The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential
Abstract
:1. Introduction
2. Key Considerations to Selecting Plant Viruses for Biotechnological or Biomedical Applications
2.1. Impact of pVLPs’ Structural Attributes on Functionality and Applications
pVLP Shape | Structural Characteristics | Physicochemical Characteristics | Applications | Examples | References |
---|---|---|---|---|---|
Icosahedral | Symmetrical capsid. Composed of 20 equilateral triangular faces. Generally, ranges from 20 to 200 nm in diameter. | High stability due to symmetrical structure. It can accommodate larger proteins and epitopes. | Widely used in vaccine development due to their robust structure. Serve as carriers for drug delivery. Utilized as templates for the synthesis of nanomaterials. | Cowpea Mosaic Virus (CPMV). Turnip Yellow Mosaic Virus (TYMV). Red clover necrotic mosaic virus (RCNMV). Hibiscus chlorotic ringspot virus. | [3,6,28]. |
Spherical | Rounded shell shape that may lack precise symmetry. Spherical viruses are often stable and compact due to their assembled protein subunits. | The surface of spherical plant viruses can be chemically reactive, allowing for functionalization and modification. | Platforms for presenting target molecules. Platforms for drug delivery. | Brome Mosaic Virus (BMV). Tomato Spotted Wilt Virus (TSWV). Tomato Bushy Stunt Virus (TBSV). | [29,33,34]. |
Rod-shaped | Elongated, cylindrical shapes. Helical symmetry. Length varies significantly, typically from 100 nm to 2000 nm. Diameter around 10 to 20 nm. Often rigid. | Typically encapsulate RNA genomes. It can be mechanically robust and suitable for varied environmental conditions. | Used in agricultural biocontrol to infect plant pathogens. Utilized in the development of vaccines due to their stability and immunogenic properties. Serve as contrast agents in imaging technologies. Serve as models for studying virus assembly and infection mechanisms. | Tobacco Mosaic Virus (TMV). Potato Virus X (PVX). Alfalfa Mosaic Virus (AMV). Papaya mosaic virus (PapMV). Zucchini yellow mosaic virus. | [28,37,38,39]. |
Filamentous | Long, thread-like particles. Flexible and can vary greatly in length. This flexibility is advantageous for applications requiring dynamic structural changes. Helical symmetry. | It can be highly infectious. Suitable for high-density presentation of epitopes. These viruses can withstand various environmental stresses, making them stable across different conditions. | Used in vaccine development due to their immunogenic properties. Employed in studying viral replication and plant–virus interactions. Their self-assembly into regular structures makes them ideal for creating nanowires and nanorods in nanotechnology and materials science. | Flexuous viruses like Closterovirus. Turnip Mosaic Virus. Cardamom mosaic virus (CdMV). | [28,42,43]. |
2.1.1. Influence of pVLP Shape and Size on Cellular Uptake and Tumor Penetration
The Helfrich Energy Model as a Tool for Selecting Optimal pVLP Shape to Maximize Cell Internalization
2.1.2. Influence of the Structural Properties of pVLPs in Biodistribution and Clearance
2.1.3. Impact of pVLP Size and Shape on Drug Delivery Efficiency
2.1.4. Impact of pVLP Shape and Size on Immunogenicity
2.2. Impact of Surface Charge on VLP–Cell Interactions
2.3. Capability of Genetic Modification and Surface Functionalization
2.4. Host Range and Biosafety
2.5. Scalability in Different Expression Systems
2.5.1. Escherichia coli
2.5.2. Yeast (Pichia pastoris)
2.5.3. Insect Cells (Baculovirus Expression System)
