Epidemiological and Molecular Surveillance of Aichi Virus A at Different Stages of Sewage Treatment: A One-Year Study in the Southeast of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area and Sampling
2.2. RNA Extraction and cDNA Synthesis
2.3. Construction of the Control Plasmid
2.4. Nested PCR
2.5. Sanger Sequencing and Phylogenetic Analysis
2.6. Infectivity Assay
2.7. Quantitative PCR (qPCR)
2.8. qPCR Inhibition
2.9. Data Analysis
3. Results
3.1. Detection of AiV at Different Stages of Sewage Treatment During the Seasons of the Year and Acute Diarrheal Disease (ADD) Reported Cases in the City
3.2. Sequencing and Phylogenetic Analysis
3.3. Performance and Inhibition Test of qPCR Assay
3.4. Quantification of AiV-A at Different Stages of Sewage Treatment
3.4.1. Correlation with ADD Cases and Seasonal Variation
3.4.2. Sewage Parameters
3.5. Infectivity Assay of AiV at Different Stages of Sewage Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SeMAE | Autonomous Municipal Water and Sewage Service |
AiV | Aichi virus |
STP | Sewage treatment plants |
PCR | Polymerase chain reaction |
RS | Raw Sewage |
PABT | Post-anaerobic biological treatment |
PCT | Post-chemical treatment |
ADD | Acute diarrheal diseases |
COD | Chemical oxygen demand |
References
- Hassard, F.; Bajón-Fernández, Y.; Castro-Gutierrez, V. Wastewater-based epidemiology for surveillance of infectious diseases in healthcare settings. Curr. Opin. Infect. Dis. 2023, 36, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cai, K.; Zhang, R.; He, X.; Shen, X.; Liu, J.; Xu, J.; Qiu, F.; Lei, W.; Wang, J.; et al. Novel One-Step Single-Tube Nested Quantitative Real-Time PCR Assay for Highly Sensitive Detection of SARS-CoV-2. Anal. Chem. 2020, 92, 9399–9404. [Google Scholar] [CrossRef] [PubMed]
- Waqas, S.; Bilad, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Indra Mahlia, T.M.; Khan, A.L.; Aslam, M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. J. Environ. Manag. 2020, 268, 110718. [Google Scholar] [CrossRef]
- SEMAE Rio Preto. Tratamento de Esgoto. 2024. Available online: https://semae.riopreto.sp.gov.br/tratamento-de-esgoto.aspx (accessed on 4 January 2025).
- Fu, J.; Chiang, E.L.C.; Medriano, C.A.D.; Li, L.; Bae, S. Rapid quantification of fecal indicator bacteria in water using the most probable number—Loop-mediated isothermal amplification (MPN LAMP) approach on a polymethyl methacrylate (PMMA) microchip. Water Res. 2021, 199, 117172. [Google Scholar] [CrossRef]
- Lanrewaju, A.A.; Enitan-Folami, A.M.; Sabiu, S.; Edokpayi, J.N.; Swalaha, F.M. Global public health implications of human exposure to viral contaminated water. Front. Microbiol. 2022, 13, 981896. [Google Scholar] [CrossRef]
- Corpuz, M.V.A.; Buonerba, A.; Vigliotta, G.; Zarra, T.; Ballesteros, F., Jr.; Campiglia, P.; Belgiorno, V.; Korshin, G.; Naddeo, V. Viruses in wastewater: Occurrence, abundance and detection methods. Sci. Total Environ. 2020, 745, 140910. [Google Scholar] [CrossRef]
- Gholipour, S.; Ghalhari, M.R.; Nikaeen, M.; Rabbani, D.; Pakzad, P.; Miranzadeh, M.B. Occurrence of viruses in sewage sludge: A systematic review. Sci. Total Environ. 2022, 824, 153886. [Google Scholar] [CrossRef]
- Lahrich, S.; Laghrib, F.; Farahi, A.; Bakasse, M.; Saqrane, S.; El Mhammedi, M.A. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. Sci. Total Environ. 2021, 751, 142325. [Google Scholar] [CrossRef]
- Tran, A.; Talmud, D.; Lejeune, B.; Jovenin, N.; Renois, F.; Payan, C.; Leveque, N.; Andreoletti, L. Prevalence of rotavirus, adenovirus, norovirus, and astrovirus infections and coinfections among hospitalized children in northern France. J. Clin. Microbiol. 2010, 48, 1943–1946. [Google Scholar] [CrossRef]
- Rivadulla, E.; Romalde, J.L. A Comprehensive Review on Human Aichi Virus. Virol. Sin. 2020, 35, 501–516. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses: ICTV. 2023. Available online: https://ictv.global/taxonomy/visual-browser (accessed on 12 February 2025).
