Emerging Prognostic and Predictive Biomarkers for Human Cytomegalovirus Infection During Pregnancy: Unmet Needs and Future Perspectives
Abstract
:1. Introduction
2. Pathogenesis
3. Limitations of Serological Diagnostics
4. Limitations of HCMV DNAemia
5. The Role of HCMV DNA in Amniotic Fluid Samples and Urine Samples
6. HCMV T-Cell Immunity as a Prognostic Biomarker
7. Non-Invasive Prenatal Testing
8. The Possible Role of Exosomes in HCMV Infections
9. Unmet Needs and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCMV | Human Cytomegalovirus |
cHCMV | Congenital Human Cytomegalovirus |
NK | Natural Killer |
IgM | Immunoglobulin M |
IgG | Immunoglobulin G |
PCR | Polymerase Chain Reaction |
IE-1 | Immediate-Early 1 |
ELISpot | Enzyme-Linked Immunospot Assay |
IGRA | Interferon-Gamma Release Assay |
IFN-γ | Interferon-Gamma |
RR | Relative Response |
NIPT | Non-Invasive Prenatal Testing |
cfDNA | Cell-Free DNA |
qPCR | Quantitative Polymerase Chain Reaction |
References
- Pass, R.F.; Anderson, B. Mother-to-Child Transmission of Cytomegalovirus and Prevention of Congenital Infection. J. Pediatr. Infect. Dis. Soc. 2014, 3 (Suppl. S1), S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; Stagno, S.; Pass, R.F. Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA 2003, 289, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Pontes, K.F.M.; Nardozza, L.M.M.; Peixoto, A.B.; Werner, H.; Tonni, G.; Granese, R.; Araujo Junior, E. Cytomegalovirus and Pregnancy: A Narrative Review. J. Clin. Med. 2024, 13, 640. [Google Scholar] [CrossRef] [PubMed]
- Mihalic, A.; Zeleznjak, J.; Lisnic, B.; Jonjic, S.; Juranic Lisnic, V.; Brizic, I. Immune surveillance of cytomegalovirus in tissues. Cell. Mol. Immunol. 2024, 21, 959–981. [Google Scholar] [CrossRef]
- De Groof, T.W.M.; Elder, E.G.; Lim, E.Y.; Heukers, R.; Bergkamp, N.D.; Groves, I.J.; Wills, M.; Sinclair, J.H.; Smit, M.J. Targeting the latent human cytomegalovirus reservoir for T-cell-mediated killing with virus-specific nanobodies. Nat. Commun. 2021, 12, 4436. [Google Scholar] [CrossRef]
- Muller, L.; Di Benedetto, S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int. J. Mol. Sci. 2024, 25, 753. [Google Scholar] [CrossRef]
- La Rosa, C.; Diamond, D.J. The immune response to human CMV. Future Virol. 2012, 7, 279–293. [Google Scholar] [CrossRef]
- Zuo, W.; Zhao, X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application. Clin. Immunol. 2021, 227, 108727. [Google Scholar] [CrossRef]
- Pighi, C.; Rotili, A.; De Luca, M.; Chiurchiu, S.; Calo Carducci, F.I.; Rossetti, C.; Cifaldi, L.; Bei, R.; Caforio, L.; Bernardi, S.; et al. Characterization of Natural Killer Cell Profile in a Cohort of Infected Pregnant Women and Their Babies and Its Relation to CMV Transmission. Viruses 2024, 16, 780. [Google Scholar] [CrossRef]
- Picarda, G.; Benedict, C.A. Cytomegalovirus: Shape-Shifting the Immune System. J. Immunol. 2018, 200, 3881–3889. [Google Scholar] [CrossRef]
- Langel, S.N.; Blasi, M.; Permar, S.R. Maternal immune protection against infectious diseases. Cell Host Microbe 2022, 30, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Megli, C.J.; Coyne, C.B. Infections at the maternal-fetal interface: An overview of pathogenesis and defence. Nat. Rev. Microbiol. 2022, 20, 67–82. [Google Scholar] [CrossRef]