2.5.4. Plant-Based Systems (Nicotiana benthamiana)
2.5.5. Mammalian Cells
3. Future Perspectives of pVLPs in Biotechnology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hyman, P.; Trubl, G.; Abedon, S.T. Virus-like Particle: Evolving Meanings in Different Disciplines. PHAGE Ther. Appl. Res. 2021, 2, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Marsian, J.; Lomonossoff, G.P. Molecular pharming—VLPs made in plants. Curr. Opin. Biotechnol. 2016, 37, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Santi, L.; Huang, Z.; Mason, H. Virus-like particles production in green plants. Methods 2006, 40, 66–76. [Google Scholar] [CrossRef]
- Venkataraman, S.; Hefferon, K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021, 13, 1697. [Google Scholar] [CrossRef] [PubMed]
- Rybicki, E.P. Plant molecular farming of virus-like nanoparticles as vaccines and reagents. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1587. [Google Scholar] [CrossRef]
- Chen, Q.; Lai, H. Plant-derived virus-like particles as vaccines. Hum. Vaccines Immunother. 2013, 9, 26–49. [Google Scholar] [CrossRef]
- Scotti, N.; Rybicki, E.P. Virus-like particles produced in plants as potential vaccines. Expert Rev. Vaccines 2013, 12, 211–224. [Google Scholar] [CrossRef]
- Nuñez-Rivera, A.; Fournier, P.G.J.; Arellano, D.L.; Rodriguez-Hernandez, A.G.; Vazquez-Duhalt, R.; Cadena-Nava, R.D. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein J. Nanotechnol. 2020, 11, 372–382. [Google Scholar] [CrossRef]
- Villanueva-Flores, F.; Pastor, A.R.; Palomares, L.A.; Huerta-Saquero, A. A Novel Formulation of Asparaginase Encapsulated into Virus-like Particles of Brome Mosaic Virus: In Vitro and In Vivo Evidence. Pharmaceutics 2023, 15, 2260. [Google Scholar] [CrossRef]
- Eiben, S.; Koch, C.; Altintoprak, K.; Southan, A.; Tovar, G.; Laschat, S.; Weiss, I.M.; Wege, C. Plant virus-based materials for biomedical applications: Trends and prospects. Adv. Drug Deliv. Rev. 2019, 145, 96–118. [Google Scholar] [CrossRef]
- Shukla, S.; Dickmeis, C.; Fischer, R.; Commandeur, U.; Steinmetz, N.F. In Planta Production of Fluorescent Filamentous Plant Virus-Based Nanoparticles. In Virus-Derived Nanoparticles for Advanced Technologies; Wege, C., Lomonossoff, G.P., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1776, pp. 61–84. Available online: http://link.springer.com/10.1007/978-1-4939-7808-3_5 (accessed on 2 August 2024).
- Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2019, 145, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Balke, I.; Zeltins, A. Recent Advances in the Use of Plant Virus-Like Particles as Vaccines. Viruses 2020, 12, 270. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, F.; Hemmati-Dinarvand, M.; Karimzade, M.; Rutkowska, D.; Eskandari, M.H.; Khanizadeh, S.; Afsharifar, A. Plant-derived VLP: A worthy platform to produce vaccine against SARS-CoV-2. Biotechnol. Lett. 2022, 44, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Makarkov, A.I.; Golizeh, M.; Ruiz-Lancheros, E.; Gopal, A.A.; Costas-Cancelas, I.N.; Chierzi, S.; Pillet, S.; Charland, N.; Landry, N.; Rouiller, I.; et al. Plant-derived virus-like particle vaccines drive cross-presentation of influenza A hemagglutinin peptides by human monocyte-derived macrophages. NPJ Vaccines 2019, 4, 17. [Google Scholar] [CrossRef]
- Nikitin, N.; Vasiliev, Y.; Kovalenko, A.; Ryabchevskaya, E.; Kondakova, O.; Evtushenko, E.; Karpova, O. Plant Viruses as Adjuvants for Next-Generation Vaccines and Immunotherapy. Vaccines 2023, 11, 1372. [Google Scholar] [CrossRef] [PubMed]
