Risk Factors Affecting the Severity, Mortality, and Intensive Care Unit Admission of COVID-19 Patients: A Series of 1075 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analyses
2.2. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
ALT | Alanine aminotransferase |
aPTT | Activated partial thromboplastin time |
AST | Aspartate aminotransferase |
Ca | Calcium |
CRP | C-reactive protein |
ICU | Intensive care unit |
LDH | Lactate dehydrogenase |
Na | Sodium |
PLT | Platelet |
PT | Prothrombin time |
RDW | Red cell distribution width |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
WBC | White blood count |
References
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Fang, Y.; Li, W.; Pan, C.; Qin, P.; Zhong, Y.; Liu, X.; Huang, M.; Liao, Y.; Li, S. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur. Radiol. 2020, 30, 4407–4416. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2021, 93, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 145–151. [Google Scholar] [CrossRef]
- Alharthy, A.; Aletreby, W.; Faqihi, F.; Balhamar, A.; Alaklobi, F.; Alanezi, K.; Jaganathan, P.; Tamim, H.; Alqahtani, S.A.; Karakitsos, D.; et al. Clinical Characteristics and Predictors of 28-Day Mortality in 352 Critically Ill Patients with COVID-19: A Retrospective Study. J. Epidemiol. Glob. Health 2021, 11, 98–104. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Nagata, N.; Iwata, N.; Hasegawa, H.; Fukushi, S.; Yokoyama, M.; Harashima, A.; Sato, Y.; Saijo, M.; Morikawa, S.; Sata, T. Participation of both host and virus factors in induction of severe acute respiratory syndrome (SARS) in F344 rats infected with SARS coronavirus. J. Virol. 2007, 81, 1848–1857. [Google Scholar] [CrossRef]
- Henry, B.M.; Vikse, J.; Benoit, S.; Favaloro, E.J.; Lippi, G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta 2020, 507, 167–173. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y. The Clinical Characteristics and Risk Factors of Severe COVID-19. Gerontology 2021, 67, 255–266. [Google Scholar] [CrossRef]
- Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender Differences in Patients with COVID-19: Focus on Severity and Mortality. Front. Public Health 2020, 8, 152. [Google Scholar] [CrossRef]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated with Mortality Among Patients with COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Republic of Turkey Ministry of Health, Scientific Advisory Board Study. COVID-19 (SARS-CoV-2 Infection) Adult Patient Treatment and Management Guide. Ankara: T.C. Sağlık Bakanlığı; 12 April 2022. Available online: https://covid19.saglik.gov.tr/Eklenti/43095/0/covid-19rehberieriskinhastayonetimivetedavi-12042022pdf.pdf (accessed on 11 March 2025).
- Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; Asselta, R.; et al. Genomewide Association Study of Severe COVID-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef]
- Ughi, N.; Bernasconi, D.P.; Del Gaudio, F.; Dicuonzo, A.; Maloberti, A.; Giannattasio, C.; Tarsia, P.; Puoti, M.; Scaglione, F.; Beltrami, L.; et al. Trends in all-cause mortality of hospitalized patients due to SARS-CoV-2 infection from a monocentric cohort in Milan (Lombardy, Italy). Z. Gesundh. Wiss. 2022, 30, 1985–1993. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Cao, X.; Deng, R.; Ye, Y.; Fu, Z.; Gou, L.; Shao, F.; Li, J.; Fu, W.; et al. Red cell distribution width (RDW): A prognostic indicator of severe COVID-19. Ann. Transl. Med. 2020, 8, 1230. [Google Scholar] [CrossRef]