- Cruz-Holguin, V.J.; Gonzalez-Garcia, L.D.; Velazquez-Cervantes, M.A.; Arevalo-Romero, H.; De Jesus-Gonzalez, L.A.; Helguera-Repetto, A.C.; Leon-Reyes, G.; Salazar, M.I.; Cedillo-Barron, L.; Leon-Juarez, M. Collateral Damage in the Placenta during Viral Infection in Pregnancy: A Possible Mechanism for Vertical Transmission and an Adverse Pregnancy Outcome. Diseases 2024, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Weckman, A.M.; Ngai, M.; Wright, J.; McDonald, C.R.; Kain, K.C. The Impact of Infection in Pregnancy on Placental Vascular Development and Adverse Birth Outcomes. Front. Microbiol. 2019, 10, 1924. [Google Scholar] [CrossRef] [PubMed]
- Chudnovets, A.; Liu, J.; Narasimhan, H.; Liu, Y.; Burd, I. Role of Inflammation in Virus Pathogenesis during Pregnancy. J. Virol. 2020, 95, 10-1128. [Google Scholar] [CrossRef]
- Tsikouras, P.; Antsaklis, P.; Nikolettos, K.; Kotanidou, S.; Kritsotaki, N.; Bothou, A.; Andreou, S.; Nalmpanti, T.; Chalkia, K.; Spanakis, V.; et al. Diagnosis, Prevention, and Management of Fetal Growth Restriction (FGR). J. Pers. Med. 2024, 14, 698. [Google Scholar] [CrossRef]
- Stagno, S.; Pass, R.F.; Cloud, G.; Britt, W.J.; Henderson, R.E.; Walton, P.D.; Veren, D.A.; Page, F.; Alford, C.A. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986, 256, 1904–1908. [Google Scholar] [CrossRef]
- Chatzakis, C.; Ville, Y.; Makrydimas, G.; Dinas, K.; Zavlanos, A.; Sotiriadis, A. Timing of primary maternal cytomegalovirus infection and rates of vertical transmission and fetal consequences. Am. J. Obstet. Gynecol. 2020, 223, 870–883.e11. [Google Scholar] [CrossRef]
- Davis, N.L.; King, C.C.; Kourtis, A.P. Cytomegalovirus infection in pregnancy. Birth Defects Res. 2017, 109, 336–346. [Google Scholar] [CrossRef]
- Fowler, K.B.; Stagno, S.; Pass, R.F.; Britt, W.J.; Boll, T.J.; Alford, C.A. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med. 1992, 326, 663–667. [Google Scholar] [CrossRef]
- Pass, R.F.; Fowler, K.B.; Boppana, S.B.; Britt, W.J.; Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: Symptoms at birth and outcome. J. Clin. Virol. 2006, 35, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Brizic, I.; Hirsl, L.; Britt, W.J.; Krmpotic, A.; Jonjic, S. Immune responses to congenital cytomegalovirus infection. Microbes Infect. 2018, 20, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Auriti, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Piersigilli, F.; Bersani, I.; Ronchetti, M.P.; Caforio, L. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166198. [Google Scholar] [CrossRef]
- Pass, R.F.; Arav-Boger, R. Maternal and fetal cytomegalovirus infection: Diagnosis, management, and prevention. F1000Research 2018, 7, 255. [Google Scholar] [CrossRef]
- Britt, W.J. Maternal Immunity and the Natural History of Congenital Human Cytomegalovirus Infection. Viruses 2018, 10, 405. [Google Scholar] [CrossRef]
- Saldan, A.; Forner, G.; Mengoli, C.; Gussetti, N.; Palu, G.; Abate, D. Testing for Cytomegalovirus in Pregnancy. J. Clin. Microbiol. 2017, 55, 693–702. [Google Scholar] [CrossRef]