- Pitchers, K.G.; Boakye, O.D.; Campeotto, I.; Daly, J.M. The Potential of Plant-Produced Virus-like Particle Vaccines for African Horse Sickness and Other Equine Orbiviruses. Pathogens 2024, 13, 458. [Google Scholar] [CrossRef]
- Taghizadeh, M.S.; Niazi, A.; Afsharifar, A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024, 16, 100440. [Google Scholar] [CrossRef]
- Aljabali, A.A.A.; Shukla, S.; Lomonossoff, G.P.; Steinmetz, N.F.; Evans, D.J. CPMV-DOX Delivers. Mol. Pharm. 2013, 10, 3–10. [Google Scholar] [CrossRef]
- Gama, P.; Cadena-Nava, R.D.; Juarez-Moreno, K.; Pérez-Robles, J.; Vazquez-Duhalt, R. Virus-Based Nanoreactors with GALT Activity for Classic Galactosemia Therapy. ChemMedChem 2021, 16, 1438–1445. [Google Scholar] [CrossRef]
- Górzny, M.Ł.; Walton, A.S.; Evans, S.D. Synthesis of High-Surface-Area Platinum Nanotubes Using a Viral Template. Adv. Funct. Mater. 2010, 20, 1295–1300. [Google Scholar] [CrossRef]
- Hu, H.; Steinmetz, N.F. Cisplatin Prodrug-Loaded Nanoparticles Based on Physalis Mottle Virus for Cancer Therapy. Mol. Pharm. 2020, 17, 4629–4636. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.-B.; Jeon, J.-H.; Choi, H.; Park, J.-S.; Park, S.-J.; Lee, H.-J.; Park, J.M.; Cho, H.S.; Moon, J.S.; Oh, H.; et al. Construction of SARS-CoV-2 virus-like particles in plant. Sci. Rep. 2022, 12, 1005. [Google Scholar] [CrossRef] [PubMed]
- Paiva, T.O.; Schneider, A.; Bataille, L.; Chovin, A.; Anne, A.; Michon, T.; Wege, C.; Demaille, C. Enzymatic activity of individual bioelectrocatalytic viral nanoparticles: Dependence of catalysis on the viral scaffold and its length. Nanoscale 2022, 14, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Shriver, L.P.; Plummer, E.M.; Thomas, D.M.; Ho, S.; Manchester, M. Localization of gadolinium-loaded CPMV to sites of inflammation during central nervous system autoimmunity. J. Mater. Chem. B 2013, 1, 5256. [Google Scholar] [CrossRef]
- Steinmetz, N.F.; Ablack, A.L.; Hickey, J.L.; Ablack, J.; Manocha, B.; Mymryk, J.S.; Luyt, L.G.; Lewis, J.D. Intravital Imaging of Human Prostate Cancer Using Viral Nanoparticles Targeted to Gastrin-Releasing Peptide Receptors. Small 2011, 7, 1664–1672. [Google Scholar] [CrossRef]
- Ward, B.J.; Makarkov, A.; Séguin, A.; Pillet, S.; Trépanier, S.; Dhaliwall, J.; Libman, M.D.; Vesikari, T.; Landry, N. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): Two multicentre, randomised phase 3 trials. Lancet 2020, 396, 1491–1503. [Google Scholar] [CrossRef]
- Ghosh, K.; Tarapdar, S.; Duggal, M.; Tyagi, S.; Kumar, V.; Gupta, A. Overview on Virus Like Particles from Plants Used as Vaccine Antigen. Int. J. Curr. Res. Rev. 2020, 5–9. [Google Scholar] [CrossRef]
- Voytekhovsky, Y. Crystal morphology of spherical viruses. J. Min. Inst. 2021, 248, 190–194. [Google Scholar] [CrossRef]
- Therkelsen, M.D.; Klose, T.; Vago, F.; Jiang, W.; Rossmann, M.G.; Kuhn, R.J. Flaviviruses have imperfect icosahedral symmetry. Proc. Natl. Acad. Sci. USA 2018, 115, 11608–11612. [Google Scholar] [CrossRef]
- Paquay, S.; Kusumaatmaja, H.; Wales, D.J.; Zandi, R.; Van Der Schoot, P. Energetically favoured defects in dense packings of particles on spherical surfaces. Soft Matter 2016, 12, 5708–5717. [Google Scholar] [CrossRef]
- Almendral, J.M. Assembly of Simple Icosahedral Viruses. In Structure and Physics of Viruses; Mateu, M.G., Ed.; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2013; Volume 68, pp. 307–328. Available online: https://link.springer.com/10.1007/978-94-007-6552-8_10 (accessed on 25 October 2024).
