Discovery of a Novel Parahenipavirus, Parahenipavirus_GH, in Shrews in South Korea, 2022
Abstract
1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. Molecular Analysis
2.3. Sequence Characterization
2.4. Phylogenetic Analysis
3. Results
3.1. Mammalian Hosts of Parahenipavirus
3.2. Identification of PHNV-GH
3.3. Organotropism of PHNV-GH
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCR | Polymerase chain reaction |
qRT-PCR | Quantitative real-time reverse transcription polymerase chain reaction |
GAKV | Gamak virus |
DARV | Daeryong virus |
MojV | Mojiang virus |
LayV | Langya virus |
PAPV | Paju Apodemus paramyxovirus |
Cytb | Cytochrome b |
COI | Cytochrome c oxidase subunit I |
Ct | Threshold cycle |
CGW25 | CLC Genomics Workbench v25 |
References
- Wang, L.; Harcourt, B.H.; Yu, M.; Tamin, A.; Rota, P.A.; Bellini, W.J.; Eaton, B.T. Molecular biology of Hendra and Nipah viruses. Microbes Infect. 2001, 3, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Kaza, B.; Aguilar, H.C. Pathogenicity and virulence of henipaviruses. Virulence 2023, 14, 2273684. [Google Scholar] [CrossRef] [PubMed]
- Genus: Henipavirus. Available online: https://ictv.global/report/chapter/paramyxoviridae/paramyxoviridae/henipavirus (accessed on 18 August 2023).
- Taxon Name: Parahenipavirus. Available online: https://ictv.global/taxonomy/taxondetails?taxnode_id=202415744&taxon_name=Parahenipavirus (accessed on 29 May 2025).
- Spengler, J.R.; Lo, M.K.; Welch, S.R.; Spiropoulou, C.F. Henipaviruses: Epidemiology, ecology, disease, and the development of vaccines and therapeutics. Front. Microbiol. 2023, 14, 1246327. [Google Scholar] [CrossRef] [PubMed]
- Bonaparte, M.I.; Dimitrov, A.S.; Bossart, K.N.; Crameri, G.; Mungall, B.A.; Bishop, K.A.; Choudhry, V.; Dimitrov, D.S.; Wang, L.F.; Eaton, B.T.; et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl. Acad. Sci. USA 2005, 102, 10652–10657. [Google Scholar] [CrossRef] [PubMed]
- Hsu, V.P.; Hossain, M.J.; Parashar, U.D.; Ali, M.M.; Ksiazek, T.G.; Kuzmin, I.; Niezgoda, M.; Rupprecht, C.; Bresee, J.; Breiman, R.F. Nipah virus encephalitis reemergence, Bangladesh. Emerg. Infect. Dis. 2004, 10, 2082–2087. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wang, Y.; Han, Y.; Jin, Q.; Yang, F.; Wu, Z. Discovery and characterization of novel paramyxoviruses from bat samples in China. Virol. Sin. 2023, 38, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Adesola, R.O.; Miranda, A.V.; Tran, Y.S.J.; Idris, I.; Lin, X.; Kouwenhoven, M.B.N.; Lucero-Prisno, D.E. Langya virus out-break: Current challenges and lessons learned from previous Henipavirus outbreaks in China, Australia, and Southeast Asia. Bull. Natl. Res. Cent. 2023, 47, 87. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; No, J.S.; Kim, K.; Budhathoki, S.; Park, K.; Lee, G.Y.; Cho, S.; Kim, B.H.; Cho, S.; Kim, J.; et al. Novel Paju Apodemus paramyxovirus 1 and 2, harbored by Apodemus agrarius in the Republic of Korea. Virology 2021, 562, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, K.; Kim, J.; No, J.S.; Park, K.; Budhathoki, S.; Lee, S.H.; Lee, J.; Cho, S.H.; Cho, S.; et al. Discovery and genetic characterization of novel paramyxoviruses related to the genus Henipavirus in Crocidura species in the Republic of Korea. Viruses 2021, 13, 2020. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Kang, H.J.; Gu, S.H.; Ohdachi, S.D.; Cook, J.A.; Yashina, L.N.; Tanaka-Taya, K.; Abramov, S.A.; Morikawa, S.; Okabe, N.; et al. Genetic diversity of Artybash virus in the Laxmann’s shrew (Sorex caecutiens). Vector-Borne Zoonotic Dis. 2016, 16, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxi-dase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Tong, S.; Chern, S.W.W.; Li, Y.; Pallansch, M.A.; Anderson, L.J. Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. J. Clin. Microbiol. 2008, 46, 2652–2658. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The viral proteomic tree server. Bioinfor-matics 2017, 33, 2379–2380. [Google Scholar] [CrossRef] [PubMed]
- Diederich, S.; Babiuk, S.; Boshra, H. A survey of Henipavirus tropism-Our current understanding from a species/organ and cellular level. Viruses 2023, 15, 2048. [Google Scholar] [CrossRef] [PubMed]
- Caruso, S.; Edwards, S.J. Recently emerged novel henipa-like viruses: Shining a spotlight on the shrew. Viruses 2023, 15, 2407. [Google Scholar] [CrossRef] [PubMed]
Sample | Collection Area | Species | qRT-PCR Ct Values |
---|---|---|---|
Eight samples with the lowest Ct values | |||
#158 kidney | Jeollanam-do Goheung-gun | Crocidura shantungensis | 24.209 |
#103 kidney | Gangwon-do Donghae-si | Crocidura lasiura | 25.428 |
#243 kidney | Gyeonggi-do Paju-si | Apodemus agrarius | 29.697 |
#244 kidney | Gyeonggi-do Paju-si | Apodemus agrarius | 30.344 |
#160 kidney | Jeollanam-do Goheung-gun | Apodemus agrarius | 30.797 |
#251 kidney | Gyeongsangbuk-do Cheongdo-gun | Apodemus agrarius | 30.841 |
#240 kidney | Gyeonggi-do Paju-si | Crocidura lasiura | 31.322 |
#189 kidney | Gyeongsangbuk-do Uiseong-gun | Crocidura lasiura | 31.401 |
Other tissue samples analyzed from the individual with the lowest Ct value (#158) | |||
#158 lung | Jeollanam-do Goheung-gun | Crocidura shantungensis | N.D. |
#158 heart | N.D. | ||
#158 liver | 32.22 | ||
#158 spleen | 31.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, G.; Choi, C.-H.; Lee, M.; Lee, H.S.; Kim, S.Y.; Lee, S.H.; Lee, H.I.; Chung, Y.-S. Discovery of a Novel Parahenipavirus, Parahenipavirus_GH, in Shrews in South Korea, 2022. Viruses 2025, 17, 867. https://doi.org/10.3390/v17060867
Sim G, Choi C-H, Lee M, Lee HS, Kim SY, Lee SH, Lee HI, Chung Y-S. Discovery of a Novel Parahenipavirus, Parahenipavirus_GH, in Shrews in South Korea, 2022. Viruses. 2025; 17(6):867. https://doi.org/10.3390/v17060867
Chicago/Turabian StyleSim, Gyuri, Chi-Hwan Choi, Minji Lee, Hak Seon Lee, Seong Yoon Kim, Seung Hun Lee, Hee Il Lee, and Yoon-Seok Chung. 2025. "Discovery of a Novel Parahenipavirus, Parahenipavirus_GH, in Shrews in South Korea, 2022" Viruses 17, no. 6: 867. https://doi.org/10.3390/v17060867
APA StyleSim, G., Choi, C.-H., Lee, M., Lee, H. S., Kim, S. Y., Lee, S. H., Lee, H. I., & Chung, Y.-S. (2025). Discovery of a Novel Parahenipavirus, Parahenipavirus_GH, in Shrews in South Korea, 2022. Viruses, 17(6), 867. https://doi.org/10.3390/v17060867