- Kitamura, A.; Toriyabe, K.; Hagimoto-Akasaka, M.; Hamasaki-Shimada, K.; Ikejiri, M.; Minematsu, T.; Suga, S.; Kondo, E.; Kihira, M.; Morikawa, F.; et al. Revision of Cytomegalovirus Immunoglobulin M Antibody Titer Cutoff in a Maternal Antibody Screening Program in Japan: A Cohort Comparison Involving a Total of 32,000 Pregnant Women. Viruses 2023, 15, 962. [Google Scholar] [CrossRef]
- Revello, M.G.; Gerna, G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin. Microbiol. Rev. 2002, 15, 680–715. [Google Scholar] [CrossRef]
- Carlson, A.; Norwitz, E.R.; Stiller, R.J. Cytomegalovirus infection in pregnancy: Should all women be screened? Rev. Obstet. Gynecol. 2010, 3, 172–179. [Google Scholar]
- Huang, Y.; Tang, J.; Yu, H.; Song, Q.; Hao, M.; Wang, H.; Liu, J.; Dong, Y.; Liang, M.; Zhuang, S.; et al. Reconsideration of Maternal Serological Testing for Predicting Congenital CMV Infection. J. Infect. Dis. 2024, 229, 1817–1822. [Google Scholar] [CrossRef]
- Leruez-Ville, M.; Chatzakis, C.; Lilleri, D.; Blazquez-Gamero, D.; Alarcon, A.; Bourgon, N.; Foulon, I.; Fourgeaud, J.; Gonce, A.; Jones, C.E.; et al. Consensus recommendation for prenatal, neonatal and postnatal management of congenital cytomegalovirus infection from the European congenital infection initiative (ECCI). Lancet Reg. Health Eur. 2024, 40, 100892. [Google Scholar] [CrossRef] [PubMed]
- Perillaud-Dubois, C.; Hachicha-Maalej, N.; Lepers, C.; Letamendia, E.; Teissier, N.; Cousien, A.; Sibiude, J.; Deuffic-Burban, S.; Vauloup-Fellous, C.; Picone, O. Cost-effectiveness of screening and valacyclovir-based treatment strategies for first-trimester cytomegalovirus primary infection in pregnant women in France. Ultrasound Obstet. Gynecol. 2023, 62, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Bader, U.; Enders, G. Combination of microneutralization and avidity assays: Improved diagnosis of recent primary human cytomegalovirus infection in single serum sample of second trimester pregnancy. J. Med. Virol. 2000, 60, 324–330. [Google Scholar] [CrossRef]
- Rawlinson, W.D.; Boppana, S.B.; Fowler, K.B.; Kimberlin, D.W.; Lazzarotto, T.; Alain, S.; Daly, K.; Doutre, S.; Gibson, L.; Giles, M.L.; et al. Congenital cytomegalovirus infection in pregnancy and the neonate: Consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect. Dis. 2017, 17, e177–e188. [Google Scholar] [CrossRef]
- Revello, M.G.; Genini, E.; Gorini, G.; Klersy, C.; Piralla, A.; Gerna, G. Comparative evaluation of eight commercial human cytomegalovirus IgG avidity assays. J. Clin. Virol. 2010, 48, 255–259. [Google Scholar] [CrossRef]
- Gault, E.; Michel, Y.; Dehee, A.; Belabani, C.; Nicolas, J.C.; Garbarg-Chenon, A. Quantification of human cytomegalovirus DNA by real-time PCR. J. Clin. Microbiol. 2001, 39, 772–775. [Google Scholar] [CrossRef]
- Soriano-Ramos, M.; Esquivel-De la Fuente, E.; Albert Vicent, E.; de la Calle, M.; Baquero-Artigao, F.; Dominguez-Rodriguez, S.; Cabanes, M.; Gomez-Montes, E.; Gonce, A.; Valdes-Bango, M.; et al. The role of the T-cell mediated immune response to Cytomegalovirus infection in intrauterine transmission. PLoS ONE 2023, 18, e0281341. [Google Scholar] [CrossRef]
- Weinberger, S.; Steininger, C. Reliable quantification of Cytomegalovirus DNAemia in Letermovir treated patients. Antivir. Res. 2022, 201, 105299. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2020-12-30&atto.codiceRedazionale=20A07138&elenco30giorni=true (accessed on 12 May 2025).
