CRISPR/Cas13-Mediated Inhibition of EBNA1 for Suppression of Epstein–Barr Virus Transcripts and DNA Load in Nasopharyngeal Carcinoma Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Plasmids and crRNA Design
2.2. Cell Culture and Transfection
2.3. qRT-PCR Analysis
2.4. EBV DNA Quantification
2.5. Western Blotting
2.6. AAV Serotyping and Infection Assay
2.7. Cell Viability Assay
2.8. Statistical Analysis
3. Results
3.1. CRISPR/Cas13-Mediated Suppression of EBV Transcripts in Nasopharyngeal Carcinoma Cells
3.2. CRISPR/Cas13-Mediated Suppression of EBV Transcripts Reduces the Viral DNA Load in C666-1 Cells
3.3. CRISPR/Cas13-Mediated Suppression of EBNA1 Transcripts Sensitized C666-1 Cells to CRISPR/Cas9-Mediated Elimination of the EBV Genome
3.4. Transduction Efficiency of Various Adeno-Associated Virus (AAV) Serotypes in NPE and NPC Cells
3.5. Enhancing Chemotherapeutic Sensitivity in C666-1 Cells Through CRISPR/Cas13 Targeting of EBNA1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raab-Traub, N. Novel Mechanisms of EBV-Induced Oncogenesis. Curr. Opin. Virol. 2012, 2, 453–458. [Google Scholar] [CrossRef]
- Yu, M.C.; Yuan, J.-M. Epidemiology of Nasopharyngeal Carcinoma. Semin. Cancer Biol. 2002, 12, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Raab-Traub, N.; Flynn, K. The Structure of the Termini of the Epstein-Barr Virus as a Marker of Clonal Cellular Proliferation. Cell 1986, 47, 883–889. [Google Scholar] [CrossRef]
- Lee, A.W.M.; Ma, B.B.Y.; Ng, W.T.; Chan, A.T.C. Management of Nasopharyngeal Carcinoma: Current Practice and Future Perspective. J. Clin. Oncol. 2015, 33, 3356–3364. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Chan, A.T.C.; Le, Q.-T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal Carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.M.; Deng, W.; Yip, Y.L.; Zeng, M.-S.; Lo, K.W.; Tsao, S.W. EBV Infection and Persistence in Nasopharyngeal Epithelial Cells. Chin. J. Cancer 2014, 33, 549. [Google Scholar] [CrossRef]
- Sugiokto, F.G.; Li, R. Targeting EBV Episome for Anti-Cancer Therapy: Emerging Strategies and Challenges. Viruses 2025, 17, 110. [Google Scholar] [CrossRef]
- Jiang, L.; Lui, Y.-L.; Li, H.; Chan, C.-F.; Lan, R.; Chan, W.-L.; Lau, T.C.-K.; Tsao, G.S.-W.; Mak, N.-K.; Wong, K.-L. EBNA1-Specific Luminescent Small Molecules for the Imaging and Inhibition of Latent EBV-Infected Tumor Cells. Chem. Commun. 2014, 50, 6517–6519. [Google Scholar] [CrossRef]
- Chen, C.; Addepalli, K.; Soldan, S.S.; Castro- Munoz, L.J.; Preston-Alp, S.; Patel, R.J.; Albitz, C.J.; Tang, H.; Tempera, I.; Lieberman, P.M. USP7 Inhibitors Destabilize EBNA1 and Suppress Epstein-Barr Virus Tumorigenesis. J. Med. Virol. 2025, 97, e70168. [Google Scholar] [CrossRef]
- Dheekollu, J.; Wiedmer, A.; Soldan, S.S.; Castro- Muñoz, L.J.; Chen, C.; Tang, H.-Y.; Speicher, D.W.; Lieberman, P.M. Regulation of EBNA1 Protein Stability and DNA Replication Activity by PLOD1 Lysine Hydroxylase. PLoS Pathog. 2023, 19, e1010478. [Google Scholar] [CrossRef]
