Evaluating Population Normalization Methods Using Chemical Data for Wastewater-Based Epidemiology: Insights from a Site-Specific Case Study
Abstract
:1. Introduction
- (i)
- Chemical parameters. can be associated with human excretions into wastewater, mainly feces that are inferred by parameters estimating organic matter content, e.g., chemical oxygen demand (COD), biological oxygen demand (BOD5), or urine that are reflected by nitrogen-containing compounds, e.g., total nitrogen, ammonia (NH3), and ammonium (NH4-N) [8,9,10,11];
- (ii)
- (iii)
- (iv)
- (i)
- Comparing dynamic population normalization results with the standard normalization approach based on static population estimates;
- (ii)
- Evaluating correlations between WBE results obtained through different normalization methods and clinical COVID-19 case data in order to determine which SARS-CoV-2 normalization approach best aligns environmental and clinical data.
2. Materials and Methods
2.1. Time and Location of This Study
2.2. Wastewater Monitoring
2.2.1. SARS-CoV-2 Analysis
2.2.2. Chemical Parameter Analysis
2.3. SARS-CoV-2 Normalization Approaches
2.3.1. SARS-CoV-2 Static Population Normalization
2.3.2. SARS-CoV-2 Dynamic Population Normalization
2.3.2.1. SARS-CoV-2 Dynamic Population Normalization Based on Low Data Approach
2.3.2.2. SARS-CoV-2 Dynamic Population Normalization Based on High Data Approach
2.4. Meteorological Data
2.5. Clinical Data
2.6. Data Analysis
3. Results
3.1. Description of Chemical Parameters
3.2. Comparison of Different SARS-CoV-2 Normalization Methods
3.3. Correlation Between Different SARS-CoV-2 Normalization Methods and Clinical COVID-19 Cases
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, W.; Bivins, A.; Bertsch, P.M.; Bibby, K.; Choi, P.M.; Farkas, K.; Gyawali, P.; Hamilton, K.A.; Haramoto, E.; Kitajima, M.; et al. Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimisation and quality control are crucial for generating reliable public health information. Curr. Opin. Environ. Sci. Health 2020, 17, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Pecson, B.M.; Darby, E.; Haas, C.N.; Amha, Y.M.; Bartolo, M.; Danielson, R.; Dearborn, Y.; Di Giovanni, G.; Ferguson, C.; Fevig, S.; et al. Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: Findings from an interlaboratory methods evaluation in the U.S. Environ. Sci. Water Res. Technol. 2021, 7, 504–520. [Google Scholar] [CrossRef] [PubMed]
- Alygizakis, N.; Markou, A.N.; Rousis, N.I.; Galani, A.; Avgeris, M.; Adamopoulos, P.G.; Scorilas, A.; Lianidou, E.S.; Paraskevis, D.; Tsiodras, S.; et al. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. Trends Anal. Chem. 2021, 134, 116125. [Google Scholar] [CrossRef] [PubMed]
- Gawlik, B.M.; Comero, S.; Deere, D.A.; Medema, G.; Remonnay, I.; Loret, J.; De Roda Husman, A.M.; Rinck-Pfeiffer, S.; Agrawal, S.; Anzaldi, G.; et al. The International Cookbook for Wastewater Practitioners—Vol. 1 SARS-CoV-2; European Commission, Joint Research Centre and Global Water Research Coalition; Publications Office of the European Union: Luxembourg, 2024; pp. 73–80. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC138489 (accessed on 10 April 2025).