- Soni, M.; Gopalakrishnan, R. Significance of RDW in predicting mortality in COVID-19-An analysis of 622 cases. Int. J. Lab. Hematol. 2021, 43, O221–O223. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Cheruiyot, I.; Vikse, J.; Mutua, V.; Kipkorir, V.; Benoit, J.; Plebani, M.; Bragazzi, N.; Lippi, G. Lymphopenia and neutrophilia at admission predicts severity and mortality in patients with COVID-19: A meta-analysis. Acta Biomed. 2020, 91, e2020008. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M.; Henry, B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin. Chim. Acta 2020, 506, 145–148. [Google Scholar] [CrossRef]
- Wang, D.; Yin, Y.; Hu, C.; Liu, X.; Zhang, X.; Zhou, S.; Jian, M.; Xu, H.; Prowle, J.; Hu, B.; et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit. Care 2020, 24, 188. [Google Scholar] [CrossRef]
- Kumar, M.P.; Mishra, S.; Jha, D.K.; Shukla, J.; Choudhury, A.; Mohindra, R.; Mandavdhare, H.S.; Dutta, U.; Sharma, V. Coronavirus disease (COVID-19) and the liver: A comprehensive systematic review and meta-analysis. Hepatol. Int. 2020, 14, 711–722. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Liu, L.; Zhao, M.; Xiao, J.; Zhao, Q. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver Int. 2020, 40, 2095–2103. [Google Scholar] [CrossRef]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN J. Parenter Enter. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef]
- Guan, G.W.; Gao, L.; Wang, J.W.; Wen, X.J.; Mao, T.H.; Peng, S.W.; Zhang, T.; Chen, X.M.; Lu, F.M. Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia. Zhonghua Gan Zang Bing Za Zhi 2020, 28, 100–106. [Google Scholar] [CrossRef]
- Huang, J.; Cheng, A.; Kumar, R.; Fang, Y.; Chen, G.; Zhu, Y.; Lin, S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J. Med. Virol. 2020, 92, 2152–2158. [Google Scholar] [CrossRef]
- Viana-Llamas, M.C.; Arroyo-Espliguero, R.; Silva-Obregón, J.A.; Uribe-Heredia, G.; Núñez-Gil, I.; García-Magallón, B.; Torán-Martínez, C.G.; Castillo-Sandoval, A.; Díaz-Caraballo, E.; Rodríguez-Guinea, I.; et al. Hypoalbuminemia on admission in COVID-19 infection: An early predictor of mortality and adverse events. A retrospective observational study. Med. Clin. 2021, 156, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; Formenti, A.M.; Rovere-Querini, P.; Carlucci, M.; Conte, C.; Ciceri, F.; Zangrillo, A.; Giustina, A. Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine 2020, 68, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hou, B.; Liu, J.; Chen, Y.; Zhong, P. Risk Factors Associated with Long-Term Hospitalization in Patients with COVID-19: A Single-Centered, Retrospective Study. Front. Med. 2020, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, P.; Wu, J.; Gong, J.; Tian, D. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J. Infect. Public Health 2020, 13, 1224–1228. [Google Scholar] [CrossRef]
- Crespi, B.; Alcock, J. Conflicts over calcium and the treatment of COVID-19. Evol. Med. Public Health 2021, 9, 149–156. [Google Scholar] [CrossRef]
- Sun, J.K.; Zhang, W.H.; Zou, L.; Liu, Y.; Li, J.J.; Kan, X.H.; Dai, L.; Shi, Q.K.; Yuan, S.T.; Yu, W.K.; et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging 2020, 12, 11287–11295. [Google Scholar] [CrossRef]