- Jiang, L.; Lan, R.; Huang, T.; Chan, C.-F.; Li, H.; Lear, S.; Zong, J.; Wong, W.-Y.; Muk-Lan Lee, M.; Dow Chan, B.; et al. EBNA1-Targeted Probe for the Imaging and Growth Inhibition of Tumours Associated with the Epstein–Barr Virus. Nat. Biomed. Eng. 2017, 1, 42. [Google Scholar] [CrossRef]
- Messick, T.E.; Smith, G.R.; Soldan, S.S.; McDonnell, M.E.; Deakyne, J.S.; Malecka, K.A.; Tolvinski, L.; van den Heuvel, A.P.J.; Gu, B.-W.; Cassel, J.A.; et al. Structure-Based Design of Small-Molecule Inhibitors of EBNA1 DNA Binding Blocks Epstein-Barr Virus Latent Infection and Tumor Growth. Sci. Transl. Med. 2019, 11, eaau5612. [Google Scholar] [CrossRef]
- Colevas, A.D.; Talebi, Z.; Winters, E.; Even, C.; Lee, V.H.-F.; Gillison, M.L.; Khan, S.A.; Lu, R.; Pinsky, B.A.; Soldan, S.S.; et al. First-in-Human Clinical Trial of a Small-Molecule EBNA1 Inhibitor, VK-2019, in Patients with Epstein-Barr–Positive Nasopharyngeal Cancer, with Pharmacokinetic and Pharmacodynamic Studies. Clin. Cancer Res. 2025, 31, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Haverkos, B.; Alpdogan, O.; Baiocchi, R.; Brammer, J.E.; Feldman, T.A.; Capra, M.; Brem, E.A.; Nair, S.; Scheinberg, P.; Pereira, J.; et al. Targeted Therapy with Nanatinostat and Valganciclovir in Recurrent EBV-Positive Lymphoid Malignancies: A Phase 1b/2 Study. Blood Adv. 2023, 7, 6339–6350. [Google Scholar] [CrossRef]
- Wu, M.; Hau, P.M.; Li, L.; Tsang, C.M.; Yang, Y.; Taghbalout, A.; Chung, G.T.-Y.; Hui, S.Y.; Tang, W.C.; Jillette, N.; et al. Synthetic BZLF1-Targeted Transcriptional Activator for Efficient Lytic Induction Therapy against EBV-Associated Epithelial Cancers. Nat. Commun. 2024, 15, 3729. [Google Scholar] [CrossRef]
- Sugiokto, F.G.; Li, R. Targeted Eradication of EBV-Positive Cancer Cells by CRISPR/DCas9-Mediated EBV Reactivation in Combination with Ganciclovir. mBio 2024, 15, e00795-24. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.; Hu, G. CRISPR/Cas9-Mediated LMP1 Knockout Inhibits Epstein-Barr Virus Infection and Nasopharyngeal Carcinoma Cell Growth. Infect. Agent. Cancer 2019, 14, 30. [Google Scholar] [CrossRef]
- Yuen, K.-S.; Wang, Z.-M.; Wong, N.-H.M.; Zhang, Z.-Q.; Cheng, T.-F.; Lui, W.-Y.; Chan, C.-P.; Jin, D.-Y. Suppression of Epstein-Barr Virus DNA Load in Latently Infected Nasopharyngeal Carcinoma Cells by CRISPR/Cas9. Virus Res. 2018, 244, 296–303. [Google Scholar] [CrossRef]
- Yuen, K.-S.; Chan, C.-P.; Kok, K.-H.; Jin, D.-Y. Mutagenesis and Genome Engineering of Epstein–Barr Virus in Cultured Human Cells by CRISPR/Cas9; Springer: Berlin/Heidelberg, Germany, 2017; pp. 23–31. [Google Scholar]
- Yuen, K.-S.; Chan, C.-P.; Wong, N.-H.M.; Ho, C.-H.; Ho, T.-H.; Lei, T.; Deng, W.; Tsao, S.W.; Chen, H.; Kok, K.-H.; et al. CRISPR/Cas9-Mediated Genome Editing of Epstein–Barr Virus in Human Cells. J. Gen. Virol. 2015, 96, 626–636. [Google Scholar] [CrossRef]
