Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”
Abstract
1. Introduction
2. Methods
3. Definitions
4. Statistical Analysis
5. Results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, E. FDA Grants Full Approval to Paxlovid, COVID-19 Antiviral Treatment. JAMA 2023, 329, 2118. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral nirmatrelvir for high-risk, non-hospitalized adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Paxlovid Prescribing Concerns for People 65+ Revealed in Medscape Survey. Available online: https://www.medscape.com/viewarticle/987121?form=fpf (accessed on 27 July 2024).
- Rubin, R. From Positive to Negative to Positive Again-The Mystery of Why COVID-19 Rebounds in Some Patients Who Take Paxlovid. JAMA 2022, 327, 2380–2382. [Google Scholar] [CrossRef] [PubMed]
- Alshanqeeti, S.; Bhargava, A. COVID-19 Rebound After Paxlovid Treatment: A Case Series and Review of Literature. Cureus 2022, 14, e26239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- HAN Archive-00467. COVID-19 Rebound After Paxlovid Treatment. [May 2022]. 2022. Available online: https://emergency.cdc.gov/han/2022/han00467.asp (accessed on 28 July 2024).
- Ranganath, N.; O’horo, J.C.; Challener, D.W.; Tulledge-Scheitel, S.M.; Pike, M.L.; O’brien, M.; Razonable, R.R.; Shah, A. Rebound Phenomenon After Nirmatrelvir/Ritonavir Treatment of Coronavirus Disease 2019 (COVID-19) in High-Risk Persons. Clin. Infect. Dis. 2023, 76, e537–e539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, C.K.H.; Lau, K.T.K.; Au, I.C.H.; Lau, E.H.Y.; Poon, L.L.M.; Hung, I.F.N.; Cowling, B.J.; Leung, G.M. Viral burden rebound in hospitalized patients with COVID-19 receiving oral antivirals in Hong Kong: A population-wide retrospective cohort study. Lancet Infect. Dis. 2023, 23, 683–695, Erratum in Lancet Infect. Dis. 2024, 24, e83. https://doi.org/10.1016/S1473-3099(23)00754-5. PMID: 36796397; PMCID: PMC9949892. [Google Scholar] [CrossRef]
- Anderson, A.S.; Caubel, P.; Rusnak, J.M. EPIC-HR Trial Investigators. Nirmatrelvir-Ritonavir and Viral Load Rebound in COVID-19. N. Engl. J. Med. 2022, 387, 1047–1049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pandit, J.A.; Radin, J.M.; Chiang, D.C.; Spencer, E.G.; Pawelek, J.B.; Diwan, M.; Roumani, L.; Mina, M.J. The Coronavirus Disease 2019 Rebound Study: A Prospective Cohort Study to Evaluate Viral and Symptom Rebound Differences in Participants Treated with Nirmatrelvir Plus Ritonavir Versus Untreated Controls. Clin. Infect. Dis. 2023, 77, 25–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.-Y.; Wang, J.-T.; Chang, S.-Y.; Hung, C.-C.; Fang, C.-T.; Cheng, A.; Liu, W.-D.; Huang, Y.-S.; Lin, K.-Y.; Sun, H.-Y.; et al. Factors associated with viral rebound among COVID-19 patients receiving oral antivirals. J. Formos. Med. Assoc. 2023, 122, 766–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Epling, B.P.; Rocco, J.M.; Boswell, K.L.; Laidlaw, E.; Galindo, F.; Kellogg, A.; Das, S.; Roder, A.; Ghedin, E.; Kreitman, A.; et al. Clinical, virologic, and immunologic evaluation of symptomatic coronavirus disease 2019 rebound following nirmatrelvir/ritonavir treatment. Clin. Infect. Dis. 2023, 76, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, G.E.; Boucau, J.; Uddin, R.; Marino, C.; Liew, M.Y.; Barry, M.; Choudhary, M.C.; Gilbert, R.F.; Reynolds, Z.; Li, Y.; et al. SARS-CoV-2 virologic rebound with nirmatrelvir-ritonavir therapy: An observational study. Ann. Intern. Med. 2023, 176, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Tadmor, T.; Melamed, G.; Patalon, T.; Alapi, H.; Rokach, L. Rebound of COVID-19 infection in patients with chronic lymphocytic leukemia treated for SARS-CoV-2 with nirmatrelvir/ritonavir or Molnupiravir. Leuk. Lymphoma 2023, 64, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Lambrou, A.; Patel, P. SARS-CoV-2 Rebound with and Without Use of COVID-19 Oral Antivirals. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1357–1364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carlin, A.F.; Clark, A.E.; Chaillon, A.; Garretson, A.F.; Bray, W.; Porrachia, M.; Santos, A.T.; Rana, T.M.; Smith, D.M. Virologic and Immunologic Characterization of Coronavirus Disease 2019 Recrudescence After Nirmatrelvir/Ritonavir Treatment. Clin. Infect. Dis. 2023, 76, e530–e532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Fukushima, E.A.; Levine, M.; Zhao, W.; Tanveer, F.; Szpunar, S.M.; Saravolatz, L. Predictors for Severe COVID-19 Infection. Clin. Infect. Dis. 2020, 71, 1962–1968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Szpunar, S.M.; Sharma, M.; Fukushima, E.A.; Hoshi, S.; Levine, M.; Gandhi, N.; Zhao, W.; Michael, S.; Tanveer, F.; et al. Clinical Features and Risk Factors for In-Hospital Mortality from COVID-19 Infection at a Tertiary Care Medical Center, at the Onset of the US COVID-19 Pandemic. J. Intensive Care Med. 2021, 36, 711–718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bucholc, M.; Bradley, D.; Bennett, D.; Patterson, L.; Spiers, R.; Gibson, D.; Van Woerden, H.; Bjourson, A.J. Identifying pre-existing conditions and multimorbidity patterns associated with in-hospital mortality in patients with COVID-19. Sci. Rep. 2022, 12, 17313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Sharma, M.; Akagi, E.; Szpunar, S.M.; Saravolatz, L. Predictors for in-hospital mortality from coronavirus disease 2019 (COVID-19) infection among adults aged 18-65 years. Infect. Control Hosp. Epidemiol. 2021, 42, 772–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Sharma, M.; Riederer, K.; Fukushima, E.A.; Szpunar, S.M.; Saravolatz, L. Risk Factors for In-hospital Mortality from Coronavirus Disease 2019 Infection Among Black Patients-An Urban Center Experience. Clin. Infect. Dis. 2021, 73, e4005–e4011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, D.-Y.; Fadel, F.A.; Huang, S.; Milinovich, A.T.; Sacha, G.L.; Bartley, P.; Duggal, A.; Wang, X. Nirmatrelvir or Molnupiravir Use and Severe Outcomes from Omicron Infections. JAMA Netw. Open 2023, 6, e2335077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calver, J.F.; Fabbri, L.; May, J.; Jenkins, R.G. COVID-19 in Patients with Chronic Lung Disease. Clin. Chest Med. 2023, 44, 385–393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akenroye, A.T.; Wood, R.; Keet, C. Asthma, biologics, corticosteroids, and coronavirus disease 2019. Ann. Allergy Asthma Immunol. 2020, 125, 12–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Critchley, J.A.; Carey, I.M.; Harris, T.; DeWilde, S.; Hosking, F.J.; Cook, D.G. Glycemic Control and Risk of Infections Among People with Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care 2018, 41, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kulcsar, K.A.; Coleman, C.M.; Beck, S.E.; Frieman, M.B. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 2019, 4, e131774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Berger, N.A.; Davis, P.B.; Kaelber, D.C.; Volkow, N.D.; Xu, R. COVID-19 rebound after Paxlovid and Molnupiravir during January–June 2022. medRxiv 2022, preprint. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, C.; Qian, Y. The gender peak effect: Women are most vulnerable to infections during COVID-19 peaks. Front. Public Health 2022, 10, 937179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, M.; Bhargava, A.; Szpunar, S.M.; Johnson, L.B.; Saravolatz, L.D. Do risk factors at the time of hospital admission differ by sex for in-hospital mortality from coronavirus disease 2019 (COVID-19)? Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, K.L.; Fink, A.L.; Plebanski, M.; Klein, S.L. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu. Rev. Cell Dev. Biol. 2017, 33, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-J.; Tan, L.; Ren, L.; Shao, Y.; Tao, W.; Wang, Y. COVID-19 Risk Appears to Vary Across Different Alcoholic Beverages. Front. Nutr. 2022, 8, 772700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radonjić, S.; Maraš, V.; Raičević, J.; Košmerl, T. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules 2020, 25, 4960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamer, M.; Kivimäki, M.; Gale, C.R.; Batty, G.D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav. Immun. 2020, 87, 184–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meyerholz, D.K.; Edsen-Moore, M.; McGill, J.; Coleman, R.A.; Cook, R.T.; Legge, K.L. Chronic alcohol consumption increases the severity of murine influenza virus infections. J. Immunol. 2008, 181, 641–648. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarkar, D.; Jung, M.K.; Wang, H.J. Alcohol and the Immune System. Alcohol. Res. 2015, 37, 153–155. [Google Scholar] [PubMed Central]
- Barr, T.; Helms, C.; Grant, K.; Messaoudi, I. Opposing effects of alcohol on the immune system. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 65, 242–251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristics | No ED/H Visit (n = 346) (%) | ED/H Visit (n = 25) (%) | p Value |
---|---|---|---|
Age in years (mean ± SD) | 59.1 ± 13.6 | 62.2 ± 15.6 | 0.30 |
Sex | 0.08 | ||
Male | 128 (37.2) | 5 (20.0) | |
Female | 216 (62.8) | 20 (80.0) | |
Race | 0.7 | ||
Blacks | 58 (17.3) | 5 (7.9) | |
Whites | 263 (78.3) | 18 (72.0) | |
Others | 15 (4.2) | 2 (8.0) | |
Body mass index (mean ± SD) | 31.4 ± 7.82 | 30.3 ± 7.8 | 0.52 |
Current smoking | 37 (10.8) | 6 (24.0) | 0.05 |
Alcohol use | 217 (63.6) | 10 (40.0) | 0.02 |
Substance abuse | 23 (6.7) | 2 (8.0) | 0.80 |
Vaccination | 288 (84.2) | 23 (92.0) | 0.30 |
Myocardial infarction | 32 (9.3) | 7 (28.0) | 0.003 |
Congestive heart failure | 8 (2.3) | 3 (12.0) | 0.006 |
Hypertension | 184 (53.3) | 14 (56.0) | 0.8 |
Asthma | 60 (17.4) | 6 (24.0) | 0.41 |
COPD | 89 (25.8) | 11 (44.0) | 0.05 |
CLD except asthma and COPD | 15 (4.3) | 5 (20.0) | <0.001 |
Connective tissue diseases | 11 (3.2) | 1 (4.0) | 0.83 |
DM without complications | 51 (14.8) | 5 (20.0) | 0.48 |
DM with complications | 14 (4.1) | 6 (24.0) | <0.001 |
Cerebrovascular disease | 18 (5.2) | 1 (4.0) | 0.79 |
Metastatic solid tumor | 1 (0.3) | 1 (4.0) | 0.02 |
Immunosuppressed status | 15 (4.3) | 1 (4.0) | 0.93 |
Variable | OR (95% CI) | p Value |
---|---|---|
Female sex | 4.6 (1.4–15.3) | 0.013 |
Alcohol use | 0.4 (0.2–0.9) | 0.038 |
Myocardial Infarction | 4.1 (1.4–11.8) | 0.011 |
DM with complication | 6.9 (2.0–23.3) | 0.002 |
CLD except asthma and COPD | 3.9 (1.1–13.5) | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhargava, A.; Szpunar, S.; Sharma, M.; Saravolatz, L. Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”. Viruses 2025, 17, 782. https://doi.org/10.3390/v17060782
Bhargava A, Szpunar S, Sharma M, Saravolatz L. Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”. Viruses. 2025; 17(6):782. https://doi.org/10.3390/v17060782
Chicago/Turabian StyleBhargava, Ashish, Susan Szpunar, Mamta Sharma, and Louis Saravolatz. 2025. "Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”" Viruses 17, no. 6: 782. https://doi.org/10.3390/v17060782
APA StyleBhargava, A., Szpunar, S., Sharma, M., & Saravolatz, L. (2025). Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”. Viruses, 17(6), 782. https://doi.org/10.3390/v17060782