Liver Scores in the Prognostication of COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Extraction and Outcome Measures
2.3. Liver Scores
2.4. Statistics
3. Results
3.1. Patient Characteristics and Outcome Measures
3.2. Distribution of Liver Scores at Baseline
3.3. Univariable Analysis
3.4. Multivariable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, W.; Jiang, W.; Yao, J.; Nicholson, C.J.; Li, R.H.; Sigurslid, H.H.; Wooster, L.; Rotter, J.I.; Guo, X.; Malhotra, R. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1875–1883. [Google Scholar] [CrossRef]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2021, 93, 1449–1458. [Google Scholar] [CrossRef]
- Al-Shajlawi, M.; Alsayed, A.R.; Abazid, H.; Awajan, D.; Al-Imam, A.; Basheti, I. Using laboratory parameters as predictors for the severity and mortality of COVID-19 in hospitalized patients. Pharm. Pract. 2022, 20, 2721. [Google Scholar] [CrossRef]
- Gambichler, T.; Schuleit, N.; Susok, L.; Becker, J.C.; Scheel, C.H.; Torres-Reyes, C.; Overheu, O.; Reinacher-Schick, A.; Schmidt, W. Prognostic Performance of Inflammatory Biomarkers Based on Complete Blood Counts in COVID-19 Patients. Viruses 2023, 15, 1920. [Google Scholar] [CrossRef]
- Notarte, K.I.; de Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D.; et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef]
- Kamiya, Y.; Shinoda, M.; Ishii, N.; Yamamoto, S.; Sekine, T.; Morikawa, M.; Ota, S.; Toyama-Kousaka, M.; Takahashi, H.; Takei, H.; et al. Comparison of liver fibrosis scores and fatty liver on computed tomography as risk factors for severity of COVID-19. JGH Open 2024, 8, e70004. [Google Scholar] [CrossRef]
- Lucena Valera, A.; Aller de la Fuente, R.; Sánchez Torrijos, Y.; Romero Gómez, M.; Ampuero Herrojo, J. FIB-4 score as a predictor of COVID-19-related severity in hospitalized patients. Rev. Esp. Enferm. Dig. 2024, 116, 465–471. [Google Scholar] [CrossRef]
- Mendoza-Hernandez, M.A.; Hernandez-Fuentes, G.A.; Sanchez-Ramirez, C.A.; Rojas-Larios, F.; Guzman-Esquivel, J.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; Cardenas-Rojas, M.I.; De-Leon-Zaragoza, L.; Trujillo-Hernandez, B.; et al. Time-dependent ROC curve analysis to determine the predictive capacity of seven clinical scales for mortality in patients with COVID-19: Study of a hospital cohort with very high mortality. Biomed Rep. 2024, 20, 100. [Google Scholar] [CrossRef]
- Çopur, B.; Sürme, S.; Tunçer, G.; Bayramlar, O.F. The Role of APRI, FIB-4, and SAD-60 Scores as Predictors of Mortality in COVID-19 Patients. Infect. Dis. Clin. Microbiol. 2023, 5, 144–152. [Google Scholar] [CrossRef]
- Parajuli, P.; Sabo, R.; Alsaadawi, R.; Robinson, A.; French, E.; Sterling, R.K. Fibrosis-4 (FIB-4) index as a predictor for mechanical ventilation and 30-day mortality across COVID-19 variants. J. Clin. Transl. Sci. 2023, 7, e213. [Google Scholar] [CrossRef]
- Miele, L.; Dajko, M.; Savino, M.C.; Capocchiano, N.D.; Calvez, V.; Liguori, A.; Masciocchi, C.; Vetrone, L.; Mignini, I.; Schepis, T.; et al. Fib-4 score is able to predict intra-hospital mortality in 4 different SARS-CoV-2 waves. Intern. Emerg. Med. 2023, 18, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Ao, G.; Li, A.; Li, J.; Du, X.; Wang, Y.; Tran, C.; Qi, X. The Association Between the Fibrosis-4 Index and COVID-19: A Systematic Review and Meta-Analysis. Ann. Clin. Lab. Sci. 2022, 52, 781–787. [Google Scholar]
- Lombardi, R.; Mura, V.; Cespiati, A.; Iuculano, F.; Sigon, G.; Pallini, G.; Proietti, M.; Motta, I.; Montinaro, B.; Fiorelli, E.; et al. Usefulness of fibrosis-4 (FIB-4) score and metabolic alterations in the prediction of SARS-CoV-2 severity. Intern. Emerg. Med. 2022, 17, 1739–1749. [Google Scholar] [CrossRef]