- Konermann, S.; Lotfy, P.; Brideau, N.J.; Oki, J.; Shokhirev, M.N.; Hsu, P.D. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 2018, 173, 665–676.e14. [Google Scholar] [CrossRef]
- Smargon, A.A.; Cox, D.B.T.; Pyzocha, N.K.; Zheng, K.; Slaymaker, I.M.; Gootenberg, J.S.; Abudayyeh, O.A.; Essletzbichler, P.; Shmakov, S.; Makarova, K.S.; et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol. Cell 2017, 65, 618–630.e7. [Google Scholar] [CrossRef]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.T.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed]
- Freije, C.A.; Myhrvold, C.; Boehm, C.K.; Lin, A.E.; Welch, N.L.; Carter, A.; Metsky, H.C.; Luo, C.Y.; Abudayyeh, O.O.; Gootenberg, J.S.; et al. Programmable Inhibition and Detection of RNA Viruses Using Cas13. Mol. Cell 2019, 76, 826–837.e11. [Google Scholar] [CrossRef]
- Abbott, T.R.; Dhamdhere, G.; Liu, Y.; Lin, X.; Goudy, L.; Zeng, L.; Chemparathy, A.; Chmura, S.; Heaton, N.S.; Debs, R.; et al. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell 2020, 181, 865–876.e12. [Google Scholar] [CrossRef]
- Keng, C.T.; Yogarajah, T.; Lee, R.C.H.; Muhammad, I.B.H.; Chia, B.S.; Vasandani, S.R.; Lim, D.S.; Guo, K.; Wong, Y.H.; Mok, C.K.; et al. AAV-CRISPR-Cas13 Eliminates Human Enterovirus and Prevents Death of Infected Mice. EBioMedicine 2023, 93, 104682. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fang, J.; Zhou, M.; Gong, Z.; Xiang, T. CRISPR-Cas13: A New Technology for the Rapid Detection of Pathogenic Microorganisms. Front. Microbiol. 2022, 13, 1011399. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.-X.; Wang, F.; Zeng, M.-S. Room Temperature Detection of Plasma Epstein–Barr Virus DNA with CRISPR–Cas13. Clin. Chem. 2019, 65, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Lui, W.-Y.; Bharti, A.; Wong, N.-H.M.; Jangra, S.; Botelho, M.G.; Yuen, K.-S.; Jin, D.-Y. Suppression of CGAS- and RIG-I-Mediated Innate Immune Signaling by Epstein-Barr Virus Deubiquitinase BPLF1. PLoS Pathog. 2023, 19, e1011186. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.T.; Huang, D.P.; Hui, A.B.Y.; Lo, K.W.; Ko, C.W.; Tsang, Y.S.; Wong, N.; Whitney, B.M.; Lee, J.C.K. Nasopharyngeal Carcinoma Cell Line (C666-1) Consistently Harbouring Epstein-Barr Virus. Int. J. Cancer 1999, 83, 121–126. [Google Scholar] [CrossRef]
- Cosmopoulos, K.; Pegtel, M.; Hawkins, J.; Moffett, H.; Novina, C.; Middeldorp, J.; Thorley-Lawson, D.A. Comprehensive Profiling of Epstein-Barr Virus MicroRNAs in Nasopharyngeal Carcinoma. J. Virol. 2009, 83, 2357–2367. [Google Scholar] [CrossRef] [PubMed]