- Manukhova, T.I.; Evtushenko, E.A.; Ksenofontov, A.L.; Arutyunyan, A.M.; Kovalenko, A.O.; Nikitin, N.A.; Karpova, O.V. Thermal remodelling of Alternanthera mosaic virus virions and virus-like particles into protein spherical particles. PLoS ONE 2021, 16, e0255378. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Foresti, O.; Denecke, J.; Wellink, J.; Goldbach, R.; Kormelink, R.J.M. Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgi-derived pleomorphic membrane structures in plant cells. J. Gen. Virol. 2008, 89, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Lidmar, J.; Mirny, L.; Nelson, D.R. Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 2003, 68, 051910. [Google Scholar] [CrossRef]
- Garmann, R.F.; Comas-Garcia, M.; Knobler, C.M.; Gelbart, W.M. Physical Principles in the Self-Assembly of a Simple Spherical Virus. Acc. Chem. Res. 2016, 49, 48–55. [Google Scholar] [CrossRef]
- Brandes, J.; Wetter, C. Classification of elongated plant viruses on the basis of particle morphology. Virology 1959, 8, 99–115. [Google Scholar] [CrossRef]
- Chapman, S.N. Plant Viruses with Rod-Shaped Virions. In Encyclopedia of Life Sciences, 1st ed.; Wiley: Hoboken, NJ, USA, 2013; Available online: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000753.pub3 (accessed on 26 May 2024).
- Natilla, A.; Hammond, R.W. Analysis of the solvent accessibility of cysteine residues on Maize rayado fino virus virus-like particles produced in Nicotiana benthamiana plants and cross-linking of peptides to VLPs. J. Vis. Exp. 2013, 50084. [Google Scholar] [CrossRef]
- Vaidya, A.J.; Solomon, K.V. Surface Functionalization of Rod-Shaped Viral Particles for Biomedical Applications. ACS Appl. Bio Mater. 2022, 5, 1980–1989. [Google Scholar] [CrossRef]
- Zhou, J.C.; Soto, C.M.; Chen, M.-S.; Bruckman, M.A.; Moore, M.H.; Barry, E.; Ratna, B.R.; Pehrsson, P.E.; Spies, B.R.; Confer, T.S. Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. J. Nanobiotechnol. 2012, 10, 18. [Google Scholar] [CrossRef]
- Coffin, R.S.; Coutts, R.H.A. The closteroviruses, capilloviruses and other similar viruses: A short review. J. Gen. Virol. 1993, 74, 1475–1483. [Google Scholar] [CrossRef]
- Edwardson, J.R.; Christie, R.G. Use of Virus-Induced Inclusions in Classification and Diagnosis. Annu. Rev. Phytopathol. 1978, 16, 31–55. [Google Scholar] [CrossRef]
- DiMaio, F.; Chen, C.-C.; Yu, X.; Frenz, B.; Hsu, Y.-H.; Lin, N.-S.; Egelman, E.H. The molecular basis for flexibility in the flexible filamentous plant viruses. Nat. Struct. Mol. Biol. 2015, 22, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, G.; Zhong, L.; Qian, M.; Wang, M.; Cui, R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. Nanoscale 2022, 14, 5942–5959. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Auth, T.; Gompper, G. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Lett. 2014, 14, 687–693. [Google Scholar] [CrossRef] [PubMed]
- De Ruiter, M.V.; Van Der Hee, R.M.; Driessen, A.J.M.; Keurhorst, E.D.; Hamid, M.; Cornelissen, J.J.L.M. Polymorphic assembly of virus-capsid proteins around DNA and the cellular uptake of the resulting particles. J. Control. Release 2019, 307, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618. [Google Scholar] [CrossRef]
- Zheng, M.; Yu, J. The effect of particle shape and size on cellular uptake. Drug Deliv. Transl. Res. 2016, 6, 67–72. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Yao, Q.; Li, T.; Yan, Y.; Li, Z.; Zhang, J. Why synthetic virus-like nanoparticles can achieve higher cellular uptake efficiency? Nanoscale 2020, 12, 14911–14918. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.-J.; Hang, T.; Yu, Y.; Liu, G.; He, G.; Xiao, S.; Yang, B.; Yang, C.; Liu, F.; et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 2018, 13, 1078–1086. [Google Scholar] [CrossRef]
