Identification and Characterization of a Novel BVDV-1b Cluster in Sardinia Through Whole Genome Sequencing
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Viral RNA Extraction and Sequencing Independent Single Primer Amplification (SISPA) Protocol
2.3. Sequencing and Genome Assembly
3. Results
3.1. Reads Preprocessing
3.2. Genome Assembly
3.3. Phylogenetic Analysis
3.4. Variant Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maya, L.; Panzera, Y.; Pérez, R.; Marandino, A.; Colina, R. Coding-complete genome sequences of two bovine viral diarrhea virus 1a isolates from Uruguay. Microbiol. Resour. Announc. 2024, 13, e0091723. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pang, F. Diagnosis of bovine viral diarrhea virus: An overview of currently available methods. Front. Microbiol. 2024, 15, 1370050. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G.; Jiang, H.; Xin, T.; Jia, L.; Zhang, Y.; Yang, Y.; Qin, T.; Xu, C.; Cao, J.; et al. Molecular Characteristics of Bovine Viral Diarrhea Virus Strains Isolated from Persistently Infected Cattle. Vet. Sci. 2023, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Ridpath, J. Practical Significance of Heterogeneity Among BVDV Strains: Impact of Biotype and Genotype on U.S. Control Programs. Prev. Vet. Med. 2005, 72, 17–30. [Google Scholar] [CrossRef]
- Abounaaja, F.; Babaoglu, A.R. Genetic Variability of Pestivirus A (BVDV-1) Circulating in Cattle from Eastern Turkey. Vet. Med. Sci. 2025, 11, e70127. [Google Scholar] [CrossRef]
- Postel, A.; Smith, D.B.; Becher, P. Proposed update to the taxonomy of pestiviruses: Eight additional species within the genus Pestivirus, family Flaviviridae. Viruses 2021, 13, 1542. [Google Scholar] [CrossRef]
- Wernike, K.; Pfaff, F.; Beer, M. “Fading out”—Genomic epidemiology of the last persistently infected BVDV cattle in Germany. Front. Vet. Sci. 2024, 10, 1339248. [Google Scholar] [CrossRef]
- Spetter, M.J.; Louge Uriarte, E.L.; Verna, A.E.; Odeón, A.C.; González Altamiranda, E.A. Genomic evolution of bovine viral diarrhea virus based on complete genome and individual gene analyses. Braz. J. Microbiol. 2023, 54, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Lanyon, S.R.; Hill, F.I.; Reichel, M.P.; Brownlie, J. Bovine viral diarrhoea: Pathogenesis and diagnosis. Vet. J. 2014, 199, 201–209. [Google Scholar] [CrossRef]
- Mucellini, C.I.; Silva Júnior, J.V.J.; de Oliveira, P.S.B.; Weiblen, R.; Flores, E.F. Novel genomic targets for proper subtyping of bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2. Virus Genes 2023, 59, 836–844. [Google Scholar] [CrossRef]
- De Oliveira, P.S.B.; Silva Júnior, J.V.J.; Weiblen, R.; Flores, E.F. A new (old) bovine viral diarrhea virus 2 subtype: BVDV-2e. Arch. Virol. 2022, 167, 2545–2553. [Google Scholar] [CrossRef]
- Neill, J.D. Molecular biology of bovine viral diarrhea virus. Biologicals 2014, 41, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Oguejiofor, C.F.; Thomas, C.; Cheng, Z.; Wathes, D.C. Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Anim. Health Res. Rev. 2019, 20, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Tautz, N.; Tews, B.A.; Meyers, G. The Molecular Biology of Pestiviruses. Adv. Virus Res. 2015, 93, 47–160. [Google Scholar] [PubMed]
- Evans, C.A.; Pinior, B.; Larska, M.; Graham, D.; Schweizer, M.; Guidarini, C.; Decaro, N.; Ridpath, J.; Gates, M.C. Global knowledge gaps in the prevention and control of bovine viral diarrhoea (BVD) virus. Transbound. Emerg. Dis. 2019, 66, 640–652. [Google Scholar] [CrossRef]
- Giangaspero, M.; Zhang, S. Pestivirus A Bovine viral diarrhea virus type 1 species genotypes circulating in China and Turkey. Open Vet. J. 2023, 13, 903–931. [Google Scholar] [CrossRef]
- Su, N.; Wang, Q.; Liu, H.Y.; Li, L.M.; Tian, T.; Yin, J.Y.; Zheng, W.; Ma, Q.X.; Wang, T.T.; Li, T.; et al. Prevalence of bovine viral diarrhea virus in cattle between 2010 and 2021: A global systematic review and meta-analysis. Front. Vet. Sci 2023, 9, 1086180. [Google Scholar] [CrossRef] [PubMed]