- Faure-Bardon, V.; Fourgeaud, J.; Stirnemann, J.; Leruez-Ville, M.; Ville, Y. Secondary prevention of congenital cytomegalovirus infection with valacyclovir following maternal primary infection in early pregnancy. Ultrasound Obstet. Gynecol. 2021, 58, 576–581. [Google Scholar] [CrossRef]
- Enders, M.; Daiminger, A.; Exler, S.; Enders, G. Amniocentesis for prenatal diagnosis of cytomegalovirus infection: Challenging the 21 weeks’ threshold. Prenat. Diagn. 2017, 37, 940–942. [Google Scholar] [CrossRef]
- Guerra, B.; Lazzarotto, T.; Quarta, S.; Lanari, M.; Bovicelli, L.; Nicolosi, A.; Landini, M.P. Prenatal diagnosis of symptomatic congenital cytomegalovirus infection. Am. J. Obstet. Gynecol. 2000, 183, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Liesnard, C.; Donner, C.; Brancart, F.; Gosselin, F.; Delforge, M.L.; Rodesch, F. Prenatal diagnosis of congenital cytomegalovirus infection: Prospective study of 237 pregnancies at risk. Obstet. Gynecol. 2000, 95 Pt 1, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Lazzarotto, T.; Varani, S.; Guerra, B.; Nicolosi, A.; Lanari, M.; Landini, M.P. Prenatal indicators of congenital cytomegalovirus infection. J. Pediatr. 2000, 137, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Leruez-Ville, M.; Stirnemann, J.; Sellier, Y.; Guilleminot, T.; Dejean, A.; Magny, J.F.; Couderc, S.; Jacquemard, F.; Ville, Y. Feasibility of predicting the outcome of fetal infection with cytomegalovirus at the time of prenatal diagnosis. Am. J. Obstet. Gynecol. 2016, 215, 342.e1–342.e9. [Google Scholar] [CrossRef]
- Ornoy, A.; Diav-Citrin, O. Fetal effects of primary and secondary cytomegalovirus infection in pregnancy. Reprod. Toxicol. 2006, 21, 399–409. [Google Scholar] [CrossRef]
- Delforge, M.L.; Costa, E.; Brancart, F.; Goldman, D.; Montesinos, I.; Zaytouni, S.; Marchant, A.; Donner, C. Presence of Cytomegalovirus in urine and blood of pregnant women with primary infection might be associated with fetal infection. J. Clin. Virol. 2017, 90, 14–17. [Google Scholar] [CrossRef]
- Abu-Raya, B.; Michalski, C.; Sadarangani, M.; Lavoie, P.M. Maternal Immunological Adaptation During Normal Pregnancy. Front. Immunol. 2020, 11, 575197. [Google Scholar] [CrossRef]
- Rackaityte, E.; Halkias, J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front. Immunol. 2020, 11, 588. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, Q.; Jin, L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front. Immunol. 2019, 10, 2317. [Google Scholar] [CrossRef]
- Rotundo, S.; Vecchio, E.; Abatino, A.; Giordano, C.; Mancuso, S.; Tassone, M.T.; Costa, C.; Russo, A.; Trecarichi, E.M.; Cuda, G.; et al. Spike-specific T-cell responses in patients with COVID-19 successfully treated with neutralizing monoclonal antibodies against SARS-CoV-2. Int. J. Infect. Dis. 2022, 124, 55–64. [Google Scholar] [CrossRef]