- Cappellini, F.; Brivio, R.; Casati, M.; Cavallero, A.; Contro, E.; Brambilla, P. Low levels of total and ionized calcium in blood of COVID-19 patients. Clin. Chem. Lab. Med. 2020, 58, e171–e173. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Zou, M. Hypocalcemia is associated with severe COVID-19: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1873–1877. [Google Scholar]
- Vassiliou, A.G.; Keskinidou, C.; Jahaj, E.; Gallos, P.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S.E. Calcium metabolism in COVID-19: A review. J. Clin. Med. 2021, 10, 677. [Google Scholar]
- De Carvalho, H.; Letellier, T.; Karakachoff, M.; Desvaux, G.; Caillon, H.; Papuchon, E.; Bentoumi-Loaec, M.; Benaouicha, N.; Canet, E.; Chapelet, G.; et al. Hyponatremia is associated with poor outcome in COVID-19. J. Nephrol. 2021, 34, 991–998. [Google Scholar] [CrossRef]
- Genovesi, S.; Regolisti, G.; Rebora, P.; Occhino, G.; Belli, M.; Molon, G.; Citerio, G.; Beltrame, A.; Maloberti, A.; Generali, E. Negative prognostic impact of electrolyte disorders in patients hospitalized for COVID-19 in a large multicenter study. J. Nephrol. 2023, 36, 621–626. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, H.; Richard, M.C.; Chouihed, T.; Goffinet, N.; Le Bastard, Q.; Freund, Y.; Kratz, A.; Dubroux, M.; Masson, D.; Figueres, L.; et al. Electrolyte imbalance in COVID-19 patients admitted to the Emergency Department: A case-control study. Intern. Emerg. Med. 2021, 16, 1945–1950. [Google Scholar] [CrossRef] [PubMed]
- Regolisti, G.; Rebora, P.; Occhino, G.; Lieti, G.; Molon, G.; Maloberti, A.; Algeri, M.; Giannattasio, C.; Valsecchi, M.G.; Genovesi, S. Elevated Serum Urea-to-Creatinine Ratio and In-Hospital Death in Patients with Hyponatremia Hospitalized for COVID-19. Biomedicines 2023, 11, 1555. [Google Scholar] [CrossRef] [PubMed]
- Elieh Ali Komi, D.; Rahimi, Y.; Asghari, R.; Jafari, R.; Rasouli, J.; Mohebalizadeh, M.; Abbasi, A.; Nejadrahim, R.; Rezazadeh, F.; Shafiei-Irannejad, V. Investigation of the Molecular Mechanism of Coagulopathy in Severe and Critical Patients with COVID-19. Front. Immunol. 2021, 12, 762782. [Google Scholar] [CrossRef]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
Non-Severe (n = 553) | Severe (n = 522) | Total (n = 1075) | p-Value | |
---|---|---|---|---|
Demographic Characteristics | ||||
Age | 53.26 ± 15.84 | 62.57 ± 14.01 | 57.78 ± 15.68 | <0.001 1 |
Gender (Male/Female) | 276/277 | 299/223 | 575/500 | 0.015 2 |
Comorbidities (n%) | 258 (41.3) | 366 (58.7) | 624 (58) | <0.001 2 |
Diabetes Mellitus | 95 (40.3) | 141 (59.7) | 236 (22) | <0.001 2 |
Hypertension | 121 (39.8) | 183 (60.2) | 304 (28.3) | <0.001 2 |
Coronary Artery Disease | 42 (30.9) | 94 (69.1) | 136 (12.7) | <0.001 2 |
Respiratory Disease | 33 (29.7) | 78 (70.3) | 111 (10.3) | <0.001 2 |
Malignancy | 31 (34.1) | 60 (65.9) | 91 (8.5) | <0.001 2 |
Chronic Kidney Disease | 21 (33.9) | 41 (66.1) | 62 (5.8) | 0.004 2 |
Presence of Symptoms (n%) | 493 (49) | 514 (51) | 1007 (93.7) | <0.001 2 |
Fever | 120 (47.4) | 133 (52.6) | 253 (23.5) | 0.144 2 |
Cough | 273 (51.4) | 258 (48.6) | 531 (49.4) | 0.985 2 |
Shortness of Breath | 173 (32.3) | 362 (67.7) | 535 (49.8) | <0.001 2 |
Sputum | 27 (49.1) | 28 (50.9) | 55 (5.1) | 0.720 2 |
Sore Throat | 48 (58.5) | 34 (41.5) | 82 (7.6) | 0.181 2 |
Headache | 58 (65.2) | 31 (34.8) | 89 (8.3) | 0.007 2 |
Weakness | 143 (53.6) | 124 (46.4) | 267 (24.8) | 0.425 2 |
Diarrhea | 32 (68.1) | 15 (31.9) | 47 (4.4) | 0.029 3 |