- Grigoras, M.L.; Citu, I.M.; Citu, C.; Chiriac, V.D.; Gorun, F.; Levai, M.C.; Manolescu, D.; Rosca, O.; Bratosin, F.; Gurumurthy, S.; et al. Evaluation of FIB-4, NFS, APRI and Liver Function Tests as Predictors for SARS-CoV-2 Infection in the Elderly Population: A Matched Case-Control Analysis. J. Clin. Med. 2022, 11, 5149. [Google Scholar] [CrossRef]
- Reyes-Ruiz, J.M.; Avelino-Santiago, A.C.; Martínez-Mier, G.; López-López, C.V.; De Jesús-González, L.A.; León-Juárez, M.; Osuna-Ramos, J.F.; Farfan-Morales, C.N.; Palacios-Rápalo, S.N.; Bernal-Dolores, V.; et al. The Model for End-Stage Liver Disease (MELD) Score Predicting Mortality Due to SARS-CoV-2 in Mexican Patients. J. Clin. Med. 2024, 13, 5777. [Google Scholar] [CrossRef]
- Kaya, Y.; Gülcü, O.; Aksakal, E.; Kalkan, K.; Aydın, S.Ş.; Kaya, A.; Bostan, S. A significant predictor of in-hospital and long-term mortality and progression in COVID-19 patients: The end-stage liver disease (MELD) score model. J. Med. Virol. 2023, 95, e28109. [Google Scholar] [CrossRef]
- Stawinski, P.M.; Dziadkowiec, K.N.; Al-Abbasi, B.; Suarez, L.; Simms, L.; Dewaswala, N.; Torres, P.; Al Rubaye, A.; Pino, J.; Marcus, A. Model of End-Stage Liver Disease (MELD) Score as a Predictor of In-Hospital Mortality in Patients with COVID-19: A Novel Approach to a Classic Scoring System. Cureus 2021, 13, e15179. [Google Scholar] [CrossRef]
- Wagner, J.; Garcia-Rodriguez, V.; Yu, A.; Dutra, B.; Bhatt, A.; Larson, S.; Farooq, A. The Model for End-Stage Liver Disease-Sodium Score at Admission Is Prognostic of Covid-19 Disease Severity. SN Compr. Clin. Med. 2020, 2, 1978–1982. [Google Scholar] [CrossRef]
- Raj, K.; Kumari, B.; Kumar, S.; Bansal, A.; Mohanraj, P.S.; Dey, S.; Thakur, A. The Prognostic Value of De Ritis Ratio on the Survival Rate of ICU-Admitted COVID-19 Patients During the Second Wave: A Retrospective Study in a Tertiary Care Hospital in India. Cureus 2024, 16, e52484. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A. An Updated Systematic Review and Meta-Analysis of the Association between the De Ritis Ratio and Disease Severity and Mortality in Patients with COVID-19. Life 2023, 13, 1324. [Google Scholar] [CrossRef]
- Drácz, B.; Czompa, D.; Müllner, K.; Hagymási, K.; Miheller, P.; Székely, H.; Papp, V.; Horváth, M.; Hritz, I.; Szijártó, A.; et al. The Elevated De Ritis Ratio on Admission Is Independently Associated with Mortality in COVID-19 Patients. Viruses 2022, 14, 2360. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Arru, F.; De Vito, A.; Sassu, A.; Valdes, G.; Scano, V.; Zinellu, E.; Perra, R.; Madeddu, G.; Carru, C.; et al. The De Ritis ratio as prognostic biomarker of in-hospital mortality in COVID-19 patients. Eur. J. Clin. Investig. 2021, 51, e13427. [Google Scholar] [CrossRef]
- Gambichler, T.; Becker, J.C.; Susok, L.; Käpynen, R.; Abu Rached, N. Model for End-Stage Liver Disease Correlates with Disease Relapse and Death of Patients with Merkel Cell Carcinoma. Cancers 2023, 15, 3195. [Google Scholar] [CrossRef]
- Abu Rached, N.; Reis, M.M.D.S.; Stockfleth, E.; Käpynen, R.; Gambichler, T. Analysis of Calculated Liver Scores for Long-Term Outcome in 423 Cutaneous Melanoma Patients. Cancers 2024, 16, 3217. [Google Scholar] [CrossRef]
- Peschel, G.; Grimm, J.; Buechler, C.; Gunckel, M.; Pollinger, K.; Aschenbrenner, E.; Kammerer, S.; Jung, E.-M.; Haimerl, M.; Werner, J.; et al. Liver stiffness assessed by shear-wave elastography declines in parallel with immunoregulatory proteins in patients with chronic HCV infection during DAA therapy. Clin. Hemorheol. Microcirc. 2021, 79, 541–555. [Google Scholar] [CrossRef]
(a) | (b) | ||
---|---|---|---|
Parameter | Data | Parameter | Data |
