Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”
Abstract
:1. Introduction
2. Methods
3. Definitions
4. Statistical Analysis
5. Results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, E. FDA Grants Full Approval to Paxlovid, COVID-19 Antiviral Treatment. JAMA 2023, 329, 2118. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral nirmatrelvir for high-risk, non-hospitalized adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Paxlovid Prescribing Concerns for People 65+ Revealed in Medscape Survey. Available online: https://www.medscape.com/viewarticle/987121?form=fpf (accessed on 27 July 2024).
- Rubin, R. From Positive to Negative to Positive Again-The Mystery of Why COVID-19 Rebounds in Some Patients Who Take Paxlovid. JAMA 2022, 327, 2380–2382. [Google Scholar] [CrossRef] [PubMed]
- Alshanqeeti, S.; Bhargava, A. COVID-19 Rebound After Paxlovid Treatment: A Case Series and Review of Literature. Cureus 2022, 14, e26239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- HAN Archive-00467. COVID-19 Rebound After Paxlovid Treatment. [May 2022]. 2022. Available online: https://emergency.cdc.gov/han/2022/han00467.asp (accessed on 28 July 2024).
- Ranganath, N.; O’horo, J.C.; Challener, D.W.; Tulledge-Scheitel, S.M.; Pike, M.L.; O’brien, M.; Razonable, R.R.; Shah, A. Rebound Phenomenon After Nirmatrelvir/Ritonavir Treatment of Coronavirus Disease 2019 (COVID-19) in High-Risk Persons. Clin. Infect. Dis. 2023, 76, e537–e539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, C.K.H.; Lau, K.T.K.; Au, I.C.H.; Lau, E.H.Y.; Poon, L.L.M.; Hung, I.F.N.; Cowling, B.J.; Leung, G.M. Viral burden rebound in hospitalized patients with COVID-19 receiving oral antivirals in Hong Kong: A population-wide retrospective cohort study. Lancet Infect. Dis. 2023, 23, 683–695, Erratum in Lancet Infect. Dis. 2024, 24, e83. https://doi.org/10.1016/S1473-3099(23)00754-5. PMID: 36796397; PMCID: PMC9949892. [Google Scholar] [CrossRef]
- Anderson, A.S.; Caubel, P.; Rusnak, J.M. EPIC-HR Trial Investigators. Nirmatrelvir-Ritonavir and Viral Load Rebound in COVID-19. N. Engl. J. Med. 2022, 387, 1047–1049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pandit, J.A.; Radin, J.M.; Chiang, D.C.; Spencer, E.G.; Pawelek, J.B.; Diwan, M.; Roumani, L.; Mina, M.J. The Coronavirus Disease 2019 Rebound Study: A Prospective Cohort Study to Evaluate Viral and Symptom Rebound Differences in Participants Treated with Nirmatrelvir Plus Ritonavir Versus Untreated Controls. Clin. Infect. Dis. 2023, 77, 25–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.-Y.; Wang, J.-T.; Chang, S.-Y.; Hung, C.-C.; Fang, C.-T.; Cheng, A.; Liu, W.-D.; Huang, Y.-S.; Lin, K.-Y.; Sun, H.-Y.; et al. Factors associated with viral rebound among COVID-19 patients receiving oral antivirals. J. Formos. Med. Assoc. 2023, 122, 766–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Epling, B.P.; Rocco, J.M.; Boswell, K.L.; Laidlaw, E.; Galindo, F.; Kellogg, A.; Das, S.; Roder, A.; Ghedin, E.; Kreitman, A.; et al. Clinical, virologic, and immunologic evaluation of symptomatic coronavirus disease 2019 rebound following nirmatrelvir/ritonavir treatment. Clin. Infect. Dis. 2023, 76, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, G.E.; Boucau, J.; Uddin, R.; Marino, C.; Liew, M.Y.; Barry, M.; Choudhary, M.C.; Gilbert, R.F.; Reynolds, Z.; Li, Y.; et al. SARS-CoV-2 virologic rebound with nirmatrelvir-ritonavir therapy: An observational study. Ann. Intern. Med. 2023, 176, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Tadmor, T.; Melamed, G.; Patalon, T.; Alapi, H.; Rokach, L. Rebound of COVID-19 infection in patients with chronic lymphocytic leukemia treated for SARS-CoV-2 with nirmatrelvir/ritonavir or Molnupiravir. Leuk. Lymphoma 2023, 64, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Lambrou, A.; Patel, P. SARS-CoV-2 Rebound with and Without Use of COVID-19 Oral Antivirals. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1357–1364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carlin, A.F.; Clark, A.E.; Chaillon, A.; Garretson, A.F.; Bray, W.; Porrachia, M.; Santos, A.T.; Rana, T.M.; Smith, D.M. Virologic and Immunologic Characterization of Coronavirus Disease 2019 Recrudescence After Nirmatrelvir/Ritonavir Treatment. Clin. Infect. Dis. 2023, 76, e530–e532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Fukushima, E.A.; Levine, M.; Zhao, W.; Tanveer, F.; Szpunar, S.M.; Saravolatz, L. Predictors for Severe COVID-19 Infection. Clin. Infect. Dis. 2020, 71, 1962–1968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Szpunar, S.M.; Sharma, M.; Fukushima, E.A.; Hoshi, S.; Levine, M.; Gandhi, N.; Zhao, W.; Michael, S.; Tanveer, F.; et al. Clinical Features and Risk Factors for In-Hospital Mortality from COVID-19 Infection at a Tertiary Care Medical Center, at the Onset of the US COVID-19 Pandemic. J. Intensive Care Med. 2021, 36, 711–718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bucholc, M.; Bradley, D.; Bennett, D.; Patterson, L.; Spiers, R.; Gibson, D.; Van Woerden, H.; Bjourson, A.J. Identifying pre-existing conditions and multimorbidity patterns associated with in-hospital mortality in patients with COVID-19. Sci. Rep. 2022, 12, 17313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Sharma, M.; Akagi, E.; Szpunar, S.M.; Saravolatz, L. Predictors for in-hospital mortality from coronavirus disease 2019 (COVID-19) infection among adults aged 18-65 years. Infect. Control Hosp. Epidemiol. 2021, 42, 772–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, A.; Sharma, M.; Riederer, K.; Fukushima, E.A.; Szpunar, S.M.; Saravolatz, L. Risk Factors for In-hospital Mortality from Coronavirus Disease 2019 Infection Among Black Patients-An Urban Center Experience. Clin. Infect. Dis. 2021, 73, e4005–e4011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, D.-Y.; Fadel, F.A.; Huang, S.; Milinovich, A.T.; Sacha, G.L.; Bartley, P.; Duggal, A.; Wang, X. Nirmatrelvir or Molnupiravir Use and Severe Outcomes from Omicron Infections. JAMA Netw. Open 2023, 6, e2335077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calver, J.F.; Fabbri, L.; May, J.; Jenkins, R.G. COVID-19 in Patients with Chronic Lung Disease. Clin. Chest Med. 2023, 44, 385–393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akenroye, A.T.; Wood, R.; Keet, C. Asthma, biologics, corticosteroids, and coronavirus disease 2019. Ann. Allergy Asthma Immunol. 2020, 125, 12–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Critchley, J.A.; Carey, I.M.; Harris, T.; DeWilde, S.; Hosking, F.J.; Cook, D.G. Glycemic Control and Risk of Infections Among People with Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care 2018, 41, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kulcsar, K.A.; Coleman, C.M.; Beck, S.E.; Frieman, M.B. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 2019, 4, e131774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Berger, N.A.; Davis, P.B.; Kaelber, D.C.; Volkow, N.D.; Xu, R. COVID-19 rebound after Paxlovid and Molnupiravir during January–June 2022. medRxiv 2022, preprint. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, C.; Qian, Y. The gender peak effect: Women are most vulnerable to infections during COVID-19 peaks. Front. Public Health 2022, 10, 937179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, M.; Bhargava, A.; Szpunar, S.M.; Johnson, L.B.; Saravolatz, L.D. Do risk factors at the time of hospital admission differ by sex for in-hospital mortality from coronavirus disease 2019 (COVID-19)? Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, K.L.; Fink, A.L.; Plebanski, M.; Klein, S.L. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu. Rev. Cell Dev. Biol. 2017, 33, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-J.; Tan, L.; Ren, L.; Shao, Y.; Tao, W.; Wang, Y. COVID-19 Risk Appears to Vary Across Different Alcoholic Beverages. Front. Nutr. 2022, 8, 772700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radonjić, S.; Maraš, V.; Raičević, J.; Košmerl, T. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules 2020, 25, 4960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamer, M.; Kivimäki, M.; Gale, C.R.; Batty, G.D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav. Immun. 2020, 87, 184–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meyerholz, D.K.; Edsen-Moore, M.; McGill, J.; Coleman, R.A.; Cook, R.T.; Legge, K.L. Chronic alcohol consumption increases the severity of murine influenza virus infections. J. Immunol. 2008, 181, 641–648. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarkar, D.; Jung, M.K.; Wang, H.J. Alcohol and the Immune System. Alcohol. Res. 2015, 37, 153–155. [Google Scholar] [PubMed Central]
- Barr, T.; Helms, C.; Grant, K.; Messaoudi, I. Opposing effects of alcohol on the immune system. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 65, 242–251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristics | No ED/H Visit (n = 346) (%) | ED/H Visit (n = 25) (%) | p Value |
---|---|---|---|
Age in years (mean ± SD) | 59.1 ± 13.6 | 62.2 ± 15.6 | 0.30 |
Sex | 0.08 | ||
Male | 128 (37.2) | 5 (20.0) | |
Female | 216 (62.8) | 20 (80.0) | |
Race | 0.7 | ||
Blacks | 58 (17.3) | 5 (7.9) | |
Whites | 263 (78.3) | 18 (72.0) | |
Others | 15 (4.2) | 2 (8.0) | |
Body mass index (mean ± SD) | 31.4 ± 7.82 | 30.3 ± 7.8 | 0.52 |
Current smoking | 37 (10.8) | 6 (24.0) | 0.05 |
Alcohol use | 217 (63.6) | 10 (40.0) | 0.02 |
Substance abuse | 23 (6.7) | 2 (8.0) | 0.80 |
Vaccination | 288 (84.2) | 23 (92.0) | 0.30 |
Myocardial infarction | 32 (9.3) | 7 (28.0) | 0.003 |
Congestive heart failure | 8 (2.3) | 3 (12.0) | 0.006 |
Hypertension | 184 (53.3) | 14 (56.0) | 0.8 |
Asthma | 60 (17.4) | 6 (24.0) | 0.41 |
COPD | 89 (25.8) | 11 (44.0) | 0.05 |
CLD except asthma and COPD | 15 (4.3) | 5 (20.0) | <0.001 |
Connective tissue diseases | 11 (3.2) | 1 (4.0) | 0.83 |
DM without complications | 51 (14.8) | 5 (20.0) | 0.48 |
DM with complications | 14 (4.1) | 6 (24.0) | <0.001 |
Cerebrovascular disease | 18 (5.2) | 1 (4.0) | 0.79 |
Metastatic solid tumor | 1 (0.3) | 1 (4.0) | 0.02 |
Immunosuppressed status | 15 (4.3) | 1 (4.0) | 0.93 |
Variable | OR (95% CI) | p Value |
---|---|---|
Female sex | 4.6 (1.4–15.3) | 0.013 |
Alcohol use | 0.4 (0.2–0.9) | 0.038 |
Myocardial Infarction | 4.1 (1.4–11.8) | 0.011 |
DM with complication | 6.9 (2.0–23.3) | 0.002 |
CLD except asthma and COPD | 3.9 (1.1–13.5) | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhargava, A.; Szpunar, S.; Sharma, M.; Saravolatz, L. Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”. Viruses 2025, 17, 782. https://doi.org/10.3390/v17060782
Bhargava A, Szpunar S, Sharma M, Saravolatz L. Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”. Viruses. 2025; 17(6):782. https://doi.org/10.3390/v17060782
Chicago/Turabian StyleBhargava, Ashish, Susan Szpunar, Mamta Sharma, and Louis Saravolatz. 2025. "Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”" Viruses 17, no. 6: 782. https://doi.org/10.3390/v17060782
APA StyleBhargava, A., Szpunar, S., Sharma, M., & Saravolatz, L. (2025). Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”. Viruses, 17(6), 782. https://doi.org/10.3390/v17060782