Muscle and Joint Pain | 142 (60.4) | 93 (39.6) | 235 (21.9) | 0.002 2 |
Abdominal Pain | 8 (57.1) | 6 (42.9) | 14 (1.3) | 0.873 3 |
Nausea/Vomiting | 19 (65.5) | 10 (34.5) | 29 (2.7) | 0.177 3 |
Chest Pain | 4 (30.8) | 9 (69.2) | 13 (1.2) | 0.222 3 |
Hemoptysis | 3 (37.5) | 5 (62.5) | 8 (0.7) | 0.495 4 |
Loss of Taste/Smell | 23 (79.3) | 6 (20.7) | 29 (2.7) | 0.004 3 |
Radiological Findings (n%) | ||||
Bilateral Ground Glass Opacity | 428 (47.5) | 474 (52.5) | 902 (83.9) | <0.001 2 |
Unilateral Ground Glass Opacity | 71 (71.7) | 28 (28.3) | 99 (9.2) | <0.001 2 |
Consolidation | 100 (39.7) | 152 (60.3) | 252 (23.4) | <0.001 2 |
Pleural Effusion | 7 (20) | 28 (80) | 35 (3.3) | <0.001 2 |
Atelectasis | 51 (53.1) | 45 (46.9) | 96 (8.9) | 0.730 2 |
Fibrotic Bands | 96 (42.7) | 129 (57.3) | 225 (20.9) | 0.003 2 |
Central Localization | 75 (33.8) | 147 (66.2) | 222 (20.7) | <0.001 2 |
Peripheral Localization | 487 (49.6) | 495 (50.4) | 982 (91.3) | <0.001 2 |
Pneumothorax/Pneumomediastinum | 12 (52.2) | 11 (47.8) | 23 (2.1) | 0.943 2 |
Parameters | Odds Ratio (OR) | Lower Limit | Upper Limit | p-Value |
---|---|---|---|---|
Demographic characteristics | ||||
Age (years) | 1.04 | 1.03 | 1.05 | <0.001 |
Male gender (reference: female) | 1.35 | 1.06 | 1.71 | 0.016 |
Presence of comorbidities (reference: none) | 2.68 | 2.09 | 3.45 | <0.001 |
Laboratory findings * | ||||
WBC (reference: 3.5–10.5 K/uL) | ||||
>10.5 K/uL | 3.26 | 2.13 | 5.01 | <0.001 |
RDW (refrence: %11.8–%15.5) >%15.5 | 1.64 | 1.17 | 2.31 | 0.004 |
Neutrophil (reference: 1.7–7 K/uL) | ||||
>7 K/uL | 3.09 | 2.18 | 4.38 | <0.001 |
Lymphocyte (reference: 0.90–2.90 K/uL) | ||||
<0.90 K/uL | 1.63 | 1.23 | 2.15 | <0.001 |
Monocyte (reference: 0.20–0.80 K/uL) | ||||
>0.80 K/uL | 1.61 | 1.07 | 2.44 | 0.023 |
Eosinophil (reference: 0.05–0.50 K/uL) <0.05 K/uL | 2.05 | 1.46 | 2.87 | <0.001 |
Albumin (reference: 3.5–5.2 g/dL) <3.5 g/dl | 2.94 | 2.22 | 3.88 | <0.001 |
Total protein (reference: 6.6–8.7 g/dL) <6.6 g/dL | 1.83 | 1.40 | 2.39 | <0.001 |
AST (reference: 0–40 U/L) >40 U/L | 2.20 | 1.70 | 2.86 | <0.001 |
LDH (reference: 135–214 U/L) | ||||
>214 U/L | 3.11 | 2.18 | 4.43 | <0.001 |
Na (reference: 136–145 mEq/L) | ||||
<136 mEq/L | 1.67 | 1.28 | 2.19 | <0.001 |
Ca (reference: 8.6–10.5 mg/dL) | ||||
<8.6 mg/dl | 2.10 | 1.62 | 2.74 | <0.001 |
Troponin (reference: 0–14 ng/L) >14 ng/L | 1.64 | 1.13 | 2.38 | 0.009 |
Ferritin (reference: 30–400 ng/mL) | ||||
>400 ng/ml | 1.80 | 1.34 | 2.40 | <0.001 |
D-dimer (reference: 0–500 ng/mL) >500 ng/ml | 1.91 | 1.46 | 2.50 | <0.001 |
Fibrinogen (reference: 200–500 mg/dL) >500 mg/dL | 2.08 | 1.51 | 2.88 | <0.001 |
CRP (reference: 0–5 mg/dL) >5 mg/dl | 6.89 | 4.03 | 11.78 | <0.001 |
Parameters | Odds Ratio (OR) | Lower Limit | Upper Limit | p-Value |
---|---|---|---|---|
Demographic characteristics | ||||
Age (years) | 1.05 | 1.04 | 1.07 | <0.001 |
Male gender (reference: female) | 1.41 | 0.94 | 2.12 | 0.095 |
Presence of comorbidities (reference: none) | 2.22 | 1.42 | 3.48 | <0.001 |
Laboratory findings * | ||||
Platelet (reference: 150–450 K/uL) | ||||
<150 K/uL | 2.03 | 1.31 | 3.15 | 0.002 |
RDW (refrence: %11.8–%15.5) >%15.5 | 2.76 | 1.76 | 4.31 | <0.001 |
Neutrophil (reference: 1.7–7 K/uL) | ||||
>7 K/uL | 1.90 | 1.21 | 2.98 | 0.005 |
Lymphocyte (reference: 0.90–2.90 K/uL) | ||||
<0.90 K/uL | 2.53 | 1.67 | 3.85 | <0.001 |