- Villanueva-Flores, F.; Castro-Lugo, A.; Ramírez, O.T.; Palomares, L.A. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology 2020, 31, 132002. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-Dependent Endocytosis of Nanoparticles. Adv. Mater. 2009, 21, 419–424. [Google Scholar] [CrossRef]
- Li, X.; Xing, D. A simple method to evaluate the optimal size of nanoparticles for endocytosis based on kinetic diffusion of receptors. Appl. Phys. Lett. 2010, 97, 153704. [Google Scholar] [CrossRef]
- Cruz, S.S.; Chapman, S.; Roberts, A.G.; Roberts, I.M.; Prior, D.A.; Oparka, K.J. Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc. Natl. Acad. Sci. USA 1996, 93, 6286–6290. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef] [PubMed]
- Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662–668. [Google Scholar] [CrossRef]
- Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413. [Google Scholar] [CrossRef]
- Chariou, P.L.; Lee, K.L.; Pokorski, J.K.; Saidel, G.M.; Steinmetz, N.F. Diffusion and Uptake of Tobacco Mosaic Virus as Therapeutic Carrier in Tumor Tissue: Effect of Nanoparticle Aspect Ratio. J. Phys. Chem. B 2016, 120, 6120–6129. [Google Scholar] [CrossRef]
- Shukla, S.; Ablack, A.L.; Wen, A.M.; Lee, K.L.; Lewis, J.D.; Steinmetz, N.F. Increased Tumor Homing and Tissue Penetration of the Filamentous Plant Viral Nanoparticle Potato virus X. Mol. Pharm. 2013, 10, 33–42. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Yang, D.; Huang, W.; Hao, P.; Feng, S.; Appelhans, D.; Zhang, T.; Zan, X. Shape Effect of Nanoparticles on Tumor Penetration in Monolayers Versus Spheroids. Mol. Pharm. 2019, 16, 2902–2911. [Google Scholar] [CrossRef]
- Helfrich, W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforschung C 1973, 28, 693–703. [Google Scholar] [CrossRef]
- Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 2000, 1469, 159–195. [Google Scholar] [CrossRef]
- Pan, J.; Mills, T.T.; Tristram-Nagle, S.; Nagle, J.F. Cholesterol Perturbs Lipid Bilayers Nonuniversally. Phys. Rev. Lett. 2008, 100, 198103. [Google Scholar] [CrossRef] [PubMed]
- Tian, A.; Capraro, B.R.; Esposito, C.; Baumgart, T. Bending Stiffness Depends on Curvature of Ternary Lipid Mixture Tubular Membranes. Biophys. J. 2009, 97, 1636–1646. [Google Scholar] [CrossRef]
- Vasir, J.K.; Labhasetwar, V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 2008, 29, 4244–4252. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Muñoz, J.; Bresme, F.; Tarazona, P.; Chacón, E. Bending Modulus of Lipid Membranes from Density Correlation Functions. J. Chem. Theory Comput. 2022, 18, 3151–3163. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, Y.; Kuai, L.; Wang, H.; Qi, J.; Gao, G.F.; Shi, Y. Structure of monkeypox virus DNA polymerase holoenzyme. Science 2023, 379, 100–105. [Google Scholar] [CrossRef]
- Shukla, S.; Wen, A.M.; Ayat, N.R.; Commandeur, U.; Gopalkrishnan, R.; Broome, A.-M.; Lozada, K.W.; Keri, R.A.; Steinmetz, N.F. Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine 2014, 9, 221–235. [Google Scholar] [CrossRef]
- Pitek, A.S.; Wen, A.M.; Shukla, S.; Steinmetz, N.F. The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates. Small 2016, 12, 1758–1769. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Yu, Z.; Peng, H.; He, H.; Lu, Y.; Qi, J.; Dong, X.; Zhao, W.; Wu, W. Effect of particle size on the pharmacokinetics and biodistribution of parenteral nanoemulsions. Int. J. Pharm. 2020, 586, 119551. [Google Scholar] [CrossRef] [PubMed]
- Bruckman, M.A.; Czapar, A.E.; Steinmetz, N.F. Drug-Loaded Plant-Virus Based Nanoparticles for Cancer Drug Delivery. In Virus-Derived Nanoparticles for Advanced Technologies; Methods in Molecular Biology; Wege, C., Lomonossoff, G.P., Eds.; Springer: New York, NY, USA, 2018; Volume 1776, pp. 425–436. Available online: http://link.springer.com/10.1007/978-1-4939-7808-3_28 (accessed on 3 August 2024).