- Tscharke, B.J.; O’ Brien, J.W.; Ort, C.; Grant, S.; Gerber, C.; Bade, R.; Thai, P.K.; Thomas, K.V.; Mueller, J.F. Harnessing the Power of the Census: Characterizing Wastewater Treatment Plant Catchment Populations for Wastewater-Based Epidemiology. Environ. Sci. Technol. 2019, 53, 10303–10311. [Google Scholar] [CrossRef]
- Bertanza, G.; Boiocchi, R. Interpreting per capita loads of organic matter and nutrients in municipal wastewater: A study on 168 Italian agglomerations. Sci. Total Environ. 2022, 819, 153236. [Google Scholar] [CrossRef]
- Boogaerts, T.; Van Wichelen, N.; Quireyns, M.; Burgard, D.; Bijlsma, L.; Delputte, P.; Gys, C.; Covaci, A.; van Nuijs, A.L.N. Current state and future perspectives on de facto population markers for normalization in wastewater-based epidemiology: A systematic literature review. Sci. Total Environ. 2024, 935, 173223. [Google Scholar] [CrossRef]
- Schenk, H.; Heidinger, P.; Insam, H.; Kreuzinger, N.; Markt, R.; Nägele, F.; Oberacher, H.; Scheffknecht, C.; Steinlechner, M.; Vogl, G.; et al. Prediction of hospitalisations based on wastewater-based SARS-CoV-2 epidemiology. Sci. Total Environ. 2023, 873, 162149. [Google Scholar] [CrossRef]
- Hoar, C.; Li, Y.; Silverman, A. Assessment of commonly measured wastewater parameters to estimate sewershed populations for use in wastewater-based epidemiology: Insights into population dynamics in New York City during the COVID-19 pandemic. ACS ES&T Water 2022, 2, 2014–2024. [Google Scholar] [CrossRef]
- Sweetapple, C.; Wade, M.J.; Melville-Shreeve, P.; Chen, A.S.; Lilley, C.; Irving, J.; Grimsley, J.M.S.; Bunce, J.T. Dynamic population normalisation in wastewater-based epidemiology for improved understanding of the SARS-CoV-2 prevalence: A multi-site study. J. Water Health 2023, 21, 625–642. [Google Scholar] [CrossRef]
- Isaksson, F.; Lundy, L.; Hedstrom, A.; Szekely, A.; Mohamed, N. Evaluating the use of alternative normalization approaches on SARS-CoV-2 concentrations in wastewater: Experiences from two catchments in northern Sweden. Environments 2022, 9, 39. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Bayati, M.; Li, C.; Hsieh, H.Y.; Belenchia, A.; Klutts, J.; Zemmer, S.A.; Reynolds, M.; Semkiw, E.; Johnson, H.Y.; et al. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Res. 2022, 223, 118985. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Miyani, B.; Zhao, L.; Spooner, M.; Gentry, Z.; Zou, Y.; Rhodes, G.; Li, H.; Kaye, A.; Norton, J.; et al. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. Sci. Total Environ. 2022, 85 Pt 2, 158350. [Google Scholar] [CrossRef]
- Gudra, D.; Dejus, S.; Bartkevics, V.; Roga, A.; Kalnina, I.; Strods, M.; Rayan, A.; Kokina, K.; Zajakina, A.; Dumpis, U.; et al. Detection of SARS-CoV-2 RNA in wastewater and importance of population size assessment in smaller cities: An exploratory case study from two municipalities in Latvia. Sci. Total Environ. 2022, 823, 153775. [Google Scholar] [CrossRef]
- Reynolds, L.; Sala-Comorera, L.; Khan, M.; Martin, N.; Whitty, M.; Stephens, J.; Nolan, T.; Joyce, E.; Fletcher, N.; Murphy, C.; et al. Coprostanol as a population biomarker for SARS-CoV-2 wastewater surveillance studies. Water 2022, 14, 225. [Google Scholar] [CrossRef]
- Chakraborty, P.; Pasupuleti, M.; Shankar, M.J.; Bharat, G.K.; Krishnasamy, S.; Dasgupta, S.C.; Sarkar, S.K.; Jones, K.C. First surveillance of SARS-CoV-2 and organic tracers in community wastewater during post lockdown in Chennai, South India: Methods, occurrence and concurrence. Sci. Total Environ. 2021, 778, 146252. [Google Scholar] [CrossRef]