- Rotundo, S.; Tassone, M.T.; Serapide, F.; Russo, A.; Trecarichi, E.M. Incipient tuberculosis: A comprehensive overview. Infection 2024, 52, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Forner, G.; Saldan, A.; Mengoli, C.; Gussetti, N.; Palu, G.; Abate, D. Cytomegalovirus (CMV) Enzyme-Linked Immunosorbent Spot Assay but Not CMV QuantiFERON Assay Is a Novel Biomarker To Determine Risk of Congenital CMV Infection in Pregnant Women. J. Clin. Microbiol. 2016, 54, 2149–2154. [Google Scholar] [CrossRef] [PubMed]
- Eldar-Yedidia, Y.; Bar-Meir, M.; Hillel, M.; Abitbol, G.; Broide, E.; Falk, R.; Assous, M.; Schlesinger, Y. Low Interferon Relative-Response to Cytomegalovirus Is Associated with Low Likelihood of Intrauterine Transmission of the Virus. PLoS ONE 2016, 11, e0147883. [Google Scholar] [CrossRef] [PubMed]
- Saldan, A.; Forner, G.; Mengoli, C.; Gussetti, N.; Palu, G.; Abate, D. Strong Cell-Mediated Immune Response to Human Cytomegalovirus Is Associated With Increased Risk of Fetal Infection in Primarily Infected Pregnant Women. Clin. Infect. Dis. 2015, 61, 1228–1234. [Google Scholar] [CrossRef]
- Gimenez, E.; Solano, C.; Azanza, J.R.; Amat, P.; Navarro, D. Monitoring of trough plasma ganciclovir levels and peripheral blood cytomegalovirus (CMV)-specific CD8+ T cells to predict CMV DNAemia clearance in preemptively treated allogeneic stem cell transplant recipients. Antimicrob. Agents Chemother. 2014, 58, 5602–5605. [Google Scholar] [CrossRef]
- Abedalthagafi, M.; Bawazeer, S.; Fawaz, R.I.; Heritage, A.M.; Alajaji, N.M.; Faqeih, E. Non-invasive prenatal testing: A revolutionary journey in prenatal testing. Front. Med. 2023, 10, 1265090. [Google Scholar] [CrossRef]
- Faas, B.H.W.; Astuti, G.; Melchers, W.J.G.; Reuss, A.; Gilissen, C.; Macville, M.V.E.; Ghesquiere, S.A.I.; Houben, L.M.H.; Srebniak, M.I.; Geeven, G.; et al. Early detection of active Human CytomegaloVirus (hCMV) infection in pregnant women using data generated for noninvasive fetal aneuploidy testing. eBioMedicine 2024, 100, 104983. [Google Scholar] [CrossRef]
- Tong, X.; Yu, X.; Du, Y.; Su, F.; Liu, Y.; Li, H.; Liu, Y.; Mu, K.; Liu, Q.; Li, H.; et al. Peripheral Blood Microbiome Analysis via Noninvasive Prenatal Testing Reveals the Complexity of Circulating Microbial Cell-Free DNA. Microbiol. Spectr. 2022, 10, e0041422. [Google Scholar] [CrossRef]
- Mimmi, S.; Zimbo, A.M.; Rotundo, S.; Cione, E.; Nistico, N.; Aloisio, A.; Maisano, D.; Tolomeo, A.M.; Dattilo, V.; Lionello, R.; et al. SARS CoV-2 spike protein-guided exosome isolation facilitates detection of potential miRNA biomarkers in COVID-19 infections. Clin. Chem. Lab. Med. 2023, 61, 1518–1524. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Li, R.; Chen, H.; Chen, D.; Li, W. Exosomes in HIV infection. Curr. Opin. HIV AIDS 2021, 16, 262–270. [Google Scholar] [CrossRef]
- Gheitasi, H.; Sabbaghian, M.; Shekarchi, A.A.; Mirmazhary, A.A.; Poortahmasebi, V. Exosome-mediated regulation of inflammatory pathway during respiratory viral disease. Virol. J. 2024, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Ghafourian, M.; Mahdavi, R.; Akbari Jonoush, Z.; Sadeghi, M.; Ghadiri, N.; Farzaneh, M.; Mousavi Salehi, A. The implications of exosomes in pregnancy: Emerging as new diagnostic markers and therapeutics targets. Cell Commun. Signal. 2022, 20, 51. [Google Scholar] [CrossRef] [PubMed]