- Tso, K.K.-Y.; Yip, K.Y.-L.; Mak, C.K.-Y.; Chung, G.T.-Y.; Lee, S.-D.; Cheung, S.-T.; To, K.-F.; Lo, K.-W. Complete Genomic Sequence of Epstein-Barr Virus in Nasopharyngeal Carcinoma Cell Line C666-1. Infect. Agent. Cancer 2013, 8, 29. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, W.S.; Yun, Y.; Park, C. Epstein–Barr Virus Latent Membrane Protein 1 Increases Chemo-Resistance of Cancer Cells via Cytoplasmic Sequestration of Pim-1. Cell Signal 2010, 22, 1858–1863. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.H.; Israel, B.; Raab-Traub, N.; Busson, P.; Kenney, S.C. Chemotherapy Induces Lytic EBV Replication and Confers Ganciclovir Susceptibility to EBV-Positive Epithelial Cell Tumors. Cancer Res. 2002, 62, 1920–1926. [Google Scholar]
- Bellows, D.S.; Howell, M.; Pearson, C.; Hazlewood, S.A.; Hardwick, J.M. Epstein-Barr Virus BALF1 Is a BCL-2-Like Antagonist of the Herpesvirus Antiapoptotic BCL-2 Proteins. J. Virol. 2002, 76, 2469–2479. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.F.; Ho, D.N.; Tsang, C.M.; Middeldorp, J.M.; Tsao, G.S.W.; Chiang, A.K.S. Activation of Lytic Cycle of Epstein-Barr Virus by Suberoylanilide Hydroxamic Acid Leads to Apoptosis and Tumor Growth Suppression of Nasopharyngeal Carcinoma. Int. J. Cancer 2012, 131, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.F.; Cheung, A.K.L.; Choi, C.K.; Yeung, P.L.; Middeldorp, J.M.; Lung, M.L.; Tsao, S.W.; Chiang, A.K.S. Inhibition of Class I Histone Deacetylases by Romidepsin Potently Induces Epstein-Barr Virus Lytic Cycle and Mediates Enhanced Cell Death with Ganciclovir. Int. J. Cancer 2016, 138, 125–136. [Google Scholar] [CrossRef]
- Kocak, D.D.; Josephs, E.A.; Bhandarkar, V.; Adkar, S.S.; Kwon, J.B.; Gersbach, C.A. Increasing the Specificity of CRISPR Systems with Engineered RNA Secondary Structures. Nat. Biotechnol. 2019, 37, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Yip, Y.L.; Jia, L.; Deng, W.; Zheng, H.; Dai, W.; Ko, J.M.Y.; Lo, K.W.; Chung, G.T.Y.; Yip, K.Y.; et al. Establishment and Characterization of New Tumor Xenografts and Cancer Cell Lines from EBV-Positive Nasopharyngeal Carcinoma. Nat. Commun. 2018, 9, 4663. [Google Scholar] [CrossRef]
- Davenport, M.G.; Pagano, J.S. Expression of EBNA-1 MRNA Is Regulated by Cell Cycle during Epstein-Barr Virus Type I Latency. J. Virol. 1999, 73, 3154–3161. [Google Scholar] [CrossRef] [PubMed]
- Ragoczy, T.; Miller, G. Role of the Epstein-Barr Virus Rta Protein in Activation of Distinct Classes of Viral Lytic Cycle Genes. J. Virol. 1999, 73, 9858–9866. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.L.; Ruan, M.Z.C.; Mahajan, V.B.; Tsang, S.H. Viral Delivery Systems for CRISPR. Viruses 2019, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Mays, L.E.; Wang, L.; Lin, J.; Bell, P.; Crawford, A.; Wherry, E.J.; Wilson, J.M. AAV8 Induces Tolerance in Murine Muscle as a Result of Poor APC Transduction, T Cell Exhaustion, and Minimal MHCI Upregulation on Target Cells. Mol. Ther. 2014, 22, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Basner-Tschakarjan, E.; Mingozzi, F. Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions. Front. Immunol. 2014, 5, 350. [Google Scholar] [CrossRef] [PubMed]