- Ren, Y.; Wong, S.M.; Lim, L.Y. Application of plant viruses as nano drug delivery systems. Pharm. Res. 2010, 27, 2509–2513. [Google Scholar] [CrossRef]
- Ruzzi, F.; Semprini, M.S.; Scalambra, L.; Palladini, A.; Angelicola, S.; Cappello, C.; Pittino, O.M.; Nanni, P.; Lollini, P.-L. Virus-like Particle (VLP) Vaccines for Cancer Immunotherapy. Int. J. Mol. Sci. 2023, 24, 12963. [Google Scholar] [CrossRef]
- Yang, Z.; Chi, Y.; Bao, J.; Zhao, X.; Zhang, J.; Wang, L. Virus-like Particles for TEM Regulation and Antitumor Therapy. J. Funct. Biomater. 2022, 13, 304. [Google Scholar] [CrossRef] [PubMed]
- Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—Opportunities & challenges. Nanoscale 2010, 2, 1870. [Google Scholar] [PubMed]
- Hadj Hassine, I.; Ben M’hadheb, M.; Almalki, M.A.; Gharbi, J. Virus-like particles as powerful vaccination strategy against human viruses. Rev. Med. Virol. 2024, 34, e2498. [Google Scholar] [CrossRef]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Zinkhan, S.; Ogrina, A.; Balke, I.; Reseviča, G.; Zeltins, A.; De Brot, S.; Lipp, C.; Chang, X.; Zha, L.; Vogel, M.; et al. The impact of size on particle drainage dynamics and antibody response. J. Control. Release 2021, 331, 296–308. [Google Scholar] [CrossRef]
- Evtushenko, E.A.; Ryabchevskaya, E.M.; Nikitin, N.A.; Atabekov, J.G.; Karpova, O.V. Plant virus particles with various shapes as potential adjuvants. Sci. Rep. 2020, 10, 10365. [Google Scholar] [CrossRef]
- Caldeira, J.C.; Perrine, M.; Pericle, F.; Cavallo, F. Virus-Like Particles as an Immunogenic Platform for Cancer Vaccines. Viruses 2020, 12, 488. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Bachmann, M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol. 2022, 19, 993–1011. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Churaev, N.V.; Muller, V.M. The Derjaguin—Landau—Verwey—Overbeek (DLVO) Theory of Stability of Lyophobic Colloids. In Surface Forces; Springer: Boston, MA, USA, 1987; pp. 293–310. Available online: http://link.springer.com/10.1007/978-1-4757-6639-4_8 (accessed on 7 August 2024).
- Butt, H.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces, 1st ed.; Wiley: Hoboken, NJ, USA, 2003; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/3527602313 (accessed on 7 August 2024).