- Xie, Y.; Challis, J.K.; Oloye, F.F.; Asadi, M.; Cantin, J.; Brinkmann, M.; McPhedran, K.N.; Hogan, N.; Sadowski, M.; Jones, P.D.; et al. RNA in municipal wastewater reveals magnitudes of COVID-19 outbreaks across four waves driven by SARS-CoV-2 variants of concern. ACS ES&T Water 2022, 2, 1852–1862. [Google Scholar] [CrossRef]
- Wilder, M.; Middleton, F.; Larsen, D.; Du, Q.; Fenty, A.; Zeng, T.; Insaf, T.; Kilaru, P.; Collins, M.; Kmush, B.; et al. Co-quantification of crAssphage increases confidence in wastewater-based epidemiology for SARS-CoV-2 in low prevalence areas. Water Res. 2021, 11, 100100. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, J.; Schilperoort, R.; Heijnen, L.; Elsinga, G.; Schapendonk, C.E.M.; Fanoy, E.; de Schepper, E.I.T.; Koopmans, M.P.G.; de Graaf, M.; Medema, G. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. Sci. Total Environ. 2023, 865, 161196. [Google Scholar] [CrossRef]
- Malla, B.; Shrestha, S.; Sthapit, N.; Hirai, S.; Raya, S.; Rahmani, A.F.; Angga, M.S.; Siri, Y.; Ruti, A.A.; Haramoto, E. Evaluation of plasmid pBI143 for its optimal concentration methods, seasonal impact, and potential as a normalization parameter in wastewater-based epidemiology. Sci. Total Environ. 2025, 965, 178661. [Google Scholar] [CrossRef]
- Commission Recommendation (EU) 2021/472 of 17 March 2021 on a Common Approach to Establishing Systematic Surveillance of SARS-CoV-2 and Its Variants in Wastewater in the EU. Available online: http://data.europa.eu/eli/reco/2021/472/oj (accessed on 10 April 2025).
- Maere, T.; Therrien, J.-D.; Vanrolleghem, P. Normalization Practices for SARS-CoV-2 Data in Wastewater-Based Epidemiology; National Collaborating Centre for Infectious Diseases, Public Health Agency of Canada: Ottawa, ON, Canada, 2022; Available online: https://nccid.ca/wp-content/uploads/sites/2/2023/02/Normalization-practices-Technical-Report-Final3.pdf (accessed on 10 April 2025).
- Association of Public Health Laboratories (APHL). SARS-CoV-2 Wastewater Surveillance Testing Guide for Public Health Laboratories. 2022. Available online: https://www.aphl.org/aboutAPHL/publications/Documents/EH-2022-SARSCoV2-Wastewater-Surveillance-Testing-Guide.pdf (accessed on 10 April 2025).
- Mac Mahon, J.; Criado Monleon, A.J.; Gill, L.W.; O’Sullivan, J.J.; Meijer, W.G. Wastewater-based epidemiology (WBE) for SARS-CoV-2—A review focussing on the significance of the sewer network using a Dublin city catchment case study. Water Sci. Technol. 2022, 86, 1402–1425. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Sherchan, S.; Orive, G.; Lertxundi, U.; Haramoto, E.; Honda, R.; Kumar, M.; Arora, S.; Kitajima, M.; et al. Correlation between SARS-Cov-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. J. Hazard. Mater. 2023, 44, 129848. [Google Scholar] [CrossRef]
- Carducci, A.; Federigi, I.; Lauretani, G.; Muzio, S.; Pagani, A.; Atomsa, N.T.; Verani, M. Critical Needs for Integrated Surveillance: Wastewater-Based and Clinical Epidemiology in Evolving Scenarios with Lessons Learned from SARS-CoV-2. Food Environ. Virol. 2024, 16, 38–49. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Considerations for Implementing and Adjusting Public Health and Social Measures in the Context of COVID-19—Interim Guidance. 2023. Available online: https://iris.who.int/bitstream/handle/10665/366669/WHO-2019-nCoV-Adjusting-PH-measures-2023.1-eng.pdf?sequence=1 (accessed on 10 April 2025).
- Khan, A.; Taylor, D.; Ahmad, R.; Thériault, J.; McKinley, G. Case Attribution for COVID-19: Who Counts What? Western Public Health Casebook; Darnell, R., Sibbald, S.L., Eds.; Public Health Casebook Publishing: London, UK, 2021; Available online: https://ir.lib.uwo.ca/westernpublichealthcases/vol2021/iss1/13/ (accessed on 10 April 2025).