- Bergamelli, M.; Martin, H.; Benard, M.; Ausseil, J.; Mansuy, J.M.; Hurbain, I.; Mouysset, M.; Groussolles, M.; Cartron, G.; Tanguy le Gac, Y.; et al. Human Cytomegalovirus Infection Changes the Pattern of Surface Markers of Small Extracellular Vesicles Isolated From First Trimester Placental Long-Term Histocultures. Front. Cell Dev. Biol. 2021, 9, 689122. [Google Scholar] [CrossRef]
- Kaminski, V.L.; Ellwanger, J.H.; Chies, J.A.B. Extracellular vesicles in host-pathogen interactions and immune regulation—Exosomes as emerging actors in the immunological theater of pregnancy. Heliyon 2019, 5, e02355. [Google Scholar] [CrossRef]
- Czernek, L.; Duchler, M. Exosomes as Messengers Between Mother and Fetus in Pregnancy. Int. J. Mol. Sci. 2020, 21, 4264. [Google Scholar] [CrossRef]
- Jin, J.; Menon, R. Placental exosomes: A proxy to understand pregnancy complications. Am. J. Reprod. Immunol. 2018, 79, e12788. [Google Scholar] [CrossRef]
- Shahar-Nissan, K.; Pardo, J.; Peled, O.; Krause, I.; Bilavsky, E.; Wiznitzer, A.; Hadar, E.; Amir, J. Valaciclovir to prevent vertical transmission of cytomegalovirus after maternal primary infection during pregnancy: A randomised, double-blind, placebo-controlled trial. Lancet 2020, 396, 779–785. [Google Scholar] [CrossRef]
- Acquier, M.; Taton, B.; Alain, S.; Garrigue, I.; Mary, J.; Pfirmann, P.; Visentin, J.; Hantz, S.; Merville, P.; Kaminski, H.; et al. Cytomegalovirus DNAemia Requiring (Val)Ganciclovir Treatment for More Than 8 Weeks Is a Key Factor in the Development of Antiviral Drug Resistance. Open Forum Infect. Dis. 2023, 10, ofad018. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotundo, S.; Tassone, M.T.; Lionello, R.; Fusco, P.; Serapide, F.; Russo, A. Emerging Prognostic and Predictive Biomarkers for Human Cytomegalovirus Infection During Pregnancy: Unmet Needs and Future Perspectives. Viruses 2025, 17, 705. https://doi.org/10.3390/v17050705
Rotundo S, Tassone MT, Lionello R, Fusco P, Serapide F, Russo A. Emerging Prognostic and Predictive Biomarkers for Human Cytomegalovirus Infection During Pregnancy: Unmet Needs and Future Perspectives. Viruses. 2025; 17(5):705. https://doi.org/10.3390/v17050705
Chicago/Turabian StyleRotundo, Salvatore, Maria Teresa Tassone, Rosaria Lionello, Paolo Fusco, Francesca Serapide, and Alessandro Russo. 2025. "Emerging Prognostic and Predictive Biomarkers for Human Cytomegalovirus Infection During Pregnancy: Unmet Needs and Future Perspectives" Viruses 17, no. 5: 705. https://doi.org/10.3390/v17050705
APA StyleRotundo, S., Tassone, M. T., Lionello, R., Fusco, P., Serapide, F., & Russo, A. (2025). Emerging Prognostic and Predictive Biomarkers for Human Cytomegalovirus Infection During Pregnancy: Unmet Needs and Future Perspectives. Viruses, 17(5), 705. https://doi.org/10.3390/v17050705