- Monopoli, M.P.; Åberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef]
- He, W.; Liu, Y.; Wamer, W.G.; Yin, J.J. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Vignali, V.; Miranda, B.S.; Lodoso-Torrecilla, I.; Van Nisselroy, C.A.J.; Hoogenberg, B.-J.; Dantuma, S.; Hollmann, F.; De Vries, J.W.; Warszawik, E.M.; Fischer, R.; et al. Biocatalytically induced surface modification of the tobacco mosaic virus and the bacteriophage M13. Chem. Commun. 2019, 55, 51–54. [Google Scholar] [CrossRef]
- Plummer, E.M.; Manchester, M. Endocytic Uptake Pathways Utilized by CPMV Nanoparticles. Mol. Pharm. 2013, 10, 26–32. [Google Scholar] [CrossRef]
- Frolova, O.Y.; Petrunia, I.V.; Komarova, T.V.; Kosorukov, V.S.; Sheval, E.V.; Gleba, Y.Y.; Dorokhov, Y.L. Trastuzumab-binding peptide display by Tobacco mosaic virus. Virology 2010, 407, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Koudelka, K.J.; Destito, G.; Plummer, E.M.; Trauger, S.A.; Siuzdak, G.; Manchester, M. Endothelial Targeting of Cowpea Mosaic Virus (CPMV) via Surface Vimentin. PLoS Pathog. 2009, 5, e1000417. [Google Scholar] [CrossRef]
- Koch, C.; Wabbel, K.; Eber, F.J.; Krolla-Sidenstein, P.; Azucena, C.; Gliemann, H.; Eiben, S.; Geiger, F.; Wege, C. Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. Front. Plant Sci. 2015, 6, 1137. Available online: http://journal.frontiersin.org/Article/10.3389/fpls.2015.01137/abstract (accessed on 3 August 2024). [CrossRef] [PubMed]
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef]
- Peabody, D.S.; Manifold-Wheeler, B.; Medford, A.; Jordan, S.K.; Do Carmo Caldeira, J.; Chackerian, B. Immunogenic Display of Diverse Peptides on Virus-like Particles of RNA Phage MS2. J. Mol. Biol. 2008, 380, 252–263. [Google Scholar] [CrossRef]
- Rubino, F.A.; Oum, Y.H.; Rajaram, L.; Chu, Y.; Carrico, I.S. Chemoselective Modification of Viral Surfaces via Bioorthogonal Click Chemistry. JoVE 2012, 4246. [Google Scholar] [CrossRef]
- Cho, C.F.; Shukla, S.; Simpson, E.J.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D. Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer. In Virus Hybrids as Nanomaterials; Lin, B., Ratna, B., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; Volume 1108, pp. 211–230. Available online: http://link.springer.com/10.1007/978-1-62703-751-8_16 (accessed on 3 August 2024).
- García-Arenal, F.; Fraile, A. Trade-offs in host range evolution of plant viruses. Plant Pathol. 2013, 62 (Suppl. S1), 2–9. [Google Scholar] [CrossRef]
- Jacquemond, M. Cucumber Mosaic Virus. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2012; pp. 439–504. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780123943149000130 (accessed on 7 August 2024).
- McLeish, M.J.; Fraile, A.; García-Arenal, F. Evolution of plant–virus interactions: Host range and virus emergence. Curr. Opin. Virol. 2019, 34, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Moury, B.; Desbiez, C. Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses 2020, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Fraile, A.; Hily, J.M.; Pagán, I.; Pacios, L.F.; García-Arenal, F. Host Resistance Selects for Traits Unrelated to Resistance-Breaking That Affect Fitness in a Plant Virus. Mol. Biol. Evol. 2014, 31, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Barratt, B.I.P.; Todd, J.H.; Malone, L.A. Selecting non-target species for arthropod biological control agent host range testing: Evaluation of a novel method. Biol. Control 2016, 93, 84–92. [Google Scholar] [CrossRef]
- Mohd-Padil, H.; Tajul-Arifin, K.; Mohd-Adnan, A. Characterization of the Functional Domain of β2-Microglobulin from the Asian Seabass, Lates calcarifer. PLoS ONE 2010, 5, e13159. [Google Scholar] [CrossRef]