- Bertels, X.; Demeyer, P.; Van den Bogaert, S.; Boogaerts, T.; van Nuijs, A.L.N.; Delputte, P.; Lahousse, L. Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: A systematic review. Sci. Total Environ. 2022, 820, 153290. [Google Scholar] [CrossRef] [PubMed]
- Verani, M.; Pagani, A.; Federigi, I.; Lauretani, G.; Atomsa, N.T.; Rossi, V.; Viviani, L.; Carducci, A. Wastewater-Based Epidemiology for Viral Surveillance from an Endemic Perspective: Evidence and Challenges. Viruses 2024, 16, 482. [Google Scholar] [CrossRef] [PubMed]
- Federigi, I.; Verani, M.; Carducci, A. Sources of bathing water pollution in northern Tuscany (Italy): Effects of meteorological variables. Mar. Pollut. Bull. 2017, 114, 843–848. [Google Scholar] [CrossRef]
- La Rosa, G.; Bonadonna, L.; Suffredini, E. Protocollo della Sorveglianza di SARS-CoV-2 in Reflui Urbani (SARI)—Rev. 3. Protocol Shared with the Italian Network of the SARI Project on 25.07.2021. Available online: https://zenodo.org/records/5758725 (accessed on 10 April 2025).
- Federigi, I.; Salvadori, R.; Lauretani, G.; Leone, A.; Lippi, S.; Marvulli, F.; Pagani, A.; Verani, M.; Carducci, A. Wastewater Treatment Plants Performance for Reuse: Evaluation of Bacterial and Viral Risks. Water 2024, 16, 1399. [Google Scholar] [CrossRef]
- Evans, W.N. Time Series Analysis: Durbin-Watson Significance Tables [Internet]; University of Notre Dame: Notre Dame, IN, USA, 2018; Available online: https://www3.nd.edu/~wevans1/econ30331/Durbin_Watson_tables.pdf (accessed on 18 April 2025).
- Sartirano, D.; Morecchiato, F.; Antonelli, A.; Lotti, T.; Morelli, D.; Ramazzotti, M.; Rossolini, G.M.; Lubello, C. Verifying the feasibility of wastewater-based epidemiological monitoring for the small catchment and sewage networks with significant pretreatment. J. Water Health 2024, 22, 1516–1526. [Google Scholar] [CrossRef]
- Sakarovitch, C.; Schlosser, O.; Courtois, S.; Proust-Lima, C.; Couallier, J.; Petrau, A.; Litrico, X.; Loret, J.-F. Monitoring of SARS-CoV-2 in wastewater: What normalisation for improved understanding of epidemic trends? J. Water Health 2022, 20, 712–726. [Google Scholar] [CrossRef]
- Wade, M.J.; Lo Jacomo, A.; Armenise, E.; Brown, M.R.; Bunce, J.T.; Cameron, G.J.; Fang, Z.; Farkas, K.; Gilpin, D.F.; Graham, D.W.; et al. Understanding and Managing Uncertainty and Variability for Wastewater Monitoring beyond the Pandemic: Lessons Learned from the United Kingdom National COVID-19 Surveillance Programmes. J. Hazard. Mater. 2022, 424 Pt B, 127456. [Google Scholar] [CrossRef]
- Cong, Z.X.; Shao, X.T.; Liu, S.Y.; Pei, W.; Wang, D.G. Wastewater analysis reveals urban, suburban, and rural spatial patterns of illicit drug use in Dalian, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 25503–25513. [Google Scholar] [CrossRef]
- Rainey, A.L.; Liang, S.; Bisesi, J.H., Jr.; Sabo-Attwood, T.; Maurelli, A.T. A multistate assessment of population normalization factors for wastewater-based epidemiology of COVID-19. PLoS ONE 2023, 18, e0284370. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Roguet, A.; McClary-Gutierrez, J.; Newton, R.; Kloczko, N.; Meiman, J.; McLellan, S. Evaluation of sampling, analysis, and normalization methods for SARS-CoV-2 concentrations in wastewater to assess COVID-19 burdens in Wisconsin communities. ACS ES&T Water 2021, 1, 1955–1965. [Google Scholar] [CrossRef]