- Linden, R.M.; Winocour, E.; Berns, K.I. The Recombination Signals for Adeno-Associated Virus Site-Specific Integration. Proc. Natl. Acad. Sci. USA 1996, 93, 7966–7972. [Google Scholar] [CrossRef] [PubMed]
- Giraud, C.; Winocour, E.; Berns, K.I. Site-Specific Integration by Adeno-Associated Virus Is Directed by a Cellular DNA Sequence. Proc. Natl. Acad. Sci. USA 1994, 91, 10039–10043. [Google Scholar] [CrossRef]
- Kaeppel, C.; Beattie, S.G.; Fronza, R.; van Logtenstein, R.; Salmon, F.; Schmidt, S.; Wolf, S.; Nowrouzi, A.; Glimm, H.; von Kalle, C.; et al. A Largely Random AAV Integration Profile after LPLD Gene Therapy. Nat. Med. 2013, 19, 889–891. [Google Scholar] [CrossRef]
- Chuang, Y.-F.; Wang, P.-Y.; Kumar, S.; Lama, S.; Lin, F.-L.; Liu, G.-S. Methods for in Vitro CRISPR/CasRx-Mediated RNA Editing. Front. Cell Dev. Biol. 2021, 9, 667879. [Google Scholar] [CrossRef]
- Li, A.; Tanner, M.R.; Lee, C.M.; Hurley, A.E.; De Giorgi, M.; Jarrett, K.E.; Davis, T.H.; Doerfler, A.M.; Bao, G.; Beeton, C.; et al. AAV-CRISPR Gene Editing Is Negated by Pre-Existing Immunity to Cas9. Mol. Ther. 2020, 28, 1432–1441. [Google Scholar] [CrossRef]
- Huang, L.-Y.; Patel, A.; Ng, R.; Miller, E.B.; Halder, S.; McKenna, R.; Asokan, A.; Agbandje-McKenna, M. Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site. J. Virol. 2016, 90, 5219–5230. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Qiao, M.; Chen, Y.; Xie, H. EBV-Positive Glycoproteins Associated with Nasopharyngeal Carcinoma. Pathol. Res. Pract. 2024, 260, 155427. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Rathinavel, A.K.; Radhakrishnan, P. Altered Glycosylation in Cancer: A Promising Target for Biomarkers and Therapeutics. Biochim. Biophys. Acta-Rev. Cancer 2021, 1875, 188464. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Flemington, E.K. SiRNAs against the Epstein Barr Virus Latency Replication Factor, EBNA1, Inhibit Its Function and Growth of EBV-Dependent Tumor Cells. Virology 2006, 346, 385–393. [Google Scholar] [CrossRef]
- Hong, M.; Murai, Y.; Kutsuna, T.; Takahashi, H.; Nomoto, K.; Cheng, C.-M.; Ishizawa, S.; Zhao, Q.-L.; Ogawa, R.; Harmon, B.V.; et al. Suppression of Epstein-Barr Nuclear Antigen 1 (EBNA1) by RNA Interference Inhibits Proliferation of EBV-Positive Burkitt’s Lymphoma Cells. J. Cancer Res. Clin. Oncol. 2006, 132, 1–8. [Google Scholar] [CrossRef]
- Wang, J.; Liang, C.; Meng, F.; Xu, X.; Wu, Y.; Lu, L. Lentivirus-Mediated RNA Interference Targeting EBNA1 Gene Inhibits the Growth of GT-38 Cells in Vitro and in Vivo. Oncol. Lett. 2019, 18, 2286–2291. [Google Scholar] [CrossRef]
- Redhwan, M.A.M.; M.G., H.; Samaddar, S.; Hard, S.A.A.A.; Yadav, V.; Mukherjee, A.; Kumar, R. Small Interference (RNAi) Technique: Exploring Its Clinical Applications, Benefits and Limitations. Eur. J. Clin. Invest. 2023, 53, e14039. [Google Scholar] [CrossRef]