- Petsch, D. Endotoxin removal from protein solutions. J. Biotechnol. 2000, 76, 97–119. [Google Scholar] [CrossRef]
- Walsh, G. Post-translational modifications of protein biopharmaceuticals. Drug Discov. Today 2010, 15, 773–780. [Google Scholar] [CrossRef]
- Deshayes, C.; Gosselin-Grenet, A.S.; Ogliastro, M.; Lapied, B.; Apaire-Marchais, V. Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022, 14, 943. [Google Scholar] [CrossRef]
- Mallajosyula, J.K.; Hiatt, E.; Hume, S.; Johnson, A.; Jeevan, T.; Chikwamba, R.; Pogue, G.P.; Bratcher, B.; Haydon, H.; Webby, R.J.; et al. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge. Hum. Vaccines Immunother. 2014, 10, 586–595. [Google Scholar] [CrossRef]
- Cervera, L.; Gutiérrez-Granados, S.; Martínez, M.; Blanco, J.; Gòdia, F.; Segura, M.M. Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. J. Biotechnol. 2013, 166, 152–165. [Google Scholar] [CrossRef]
- Fuenmayor, J.; Gòdia, F.; Cervera, L. Production of virus-like particles for vaccines. New Biotechnol. 2017, 39, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Liu, D.; Booth, G.; Gao, W.; Lu, Y. Virus-Like Particle Engineering: From Rational Design to Versatile Applications. Biotechnol. J. 2018, 13, 1700324. [Google Scholar] [CrossRef] [PubMed]
- Miotti, N.; Dall’Ara, M.; Baldo, D.; Passera, A.; Casati, P.; Ratti, C. The artificial production of viral-like particles in Nicotiana benthamiana suggests the pro-assembly role of the Cannabis cryptic virus RdRP. J. Plant Pathol. 2024. Available online: https://link.springer.com/10.1007/s42161-024-01628-w (accessed on 5 August 2024).
- Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front. Microbiol. 2022, 12, 790121. [Google Scholar] [CrossRef] [PubMed]
- Comas-Garcia, M.; Colunga-Saucedo, M.; Rosales-Mendoza, S. The Role of Virus-Like Particles in Medical Biotechnology. Mol. Pharm. 2020, 17, 4407–4420. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Swevers, L.; Taning, C.N.T. Plant and insect virus-like particles: Emerging nanoparticles for agricultural pest management. Pest Manag. Sci. 2023, 79, 2975–2991. [Google Scholar] [CrossRef]
- Ramirez-Acosta, K.; Loredo-García, E.; Herrera-Hernandez, M.M.; Cadena-Nava, R.D. Plant Virus-Like Particles for RNA Delivery. In RNA Amplification and Analysis; Astatke, M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2024; Volume 2822, pp. 387–410. Available online: https://link.springer.com/10.1007/978-1-0716-3918-4_24 (accessed on 7 August 2024).
- Villagrana-Escareño, M.V.; Reynaga-Hernández, E.; Galicia-Cruz, O.G.; Durán-Meza, A.L.; De La Cruz-González, V.; Hernández-Carballo, C.Y.; Ruíz-García, J. VLPs Derived from the CCMV Plant Virus Can Directly Transfect and Deliver Heterologous Genes for Translation into Mammalian Cells. BioMed Res. Int. 2019, 2019, 4630891. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peralta-Cuevas, E.; Garcia-Atutxa, I.; Huerta-Saquero, A.; Villanueva-Flores, F. The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential. Viruses 2025, 17, 148. https://doi.org/10.3390/v17020148
Peralta-Cuevas E, Garcia-Atutxa I, Huerta-Saquero A, Villanueva-Flores F. The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential. Viruses. 2025; 17(2):148. https://doi.org/10.3390/v17020148
Chicago/Turabian StylePeralta-Cuevas, Esperanza, Igor Garcia-Atutxa, Alejandro Huerta-Saquero, and Francisca Villanueva-Flores. 2025. "The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential" Viruses 17, no. 2: 148. https://doi.org/10.3390/v17020148
APA StylePeralta-Cuevas, E., Garcia-Atutxa, I., Huerta-Saquero, A., & Villanueva-Flores, F. (2025). The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential. Viruses, 17(2), 148. https://doi.org/10.3390/v17020148