- Portes, S.A.R.; Volotao, E.M.; Rose, T.L.; Rocha, M.S.; Xavier, M.P.T.P.; de Assis, R.M.; Fialho, A.M.; Rocha, M.S.; Miagostovich, M.P.; Leite, J.P.G.; et al. Aichi Virus Positivity in HIV-1 Seropositive Children Hospitalized with Diarrheal Disease. Curr. HIV Res. 2015, 13, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Kebe, O.; Fernandez-Garcia, M.D.; Fall, A.; Dia, H.; Bidalot, M.; Ambert-Balay, K.; Ndiaye, K. Prevalence and Genetic Diversity of Aichi Virus 1 from Urban Wastewater in Senegal. Intervirology 2021, 64, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Silva, P.A.; Hauroeder, B.; Diedrich, S.; Cardoso, D.D.; Schreier, E. Molecular characterization of the first Aichi viruses isolated in Europe and in South America. Arch. Virol. 2006, 151, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Haramoto, E.; Phanuwan, C.; Katayama, H. Prevalence and genetic diversity of Aichi viruses in wastewater and river water in Japan. Appl. Environ. Microbiol. 2011, 77, 2184–2187. [Google Scholar] [CrossRef]
- Lodder, W.J.; Rutjes, S.A.; Takumi, K.; Husman, A.M.R. Aichi Virus in Sewage and Surface Water, the Netherlands. Emerg. Infect. Dis. 2013, 19, 1222–1230. [Google Scholar] [CrossRef]
- Kitajima, M.; Iker, B.C.; Pepper, I.L.; Gerba, C.P. Relative abundance and treatment reduction of viruses during wastewater treatment processes--identification of potential viral indicators. Sci. Total Environ. 2014, 488–489, 290–296. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, S.; Shindo, J.; Sherchand, J.B.; Haramoto, E. Virological Quality of Irrigation Water Sources and Pepper Mild Mottle Virus and Tobacco Mosaic Virus as Index of Pathogenic Virus Contamination Level. Food Environ. Virol. 2018, 10, 107–120. [Google Scholar] [CrossRef]
- Azhdar, Z.; Ghaderi, M.; Mousavi-Nasab, S.D. Optimization of RT-qPCR for Detection of Aichi Virus in Sewage and River Water Samples in Karaj, Iran. Arch. Iran. Med. 2019, 22, 242–246. [Google Scholar]
- Wang, H.; Neyvaldt, J.; Enache, L.; Sikora, P.; Mattsson, A.; Johansson, A.; Lindh, M.; Bergstedt, O.; Norder, H. Variations among Viruses in Influent Water and Effluent Water at a Wastewater Plant over One Year as Assessed by Quantitative PCR and Metagenomics. Appl. Environ. Microbiol. 2020, 86, e02073-20. [Google Scholar] [CrossRef]
- do Nascimento, M.C.A.; Smith, W.J.M.; Liu, Y.; Simpson, S.L.; Bivins, A.; Rahal, P.; Ahmed, W. Development and comparative assessment of RT-qPCR and duplex RT-LAMP assays for the monitoring of Aichi virus A (AiV-A) in untreated wastewater samples. Sci. Total Environ. 2024, 952, 175440. [Google Scholar] [CrossRef]
- Alcalá, A.; Vizzi, E.; Rodríguez-Díaz, J.; Zambrano, J.L.; Betancourt, W.; Liprandi, F. Molecular detection and characterization of Aichi viruses in sewage-polluted waters of Venezuela. Appl. Environ. Microbiol. 2010, 76, 4113–4115. [Google Scholar] [CrossRef] [PubMed]
- Robalo, A.; Brandão, J.; Shibata, T.; Solo-Gabriele, H.; Santos, R.; Monteiro, S. Detection of enteric viruses and SARS-CoV-2 in beach sand. Sci. Total Environ. 2023, 901, 165836. [Google Scholar] [CrossRef] [PubMed]