- Stachler, E.; Akyon, B.; de Carvalho, N.A.; Ference, C.; Bibby, K. Correlation of crAssphage qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed. Environ. Sci. Technol. 2018, 52, 7505–7512. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, J.M.; Li, Z.; Chang, C.N.; Hiripitiyage, Y.; Wittman, M.; Sturm, B.S.M. Improving correlation of wastewater SARS-CoV-2 gene copy numbers with COVID-19 public health cases using readily available biomarkers. FEMS Microbes 2022, 3, xtac010. [Google Scholar] [CrossRef]
- Haeusser, S.; Möller, R.; Smarsly, K.; Al-Hakim, Y.; Kreuzinger, N.; Pinnekamp, J.; Pletz, M.W.; Kluemper, C.; Beier, S. SARS-CoV-2 Wastewater Monitoring in Thuringia, Germany: Analytical Aspects and Normalization of Results. Water 2023, 15, 4290. [Google Scholar] [CrossRef]
- Girón-Guzmán, I.; Cuevas-Ferrando, E.; Barranquero, R.; Díaz-Reolid, A.; Puchades-Colera, P.; Falcó, I.; Pérez-Cataluña, A.; Sánchez, G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. Water Res. 2023, 255, 121463. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Marquez, G.P.; Gupta, S.; Mittal, Y.; Soda, S.; Dwivedi, S.; Ajibade, F.O.; Freguia, S. Diversity of anaerobic ammonium oxidation processes in nature. Chem. Eng. J. 2024, 483, 149257. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Ma, Y.; Liu, J. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations. Sci. Total Environ. 2019, 695, 133815. [Google Scholar] [CrossRef]
- Regional Office for Tourism Statistics of Tuscany Region. Visitors’ Movements by Municipality (2022). Banca Dati Turismo in Toscana. Available online: https://www.regione.toscana.it/statistiche/dati-statistici/turismo (accessed on 14 April 2025).
- Foladori, P.; Cutrupi, F.; Cadonna, M.; Postinghel, M. Normalization of viral loads in Wastewater-Based Epidemiology using routine parameters: One year monitoring of SARS-CoV-2 in urban and tourist sewersheds. J. Hazard. Mater. 2024, 478, 135352. [Google Scholar] [CrossRef]
WWTP Type | Design Capacity (PE) | Served Population (Inhabitants) | Sewer Length (km2) | Served Municipalities (% of Sewage Discharged to the WWTP) |
---|---|---|---|---|
WWTP1 | 52,000 | 42,931 | 145 | Pisa (63.2%); San Giuliano Terme (30.1%); Vecchiano (6.7%) |
WWTP2 | 88,670 | 68,070 | 313 | Empoli (59.9%); Vinci (15.5%); Montelupo Fiorentino (13.2%); Capraia e Limite (8.0%); Cerreto Guidi (2.3%); Montespertoli (1.2%) |
WWTP3 | 120,000 | 110,871 | 387 | Massa (60.4%); Carrara (31.3%); Montignoso (8.4%); Forte dei Marmi (0.03%) |
WWTP4 | 93,000 | 60,262 | 167 | Viareggio (99.7%); Massarosa (0.19%); Camaiore (0.05%); Vecchiano (0.04%) |
Daily Production of Markers Per Person (mg/Day/Inhabitant) | ||||
---|---|---|---|---|
WWTP Type | n. obs | COD | BOD5 | NH4-N |
WWTP1 | 27 | 62,096 (48,297–68,772) | 24,064 (18,009–29,115) | 10,584 (8890–11,494) |
WWTP2 | 29 | 48,476 (36,243–59,558) | 18,558 (12,635–24,751) | 10,392 (9792–11,979) |