Sex | Overweight/obesity *** | ||
Female/male | 287/318 (47.4%/52.6%) | no/yes | 324/88 (78.6%/21.4%) |
Median (range) age | Diabetes mellitus | ||
(years) | 60 (16–97) | no/yes | 474/131 (78.3%/21.7%) |
Intensive care unit | Lung diseases | ||
no/yes | 477/128 (78.8%/21.2%) | no/yes | 480/125 (79.3%/20.7%) |
30-day mortality ** | Cardiovascular diseases | ||
no/yes | 553/52 (91.4%/8.6%) | no/yes | 307/298 (50.7%/49.3%) |
30-day mortality ** | Liver diseases | ||
median (range) | 12.5 (1–30) | no/yes | 587/18 (97%/3%) |
Overall mortality ** | At least two comorbidities | ||
no/yes | 539/66 (89.1%/10.9%) | no/yes | 340/265 (56.2%/43.8%) |
Parameter | MELD | FIB-4 | APRI | DRR |
---|---|---|---|---|
Median (range) | 7.29 (5.12–37.53) | 1.81 (0–31.39) | 0.38 (0–20.47) | 1.25 (0–6.68) |
“Normal” range | 6 | 1.3 | 0.3 | 0.7–1.2 |
Parameter | 30-Day Mortality * | Overall Mortality * | Intensive Care Unit |
---|---|---|---|
Age | AUC 0.82, p < 0.0001 Criterion: >72, Youden index: 0.53 | AUC 0.81, p < 0.0001 Criterion: >73, Youden index: 0.52 | AUC 0.60, p = 0.0092 Criterion: >52, Youden index: 0.15 |
Sex | - | - | p = 0.0009 |
Diabetes | p = 0.0434 | p = 0.034 | p < 0.0001 |
Overweight/obesity | - | - | p = 0.0001 |
Cardiovascular diseases | p < 0.001 | p < 0.0001 | p < 0.017 |
Lung diseases | - | p = 0.0026 | p < 0.0001 |
Two or more comorbidities | - | p < 0.0001 | p = 0.0007 |
APRI | AUC 0.63, p < 0.0050 Criterion: >0.60, Youden index: 0.28 | - | AUC 0.64, p < 0.0001 Criterion: >0.48, Youden index: 0.29 |
DRR | AUC 0.73, p < 0.0001 Criterion: >1.55, Youden index: 0.43 | AUC 0.74, p < 0.0001 Criterion: >1.30, Youden index: 0.40 | AUC 0.61, p = 0.0001 Criterion: >1.44, Youden index: 0.19 |
FIB-4 | AUC 0.76, p < 0.0001 Criterion: >3.17, Youden index: 0.42 | AUC 0.78, p < 0.0001 Criterion: >3.17, Youden index: 0.45 | AUC 0.67, p < 0.0001 Criterion: >2.22, Youden index: 0.27 |
MELD | AUC 0.78, p < 0.0001 Criterion: >8.77, Youden index: 0.49 | AUC 0.77, p < 0.0001 Criterion: >8.46, Youden index: 0.46 | AUC 0.61, p = 0.0003 Criterion: >9.24, Youden index: 0.20 |
Parameter | 30-Day Mortality * | Overall Mortality * | Intensive Care Unit |
---|---|---|---|
Age | p = 0.0004; HR 4.52 (95% CI 1.6 to 10.45) | p = 0.0001; OR 4.17 (95% CI 2.01 to 8.62) | - |
Sex | - | - | p < 0.0001; OR 0.38 (95% CI 0.23 to 0.60) |
Overweight/obesity | - | - | p = 0.0001; OR 2.87 (95% CI 1.67 to 4.88) |
Lung diseases | - | - | p = 0.0021; OR 2.30 (95% CI 1.35 to 3.90) |
APRI | - | - | p = 0.0096; OR 2.00 (95% CI 1.18 to 3.39) |
DRR | p = 0.0064; HR 2.40 (95% CI 1.29 to 4.50) | p = 0.0064; OR 2.72 (95% CI 1.32 to 5.58) | - |
FIB-4 | - | p = 0.0041; OR 2.53 (95% CI 1.34 to 4.75) | - |
MELD | p = 0.0078; HR 2.69 (95% CI 1.30 to 5.58) | p = 0.011; OR 2.41 (95% CI 1.23 to 4.74) | p = 0.046; OR 1.67 (95% CI 1.01 to 2.77) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambichler, T.; König, D.; Schuleit, N.; Susok, L.; Schmidt, W.; Abu Rached, N. Liver Scores in the Prognostication of COVID-19 Patients. Viruses 2025, 17, 444. https://doi.org/10.3390/v17030444
Gambichler T, König D, Schuleit N, Susok L, Schmidt W, Abu Rached N. Liver Scores in the Prognostication of COVID-19 Patients. Viruses. 2025; 17(3):444. https://doi.org/10.3390/v17030444
Chicago/Turabian StyleGambichler, Thilo, Dominic König, Nadine Schuleit, Laura Susok, Wolfgang Schmidt, and Nessr Abu Rached. 2025. "Liver Scores in the Prognostication of COVID-19 Patients" Viruses 17, no. 3: 444. https://doi.org/10.3390/v17030444
APA StyleGambichler, T., König, D., Schuleit, N., Susok, L., Schmidt, W., & Abu Rached, N. (2025). Liver Scores in the Prognostication of COVID-19 Patients. Viruses, 17(3), 444. https://doi.org/10.3390/v17030444