- Chacón, L.; Morales, E.; Valiente, C.; Reyes, L.; Barrantes, K. Wastewater-Based Epidemiology of Enteric Viruses and Surveillance of Acute Gastrointestinal Illness Outbreaks in a Resource-Limited Region. Am. J. Trop. Med. Hyg. 2021, 105, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.C.; Thompson, J.R.; Filho, C.R.M.; Street, R.; Li, X. A world of wastewater-based epidemiology. Nat. Water 2023, 1, 408–415. [Google Scholar] [CrossRef]
- Pellegrinelli, L.; Galli, C.; Binda, S.; Primache, V.; Tagliacarne, C.; Pizza, F.; Mazzini, R.; Pariani, E.; Romanò, L. Molecular Characterization and Phylogenetic Analysis of Enteroviruses and Hepatitis A Viruses in Sewage Samples, Northern Italy, 2016. Food Environ. Virol. 2019, 11, 393–399. [Google Scholar] [CrossRef]
- Bowes, D.A.; Driver, E.M.; Choi, P.M.; Barcelo, D.; Beamer, P.I. Wastewater-based epidemiology to assess environmentally influenced disease. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 387–388. [Google Scholar] [CrossRef]
- Instituto Trata Brasil (ITB). Ranking do Saneamento 2023. 2023. Available online: https://tratabrasil.org.br/ranking-do-saneamento-2023/ (accessed on 24 July 2024).
- Instituto Trata Brasil (ITB). Ranking do Saneamento 2024. 2024. Available online: https://tratabrasil.org.br/ranking-do-saneamento-2024/ (accessed on 24 July 2024).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Available online: https://www.ibge.gov.br/cidades-e-estados/sp/sao-jose-do-rio-preto.html (accessed on 24 July 2024).
- Clima Today. São José do Rio Preto, São Paulo Data. Available online: https://clima.today/BR/SP/Sao-Jose-do-Rio-Preto/ (accessed on 9 September 2024).
- Girardi, V.; Demoliner, M.; Rigotto, C.; Schneider, V.E.; Paesi, S.; Spilki, F.R. Assessment of diversity of adenovirus DNA polymerase gene in recreational waters facilitated by ultracentrifugal concentration. J. Water Health 2018, 16, 102–111. [Google Scholar] [CrossRef]
- Haugland, R.A.; Siefring, S.C.; Wymer, L.J.; Brenner, K.P.; Dufour, A.P. Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Res. 2005, 39, 559–568. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Staley, C.; Gordon, K.V.; Schoen, M.E.; Harwood, V.J. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters. Appl. Environ. Microbiol. 2012, 78, 7317–7326. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, M.; Keely, S.P.; Jahne, M.; Wheaton, E.; Hart, C.; Smith, B.; Garland, J.; Varughese, E.A.; Braam, A.; Wiechman, B.; et al. SARS-CoV-2 monitoring at three sewersheds of different scales and complexity demonstrates distinctive relationships between wastewater measurements and COVID-19 case data. Sci. Total Environ. 2022, 816, 151534. [Google Scholar] [CrossRef]
- Ministério da Saúde. Monitoramento das Doenças Diarreicas Agudas (DDA). Available online: https://public.tableau.com/app/profile/dda.brasil/viz/MonitoramentodasDDA/1-MonitoramentoBrasil2023 (accessed on 16 July 2023).