Monocyte (reference: 0.20–0.80 K/uL) | ||||
>0.80 K/uL | 1.88 | 1.09 | 3.26 | 0.024 |
Total protein (reference: 6.6–8.7 g/dL) <6.6 g/dl | 1.77 | 1.12 | 2.79 | 0.015 |
AST (reference: 0–40 U/L) >40 U/L | 1.64 | 1.08 | 2.48 | 0.020 |
LDH (reference: 135–274 U/L) | ||||
>274 U/L | 2.62 | 1.28 | 5.34 | 0.008 |
Urea (reference: 16.6–48.5 mg/dL) | ||||
>48.5 mg/dl | 1.67 | 1.07 | 2.61 | 0.025 |
Troponin reference: 0–14 ng/L) >14 ng/L | 2.92 | 1.83 | 4.67 | <0.001 |
Procalcitonin (reference: 0–0.5 ug/L) >0.5 ug/L | 3.17 | 1.81 | 5.56 | <0.001 |
Ferritin (reference: 30–400 ng/mL) | ||||
>400 ng/ml | 2.07 | 1.37 | 3.14 | <0.001 |
aPTT (reference: 25–40) | ||||
>40 | 3.39 | 1.33 | 8.61 | 0.010 |
CRP (reference: 0- 5 mg/dL) >5 mg/dl | 12.84 | 1.76 | 93.40 | 0.012 |
Parameters | Odds Ratio (OR) | Lower Limit | Upper Limit | p-Value |
---|---|---|---|---|
Demographic characteristics | ||||
Age (years) | 1.03 | 1.02 | 1.04 | <0.001 |
Male gender (reference: female) | 1.57 | 1.13 | 2.17 | 0.006 |
Presence of comorbidities (reference: none) | 2.19 | 1.54 | 3.10 | <0.001 |
Laboratory findings * | ||||
WBC (reference: 3.5–10.5 K/uL) | ||||
>10.5 K/uL | 3.47 | 2.32 | 5.19 | <0.001 |
RDW (refrence: %11.8–%15.5) >%15.5 | 1.74 | 1.18 | 2.55 | 0.005 |
Neutrophil (reference: 1.7–7 K/uL) | ||||
>7 K/uL | 3.26 | 2.28 | 4.67 | <0.001 |
Lymphocyte (reference: 0.90–2.90 K/uL) | ||||
<0.90 K/uL | 2.24 | 1.61 | 3.14 | <0.001 |
Monocyte (reference: 0.20–0.80 K/uL) | ||||
>0.80 K/uL | 2.58 | 1.67 | 4.00 | <0.001 |
Albumin (reference: 3.5–5.2 g/dL) <3.5 g/dl | 2.33 | 1.64 | 3.32 | <0.001 |
Total protein (reference: 6.6–8.7 g/dL) <6.6 g/dl | 1.94 | 1.36 | 2.77 | <0.001 |
AST (reference: 0–40 U/L) >40 U/l | 1.48 | 1.07 | 2.04 | 0.019 |
LDH (reference: 135–274 U/L) | ||||
>274 U/L | 2.56 | 1.50 | 4.36 | <0.001 |
Urea (reference: 16.6–48.5 mg/dL) | ||||
>48.5 mg/dl | 1.82 | 1.26 | 2.62 | 0.001 |
Ca (reference: 8.6–10.5 mg/dL) | ||||
<8.6 mg/dl | 2.39 | 1.67 | 3.42 | <0.001 |
Troponin (reference: 0–14 ng/L) >14 ng/L | 1.95 | 1.31 | 2.91 | <0.001 |
Procalcitonin (reference: 0–0.5 ug/L) >0.5 ug/L | 2.60 | 1.58 | 4.28 | <0.001 |
Ferritin (reference: 30–400 ng/mL) | ||||
>400 ng/ml | 1.97 | 1.40 | 2.78 | <0.001 |
CRP (reference: 0–5 mg/dL) >5 mg/dl | 3.37 | 1.53 | 7.44 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narin Çopur, E.; Ergün, D.; Ergün, R.; Atik, S.; Türk Dağı, H.; Körez, M.K. Risk Factors Affecting the Severity, Mortality, and Intensive Care Unit Admission of COVID-19 Patients: A Series of 1075 Cases. Viruses 2025, 17, 429. https://doi.org/10.3390/v17030429
Narin Çopur E, Ergün D, Ergün R, Atik S, Türk Dağı H, Körez MK. Risk Factors Affecting the Severity, Mortality, and Intensive Care Unit Admission of COVID-19 Patients: A Series of 1075 Cases. Viruses. 2025; 17(3):429. https://doi.org/10.3390/v17030429
Chicago/Turabian StyleNarin Çopur, Ecem, Dilek Ergün, Recai Ergün, Serap Atik, Hatice Türk Dağı, and Muslu Kazım Körez. 2025. "Risk Factors Affecting the Severity, Mortality, and Intensive Care Unit Admission of COVID-19 Patients: A Series of 1075 Cases" Viruses 17, no. 3: 429. https://doi.org/10.3390/v17030429
APA StyleNarin Çopur, E., Ergün, D., Ergün, R., Atik, S., Türk Dağı, H., & Körez, M. K. (2025). Risk Factors Affecting the Severity, Mortality, and Intensive Care Unit Admission of COVID-19 Patients: A Series of 1075 Cases. Viruses, 17(3), 429. https://doi.org/10.3390/v17030429