodoptera littoralis under Climate Change. Sci. Rep. 2023, 13, 17317. [Google Scholar] [CrossRef]
- Ayachit, S. Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/blog/top-10-companies-in-the-biopesticides-market-10480 (accessed on 1 November 2024).
- Graziele, A. Pesticides in Latin America: Violations against the Right to Adequate Food and Nutrition.; Amaral Burity, V.T., Morales Gonzalez, J., Eds.; FIAN Brasil: Asa Norte, Brazil, 2020. [Google Scholar]
- Vryzas, Z.; Ramwell, C.; Sans, C. Pesticide Prioritization Approaches and Limitations in Environmental Monitoring Studies: From Europe to Latin America and the Caribbean. Environ. Int. 2020, 143, 105917. [Google Scholar] [CrossRef]
- Zuñiga-Venegas, L.A.; Hyland, C.; Muñoz-Quezada, M.T.; Quuirós-Alcalá, L.; Butinof, M.; Buralli, R.; Cardenas, A.; Fernandez, R.A.; Foerster, C.; Gouveia, N.; et al. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. Environ. Health Perspect. 2023, 130, 096002. [Google Scholar] [CrossRef]
- Brum Togni, P.H.; Gomes Lagôa, A.C.; Sujii, E.R.; Venzon, M. Biopesticides in South America: Regulation and Commercialization. In Development and Commercialization of Biopesticides: Costs and Benefits; Koul, O., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 329–342. ISBN 9780323952903. [Google Scholar]
- Panizzi, A.R. History and Contemporary Perspectives of the Integrated Pest Management of Soybean in Brazil. Neotrop. Entomol. 2013, 42, 119–127. [Google Scholar] [CrossRef]
- Eurostat. Agri-Environmental Indicator-Consumption of Pesticides; Eurostat: Luxembourg, 2024. [Google Scholar]
- Chakraborty, N.; Mitra, R.; Pal, S.; Ganguly, R.; Acharya, K.; Minkina, T.; Sarkar, A.; Keswani, C. Biopesticide Consumption in India: Insights into the Current Trends. Agriculture 2023, 13, 557. [Google Scholar] [CrossRef]
- The Business Research Company. Biopesticides Global Market Report 2025–By Type (Bioinsecticides, Biofungicides, Bionematicides, Bioherbicides, Other Types), by Source (Microbials, Biochemicals, Beneficial Insects), by Formulation (Liquid Formulation, Dry Formulation), by Mode of Ap; The Business Research Company: London, UK, 2025. [Google Scholar]
- Sun, X.; Lyu, J.; Ge, C. Knowledge and Farmers’ Adoption of Green Production Technologies: An Empirical Study on IPM Adoption Intention in Major Indica-Rice-Producing Areas in the Anhui Province of China. Int. J. Environ. Res. Public Health 2022, 19, 4292. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.M.; Guo, Y.Y. The Evolution of Cotton Pest Management Practices in China. Annu. Rev. Entomol. 2005, 50, 31–52. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs Institute for the Control of Agroquemicals. Ministry of Agriculture and Rural Affairs: Beijing, China. Available online: http://www.chinapesticide.org.cn/eng/aboutus (accessed on 1 January 2024).
- Reach24h Industry News. Available online: https://www.reach24h.com/en/news/industry-news/agrochemical/chinas-pesticide-regulations-and-policies-key-updates-of-2023.html (accessed on 1 January 2024).
- European Comission CORDIS. Available online: https://cordis.europa.eu/project/id/101060430 (accessed on 23 January 2024).