- Helsel, D.R. Nondetects and Data Analysis: Statistics for Censored Environmental Data; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- dos Santos, M.C.; Silva, A.C.C.; Teixeira, C.D.R.; Prazeres, F.P.M.; dos Santos, R.F.; Rolo, C.A.; Santos, E.S.; da Fonseca, M.S.; Valente, C.O.; Hodel, K.V.S.; et al. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024, 10, e33873. [Google Scholar] [CrossRef]
- Kitajima, M.; Rachmadi, A.T.; Iker, B.C.; Haramoto, E.; Gerba, C.P. Temporal variations in genotype distribution of human sapoviruses and Aichi virus 1 in wastewater in Southern Arizona, United States. J. Appl. Microbiol. 2018, 124, 1324–1332. [Google Scholar] [CrossRef]
- Schmitz, B.W.; Kitajima, M.; Campillo, M.E.; Gerba, C.P.; Pepper, I.L. Virus Reduction during Advanced Bardenpho and Conventional Wastewater Treatment Processes. Environ. Sci. Technol. 2016, 50, 9524–9532. [Google Scholar] [CrossRef]
- Ibrahim, C.; Hammami, S.; Mejri, S.; Mehri, I.; Pothier, P.; Hassen, A. Detection of Aichi virus genotype B in two lines of wastewater treatment processes. Microb. Pathog. 2017, 109, 305–312. [Google Scholar] [CrossRef]
- Shaheen, M.N.F.; Abd El-Daim, S.E.; Ahmed, N.I.; Elmahdy, E.M. Environmental monitoring of Aichi virus and human bocavirus in samples from wastewater treatment plant, drain, and River Nile in Egypt. J. Water Health 2020, 18, 30–37. [Google Scholar] [CrossRef]
- Shaheen, M.N.F.; Elmahdy, E.M. Seasonal Prevalence and Detection of Enteric and Respiratory Viruses in Wastewater and Hospitalized Children with Acute Gastroenteritis. Curr. Microbiol. 2024, 81, 337. [Google Scholar] [CrossRef]
- Amoah, I.D.; Abunama, T.; Awolusi, O.O.; Pillay, L.; Pillay, K.; Kumari, S.; Bux, F. Effect of selected wastewater characteristics on estimation of SARS-CoV-2 viral load in wastewater. Environ. Res. 2022, 203, 111877. [Google Scholar] [CrossRef]
- Farkas, K.; Walker, D.I.; Adriaenssens, E.M.; McDonald, J.E.; Hillary, L.S.; Malham, S.K.; Jones, D.L. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Res. 2020, 181, 115926. [Google Scholar] [CrossRef]
- Delanka-Pedige, H.M.K.; Cheng, X.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Xu, J.; Nirmalakhandan, N.; Zhang, Y. Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. Algal Res. 2020, 47, 101865. [Google Scholar] [CrossRef]
- Bertels, X.; Demeyer, P.; Van den Bogaert, S.; Boogaerts, T.; van Nuijs, A.L.N.; Delputte, P.; Lahousse, L. Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: A systematic review. Sci. Total Environ. 2022, 820, 153290. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, J.A.; Trigo-Tasende, N.; Rumbo-Feal, S.; Conde-Pérez, K.; López-Oriona, Á.; Barbeito, I.; Vaamonde, M.; Tarrío-Saavedra, J.; Reif, R.; Ladra, S.; et al. Modeling the number of people infected with SARS-COV-2 from wastewater viral load in Northwest Spain. Sci. Total Environ. 2022, 811, 152334. [Google Scholar] [CrossRef]