WWTP3 | 11 | 68,695 (52,040–75,446) | 41,014 (33,359–51,303) | 7700 (5295–9232) |
WWTP4 | 18 | 84,698 (75,148–95,138) | 55,204 (48,241–65,991) | 8123 (6943–9288) |
WWTP Type | n | Wastewater Flow (L/Day) | COD (mg/L) | BOD5 (mg/L) | NH4-N (mg/L) |
---|---|---|---|---|---|
WWTP1 | 91 | 1.02 × 107 (9.05 × 106–1.25 × 107) | 281 (234–362) | 120 (88–155) | 50 (40–56) |
WWTP2 | 93 | 1.41 × 107 (1.20 × 107–1.84 × 107) | 195 (141–259) | 75 (50–99) | 46 (37–51) |
WWTP3 | 85 | 1.84 × 107 (1.62 × 107–2.15 × 107) | 373 (286–450) | 265 (180–340) | 46 (35–55) |
WWTP4 | 90 | 1.11 × 107 (1.02 × 107–1.25 × 107) | 505 (428–590) | 320 (260–380) | 47 (41–53) |
WWTP Type | n | COD | BOD5 | NH4-N |
---|---|---|---|---|
WWTP1 | 91 | 0.1776 | 0.0721 | 0.3445 |
WWTP2 | 93 | 0.2838 | 0.1647 | 0.5795 |
WWTP3 | 85 | 0.2953 | 0.3824 | 0.3999 |
WWTP4 | 90 | 0.2417 | 0.2562 | 0.4915 |
Pooled WWTPs | 359 | 0.1776 | 0.0721 | 0.3445 |
Normalization Approaches | WWTP1 (n = 18) | WWTP2 (n = 19) | WWTP3 (n = 10) | WWTP4 (n = 17) | Pooled WWTPs (n = 64) |
---|---|---|---|---|---|
SARS-CoV-2 concentration (no normalization) | 0.169 | 0.335 | 0.828 | 0.120 | 0.329 |
Static normalization | 0.073 | 0.604 | 0.851 | 0.201 | 0.405 |
Dynamic COD normalization, low data approach () | 0.191 | 0.391 | 0.875 | 0.287 | 0.346 |
Dynamic BOD5 normalization, low data approach () | 0.112 | 0.275 | 0.888 | 0.287 | 0.356 |
Dynamic NH4+ normalization, low data approach () | 0.166 | 0.321 | 0.802 | 0.120 | 0.308 |
Dynamic COD normalization, high data approach () | 0.191 | 0.391 | 0.875 | 0.287 | 0.378 |
Dynamic BOD5 normalization, high data approach () | 0.112 | 0.275 | 0.888 | 0.287 | 0.378 |
Dynamic NH4+ normalization, high data approach () | 0.166 | 0.321 | 0.802 | 0.120 | 0.335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verani, M.; Federigi, I.; Angori, A.; Pagani, A.; Marvulli, F.; Valentini, C.; Atomsa, N.T.; Conte, B.; Carducci, A. Evaluating Population Normalization Methods Using Chemical Data for Wastewater-Based Epidemiology: Insights from a Site-Specific Case Study. Viruses 2025, 17, 672. https://doi.org/10.3390/v17050672
Verani M, Federigi I, Angori A, Pagani A, Marvulli F, Valentini C, Atomsa NT, Conte B, Carducci A. Evaluating Population Normalization Methods Using Chemical Data for Wastewater-Based Epidemiology: Insights from a Site-Specific Case Study. Viruses. 2025; 17(5):672. https://doi.org/10.3390/v17050672
Chicago/Turabian StyleVerani, Marco, Ileana Federigi, Alessandra Angori, Alessandra Pagani, Francesca Marvulli, Claudia Valentini, Nebiyu Tariku Atomsa, Beatrice Conte, and Annalaura Carducci. 2025. "Evaluating Population Normalization Methods Using Chemical Data for Wastewater-Based Epidemiology: Insights from a Site-Specific Case Study" Viruses 17, no. 5: 672. https://doi.org/10.3390/v17050672
APA StyleVerani, M., Federigi, I., Angori, A., Pagani, A., Marvulli, F., Valentini, C., Atomsa, N. T., Conte, B., & Carducci, A. (2025). Evaluating Population Normalization Methods Using Chemical Data for Wastewater-Based Epidemiology: Insights from a Site-Specific Case Study. Viruses, 17(5), 672. https://doi.org/10.3390/v17050672