Products Available in Market | Registration/Sale/Distribution Companies | Dose/ha |
---|---|---|
CAPEX | Andermatt Biocontrol | 5 × 1012 OBs/ha |
GRANUPOM | Biobest | - |
CARPOVIRUSINE | UPL | 1013 OBs/ha |
CARPOVIRUSINE EVO2 | ||
CYD X LC | Certis | 3 × 1012–1.2 × 1013 OBs/ha |
CYD-X | 6.6 × 1012–9.9 × 1012 OB/ha | |
CYD-X XTRA | 3 × 1012 OBs/ha | |
MADEX | Andermatt/Agri Check S.R.L./Key Industries Ltd. | 3 × 1012 OBs/ha |
MADEX TWIN | ||
VIREX | Grochem | 3 × 1012 OBs/ha |
EN VIVO SC | Point Andina | 1.4 × 1011–9 × 1012 OBs/ha |
Products Available in Market | Registration/Sale/Distribution Companies | Dose/ha |
---|---|---|
HELICOVEX | Andermatt | 1.5 × 1012 OBs/ha |
VERPAVEX | ||
HELIGEN | AgBiTech | 3.8 × 1011–1.3 × 1012 OBs/ha |
SURTIVO PLUS | 1.4 × 1011–1.7 × 1012 OBs/ha | |
SURTIVO SOJA | ||
VIVUS ARMIGEN | 3.7 × 1011–9.7 × 1011 OBs/ha | |
DIPLOMATA EVO | Koppert | 3.7 × 1011–1.5 × 1012 OBs/ha |
HELI-CIDE | Pest Control India | - |
GEMSTAR LC | Certis/Mitsui & Co | 1.5 × 1012 OBs/ha |
GEMSTAR MAX | Mitsui & Co | - |
HELIOKILL | Ajay Biotech | - |
VPN ULTRA | Agricola el Sol | - |
HELITEC | Elephant vert | 2.5 × 1012 OBs/ha |
HzNPV CCAB | CCAB Agro S.A. | 7.5 × 1011–1.5 × 1012 OBs/ha |
SpliNPV + 3% Betacypermethrin | Unioasis | 1.1 × 1010–1.5 × 1010 OBs/ha |
Products Available in Market | Registration/Sale/Distribution Companies | Product Dose/ha |
---|---|---|
EN VIVO SC | Point Andina | 1.4 × 1011–9 × 1012 OBs/ha |
PLUTEX | Andermatt | 2.5 × 1012 OBs/ha |
BYPEL 1 | Unioasis | - |
SeNPV + Bt | - | |
VPN ULTRA | Agricola el Sol | - |
LEPIGEN | Agbitech | 1.3 × 1012 OBs/ha |
Products Available in Market | Registration/Sale/Distribution Companies | Dose/ha |
---|---|---|
CARTUCHOVIT | Vitae Rural Biotecnologia | 3 × 1012 OBs/ha |
SURTIVO PLUS | Agbitech | 1.4 × 1011–1.7 × 1012 OBs/ha |
SURTIVO ULTRA | ||
FAWLIGEN | 3.7 × 1011–2.2 × 1012 OBs/ha | |
CARTUGEN | 3.7 × 1011–1.5 × 1012 OBs/ha | |
EN VIVO SC | Point Andina | 1.4 × 1011–9 × 1012 OBs/ha |
SPODOVIR PLUS | Andermatt | 5 × 1010–1 × 1011 OBs/ha |
VIRCONTROL-SF | Simbiose Agro Tecnología Biológica | 4.3 × 1011 OBs/ha |
VPN ULTRA | Agricola el Sol | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Balerdi, M.; Caballero, J.; Aguirre, E.; Caballero, P.; Beperet, I. Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview. Viruses 2025, 17, 917. https://doi.org/10.3390/v17070917
Martínez-Balerdi M, Caballero J, Aguirre E, Caballero P, Beperet I. Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview. Viruses. 2025; 17(7):917. https://doi.org/10.3390/v17070917
Chicago/Turabian StyleMartínez-Balerdi, Maider, Javier Caballero, Eduardo Aguirre, Primitivo Caballero, and Inés Beperet. 2025. "Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview" Viruses 17, no. 7: 917. https://doi.org/10.3390/v17070917
APA StyleMartínez-Balerdi, M., Caballero, J., Aguirre, E., Caballero, P., & Beperet, I. (2025). Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview. Viruses, 17(7), 917. https://doi.org/10.3390/v17070917