- Bertels, X.; Hanoteaux, S.; Janssens, R.; Maloux, H.; Verhaegen, B.; Delputte, P.; Boogaerts, T.; van Nuijs, A.L.N.; Brogna, D.; Linard, C.; et al. Time series modelling for wastewater-based epidemiology of COVID-19: A nationwide study in 40 wastewater treatment plants of Belgium, February 2021 to June 2022. Sci. Total Environ. 2023, 899, 165603. [Google Scholar] [CrossRef]
- Olds, H.T.; Corsi, S.R.; Dila, D.K.; Halmo, K.M.; Bootsma, M.J.; McLellan, S.L. High levels of sewage contamination released from urban areas after storm events: A quantitative survey with sewage specific bacterial indicators. PLoS Med. 2018, 15, e1002614. [Google Scholar] [CrossRef]
- Abdalla, K.Z.; Hammam, G. Correlation between Biochemical Oxygen Demand and Chemical Oxygen Demand for Various Wastewater Treatment Plants in Egypt to Obtain the Biodegradability Indices. Int. J. Sci. Basic Appl. Res. 2014, 13, 42–48. [Google Scholar]
- Espinosa, A.C.; Mazari-Hiriart, M.; Espinosa, R.; Maruri-Avidal, L.; Méndez, E.; Arias, C.F. Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Res. 2008, 42, 2618–2628. [Google Scholar] [CrossRef]
- Malham, S.K.; Rajko-Nenow, P.; Howlett, E.; Tuson, K.E.; Perkins, T.L.; Pallett, D.W.; Wang, H.; Jago, C.F.; Jones, D.L.; McDonald, J.E. The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters. Environ. Sci. Process. Impacts 2014, 16, 2145–2155. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Gholian-Jouybari, F.; Klemeš, J.J.; Bokhari, A.; Hajiaghaei-Keshteli, M. Sustainable and optimized values for municipal wastewater: The removal of biological oxygen demand and chemical oxygen demand by various levels of geranular activated carbon- and genetic algorithm-based simulation. J. Clean. Prod. 2023, 417, 137932. [Google Scholar] [CrossRef]
- Hassine-Zaafrane, M.; Sdiri-Loulizi, K.; Kaplon, J.; Ben Salem, I.; Pothier, P.; Aouni, M.; Ambert-Balay, K. Molecular detection of human noroviruses in influent and effluent samples from two biological sewage treatment plants in the region of Monastir, Tunisia. Food Environ. Virol. 2014, 6, 125–131. [Google Scholar] [CrossRef]
- Kitajima, M.; Gerba, C.P. Aichi virus 1: Environmental occurrence and behavior. Pathogens 2015, 4, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Reuter, G.; Boldizsár, A.; Papp, G.; Pankovics, P. Detection of Aichi virus shedding in a child with enteric and extraintestinal symptoms in Hungary. Arch. Virol. 2009, 154, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
- Sdiri-Loulizi, K.; Hassine, M.; Aouni, Z.; Gharbi-Khelifi, H.; Sakly, N.; Chouchane, S.; Guédiche, M.N.; Pothier, P.; Aouni, M.; Ambert-Balay, K. First molecular detection of Aichi virus in sewage and shellfish samples in the Monastir region of Tunisia. Arch. Virol. 2010, 155, 1509–1513. [Google Scholar] [CrossRef]
- Yip, C.C.; Lo, K.L.; Que, T.L.; Lee, R.A.; Chan, K.H.; Yuen, K.Y.; Woo, P.C.; Lau, S.K. Epidemiology of human parechovirus, Aichi virus and salivirus in fecal samples from hospitalized children with gastroenteritis in Hong Kong. Virol. J. 2014, 11, 182. [Google Scholar] [CrossRef]