- van Gestel, M.A.; van Erp, S.; Sanders, L.E.; Brans, M.A.D.; Luijendijk, M.C.M.; Merkestein, M.; Pasterkamp, R.J.; Adan, R.A.H. ShRNA-Induced Saturation of the MicroRNA Pathway in the Rat Brain. Gene Ther. 2014, 21, 205–211. [Google Scholar] [CrossRef]
- van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.G.; Bruggeling, C.E.; Schürch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.H.J.; Lebbink, R.J. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLoS Pathog. 2016, 12, e1005701. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, H.; Hutt-Fletcher, L.; Ambinder, R.F.; Hayward, S.D. Lytic Viral Replication as a Contributor to the Detection of Epstein-Barr Virus in Breast Cancer. J. Virol. 2003, 77, 13267–13274. [Google Scholar] [CrossRef]
- Lun, S.W.-M.; Cheung, S.T.; Cheung, P.F.Y.; To, K.-F.; Woo, J.K.-S.; Choy, K.-W.; Chow, C.; Cheung, C.C.-M.; Chung, G.T.-Y.; Cheng, A.S.-H.; et al. CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma. PLoS ONE 2012, 7, e52426. [Google Scholar] [CrossRef]
- Chew, W.L.; Tabebordbar, M.; Cheng, J.K.W.; Mali, P.; Wu, E.Y.; Ng, A.H.M.; Zhu, K.; Wagers, A.J.; Church, G.M. A Multifunctional AAV-CRISPR-Cas9 and Its Host Response. Nat. Methods 2016, 13, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Belshe, R.B.; Mendelman, P.M.; Treanor, J.; King, J.; Gruber, W.C.; Piedra, P.; Bernstein, D.I.; Hayden, F.G.; Kotloff, K.; Zangwill, K.; et al. The Efficacy of Live Attenuated, Cold-Adapted, Trivalent, Intranasal Influenzavirus Vaccine in Children. N. Engl. J. Med. 1998, 338, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Dhawan, M.; Tiwari, R.; Emran, T.B.; Mitra, S.; Rabaan, A.A.; Alhumaid, S.; Al Alawi, Z.; Al Mutair, A. COVID-19 Intranasal Vaccines: Current Progress, Advantages, Prospects, and Challenges. Hum. Vaccin. Immunother. 2022, 18, 2045853. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Lui, W.-Y.; Ong, C.P.; Yau, M.Y.-C.; Jin, D.-Y.; Yuen, K.-S. CRISPR/Cas13-Mediated Inhibition of EBNA1 for Suppression of Epstein–Barr Virus Transcripts and DNA Load in Nasopharyngeal Carcinoma Cells. Viruses 2025, 17, 899. https://doi.org/10.3390/v17070899
Lin L, Lui W-Y, Ong CP, Yau MY-C, Jin D-Y, Yuen K-S. CRISPR/Cas13-Mediated Inhibition of EBNA1 for Suppression of Epstein–Barr Virus Transcripts and DNA Load in Nasopharyngeal Carcinoma Cells. Viruses. 2025; 17(7):899. https://doi.org/10.3390/v17070899
Chicago/Turabian StyleLin, Lin, Wai-Yin Lui, Chon Phin Ong, Mabel Yin-Chun Yau, Dong-Yan Jin, and Kit-San Yuen. 2025. "CRISPR/Cas13-Mediated Inhibition of EBNA1 for Suppression of Epstein–Barr Virus Transcripts and DNA Load in Nasopharyngeal Carcinoma Cells" Viruses 17, no. 7: 899. https://doi.org/10.3390/v17070899
APA StyleLin, L., Lui, W.-Y., Ong, C. P., Yau, M. Y.-C., Jin, D.-Y., & Yuen, K.-S. (2025). CRISPR/Cas13-Mediated Inhibition of EBNA1 for Suppression of Epstein–Barr Virus Transcripts and DNA Load in Nasopharyngeal Carcinoma Cells. Viruses, 17(7), 899. https://doi.org/10.3390/v17070899