- Di Martino, B.; Di Profio, F.; Ceci, C.; Di Felice, E.; Marsilio, F. Molecular detection of Aichi virus in raw sewage in Italy. Arch. Virol. 2013, 158, 2001–2005. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.; Kitajima, M. Quantification and Genotyping of Aichi Virus 1 in Water Samples in the Kathmandu Valley, Nepal. Food Environ. Virol. 2017, 9, 350–353. [Google Scholar] [CrossRef]
- Onosi, O.; Upfold, N.S.; Jukes, M.D.; Luke, G.A.; Knox, C. The First Molecular Detection of Aichi Virus 1 in Raw Sewage and Mussels Collected in South Africa. Food Environ. Virol. 2019, 11, 96–100. [Google Scholar] [CrossRef]
- Kaikkonen, S.; Räsänen, S.; Rämet, M.; Vesikari, T. Aichi virus infection in children with acute gastroenteritis in Finland. Epidemiol. Infect. 2010, 138, 1166–1171. [Google Scholar] [CrossRef]
- Han, T.H.; Park, S.H.; Hwang, E.S.; Reuter, G.; Chung, J.Y. Detection of Aichi virus in South Korea. Arch. Virol. 2014, 159, 1835–1839. [Google Scholar] [CrossRef]
- Chuchaona, W.; Khamrin, P.; Yodmeeklin, A.; Kumthip, K.; Saikruang, W.; Thongprachum, A.; Okitsu, S.; Ushijima, H.; Maneekarn, N. Detection and characterization of Aichi virus 1 in pediatric patients with diarrhea in Thailand. J. Med. Virol. 2017, 89, 234–238. [Google Scholar] [CrossRef]
- Cromeans, T.; Park, G.W.; Costantini, V.; Lee, D.; Wang, Q.; Farkas, T.; Lee, A.; Vinjé, J. Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments. Appl. Environ. Microbiol. 2014, 80, 5743–5751. [Google Scholar] [CrossRef] [PubMed]
- Torres-Franco, A.F.; Leroy-Freitas, D.; Martinez-Fraile, C.; Rodríguez, E.; García-Encina, P.A.; Muñoz, R. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems. Water Res. 2024, 248, 120834. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.T.; Swanson, J.; Newman, J.; Groppelli, E.; Stonehouse, N.J.; Tuthill, T.J. Membrane Interactions and Uncoating of Aichi Virus, a Picornavirus That Lacks a VP4. J. Virol. 2022, 96, e0008222. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, X.; Ren, J.; Kotecha, A.; Walter, T.S.; Yuan, S.; Yamashita, T.; Tuthill, T.J.; Fry, E.E.; Rao, Z.; et al. Structure of human Aichi virus and implications for receptor binding. Nat. Microbiol. 2016, 1, 16150. [Google Scholar] [CrossRef]
- Simmons, F.J.; Xagoraraki, I. Release of infectious human enteric viruses by full-scale wastewater utilities. Water Res. 2011, 45, 3590–3598. [Google Scholar] [CrossRef]
Percentiles | |||||||
---|---|---|---|---|---|---|---|
Parameters | Minimum | Maximum | Mean | SD | 25th | 50th | 75th |
Raw sewage | |||||||
AiV (log10 GC/mL) | 0.00 | 4.64 | 2.63 | 1.42 | 2.09 | 2.92 | 3.69 |
ADD cases (weekly) | 328.00 | 846.00 | 491.29 | 104.76 | 422.50 | 464.00 | 514.50 |
Average flow (L/s) a | 1036.00 | 1462.00 | 1182.08 | 76.13 | 1133.50 | 1165.50 | 1208.00 |
Total flow (m3/day) a | 88,515.00 | 124,147.00 | 102,063.52 | 6610.53 | 97,786.25 | 101,595.50 | 105,181.50 |
Sewage temperature (°C) | 22.7 | 30.5 | 26.68 | 1.95 | 25.10 | 26.90 | 28.30 |
Chemical oxygen demand (mg/L) | 456.00 | 1093.00 | 757.46 | 187.13 | 591.00 | 738.00 | 963.50 |
pH | 7.09 | 8.11 | 7.56 | 0.18 | 7.45 | 7.55 | 7.68 |
Post-anaerobic biological treatment | |||||||
AiV (log10 GC/mL) | 0.00 | 4.72 | 1.98 | 1.58 | 0.00 | 2.43 | 3.26 |
Sewage temperature (°C) | 23.10 | 30.20 | 26.99 | 1.83 | 25.50 | 27.30 | 28.30 |
Chemical oxygen demand (mg/L) | 455.0 | 10,560.00 | 2037.13 | 2481.38 | 808.50 | 1020.00 | 1673.50 |
pH | 7.07 | 7.50 | 7.29 | 0.10 | 7.22 | 7.29 | 7.37 |
Post-chemical treatment | |||||||
AiV (log10 GC/mL) | 0.00 | 2.85 | 0.39 | 0.87 | 0.00 | 0.00 | 0.00 |
Sewage temperature (°C) | 21.10 | 30.20 | 26.47 | 2.27 | 24.40 | 26.90 | 28.30 |
Chemical oxygen demand (mg/L) | 18.00 | 1121.00 | 128.90 | 188.19 | 35.50 | 50.50 | 115.25 |
pH | 6.89 | 7.80 | 7.41 | 0.19 | 7.25 | 7.45 | 7.54 |
Raw Sewage | ||||||
---|---|---|---|---|---|---|
Average Flow | Total Flow | pH | Temperature | COD | ADD Cases | |
Correlation Coefficient | 0.320 * | 0.310 * | 0.157 | 0.127 | −0.346 * | 0.342 * |
Sig. (bilateral) | 0.021 | 0.025 | 0.267 | 0.375 | 0.012 | 0.013 |
N | 52 | 52 | 52 | 52 | 52 | 52 |
Post-anaerobic biological treatment | ||||||
Average flow | Total flow | pH | Temperature | COD | ADD cases | |
Correlation Coefficient | 0.321 * | 0.133 | 0.183 | −0.050 | −0.413 ** | NP |
Sig. (bilateral) | 0.020 | 0.349 | 0.193 | 0.729 | 0.002 | NP |
N | 52 | 52 | 52 | 52 | 52 | 0 |
Post-chemical treatment | ||||||
Average flow | Total flow | pH | Temperature | COD | ADD cases | |
Correlation Coefficient | 0.121 | 0.152 | −0.271 | −0.022 | −0.089 | NP |
Sig. (bilateral) | 0.394 | 0.281 | 0.052 | 0.877 | 0.529 | NP |
N | 52 | 52 | 52 | 52 | 52 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Nascimento, M.C.A.; Rosa, C.R.; Demoliner, M.; Geraldini, D.B.; Campos, G.R.F.; Quevedo, D.M.; Miceli, R.N.; Spilki, F.R.; Araújo, J.P., Jr.; Calmon, M.F.; et al. Epidemiological and Molecular Surveillance of Aichi Virus A at Different Stages of Sewage Treatment: A One-Year Study in the Southeast of Brazil. Viruses 2025, 17, 736. https://doi.org/10.3390/v17050736
do Nascimento MCA, Rosa CR, Demoliner M, Geraldini DB, Campos GRF, Quevedo DM, Miceli RN, Spilki FR, Araújo JP Jr., Calmon MF, et al. Epidemiological and Molecular Surveillance of Aichi Virus A at Different Stages of Sewage Treatment: A One-Year Study in the Southeast of Brazil. Viruses. 2025; 17(5):736. https://doi.org/10.3390/v17050736
Chicago/Turabian Styledo Nascimento, Mariah C. A., Camila R. Rosa, Meriane Demoliner, Dayla B. Geraldini, Guilherme R. F. Campos, Daniela M. Quevedo, Rafael N. Miceli, Fernando R. Spilki, João Pessoa Araújo, Jr., Marilia F. Calmon, and et al. 2025. "Epidemiological and Molecular Surveillance of Aichi Virus A at Different Stages of Sewage Treatment: A One-Year Study in the Southeast of Brazil" Viruses 17, no. 5: 736. https://doi.org/10.3390/v17050736
APA Styledo Nascimento, M. C. A., Rosa, C. R., Demoliner, M., Geraldini, D. B., Campos, G. R. F., Quevedo, D. M., Miceli, R. N., Spilki, F. R., Araújo, J. P., Jr., Calmon, M. F., & Rahal, P. (2025). Epidemiological and Molecular Surveillance of Aichi Virus A at Different Stages of Sewage Treatment: A One-Year Study in the Southeast of Brazil. Viruses, 17(5), 736. https://doi.org/10.3390/v17050736