- Hugues, F.; Cabezas, I.; Garigliany, M.; Rivas, F.; Casanova, T.; González, E.; Sánchez, O.; Castillo, R.; Parra, N.C.; Inostroza-Michael, O.; et al. First report of bovine viral diarrhea virus subgenotypes 1d and 1e in southern Chile. J. Virol. 2023, 20, 205. [Google Scholar] [CrossRef]
- Afify, A.F.; Hassanien, R.T.; Abdelmegeed, H.K.; Abouelyazeed, E.A.; Ali, M.H.; Abdelwahed, D.A.; Behour, T.S. First detection of emerging HoBi-like Pestivirus (BVD-3) among some persistently infected dairy cattle herds in Egypt. Trop. Anim. Health Prod. 2022, 54, 336. [Google Scholar] [CrossRef]
- Gomez-Romero, N.; Ridpath, J.F.; Basurto-Alcantara, F.J.; Verdugo-Rodriguez, A. Bovine Viral Diarrhea Virus in Cattle from Mexico: Current Status. Front. Vet. Sci. 2021, 8, 673577. [Google Scholar] [CrossRef]
- Luzzago, C.; Decaro, N. Epidemiology of Bovine Pestiviruses Circulating in Italy. Front. Vet. Sci. 2021, 8, 669942. [Google Scholar] [CrossRef]
- Decaro, N.; Lucente, M.S.; Mari, V.; Cirone, F.; Cordioli, P.; Camero, M.; Sciarretta, R.; Losurdo, M.; Lorusso, E.; Buonavoglia, C. Atypical pestivirus and severe respiratory disease in calves, Europe. Emerg. Infect. Dis. 2011, 17, 1549–1552. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Mari, V.; Lucente, M.S.; Sciarretta, R.; Losurdo, M.; Elia, G.; Padalino, I.; Martella, V.; Cavaliere, N.; Cordioli, P.; et al. Bovine viral diarrhoea virus type 3: A new threat to italian cattle industry? LAR 2013, 19, 174–185. [Google Scholar]
- Giammarioli, M.; Pellegrini, C.; Casciari, C.; Rossi, E.; De Mia, G.M. Genetic diversity of bovine viral diarrhea virus 1: Italian isolates clustered in at least seven subgenotypes. Vet. Diagn. Invest. 2008, 20, 783–788. [Google Scholar] [CrossRef]
- Luzzago, C.; Lauzi, S.; Ebranati, E.; Giammarioli, M.; Moreno, A.; Cannella, V.; Masoero, L.; Canelli, E.; Guercio, A.; Caruso, C.; et al. Extended genetic diversity of bovine viraldiarrhea virus and frequency of genotypes and subtypes in cattle in Italy between 1995 and 2013. Biomed. Res. Int. 2014, 2014, 147145. [Google Scholar] [CrossRef]
- Giammarioli, M.; Ceglie, L.; Rossi, E.; Bazzucchi, M.; Casciari, C.; Petrini, S.; De Mia, G.M. Increased genetic diversity of BVDV-1: Recent findings and implications thereof. Virus Genes 2015, 50, 147–151. [Google Scholar] [CrossRef]
- Bazzucchi, M.; Bertolotti, L.; Giammarioli, M.; Rossi, E.; Petrini, S.; Rosati, S.; De Mia, G.M. Complete genome sequence of a bovine viral diarrhea virus subgenotype 1g strain isolated in Italy. Genome Announc. 2017, 5, e00263-17. [Google Scholar] [CrossRef] [PubMed]
- Bazzucchi, M.; Bertolotti, L.; Giammarioli, M.; Casciari, C.; Rossi, E.; Rosati, S.; De Mia, G.M. Complete genome sequence of a bovine viral diarrhea virus subgenotype 1h strain isolated in Italy. Genome Announc. 2017, 5, e01697-16. [Google Scholar] [CrossRef]
- Gallina, L.; Koch, M.C.; Gentile, A.; Treglia, I.; Bombardi, C.; Mandrioli, L.; Bolcato, M.; Scagliarini, A.; Drögemüller, C.; Seuberlich, T.; et al. Bovine viral diarrhoea virus 1b infection associated with congenital tremor and hypomyelination in Holstein calves. Vet. Microbiol. 2021, 256, 109047. [Google Scholar] [CrossRef]
- Iotti, B.; Valdano, E.; Savini, L.; Candeloro, L.; Giovannini, A.; Rosati, S.; Colizza, V.; Giacobini, M. Farm productive contexts and the dynamics of bovine viral diarrhea (BVD) transmission. Prev. Vet. Med. 2019, 165, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Marcacci, M.; De Luca, E.; Zaccaria, G.; Di Tommaso, M.; Mangone, I.; Aste, G.; Savini, G.; Boari, A.; Lorusso, A. Genome characterization of feline morbillivirus from Italy. J. Virol. Methods 2016, 234, 160–163. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Available online: http://www.geneious.com/ (accessed on 4 November 2025).
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; OUP: New York, NY, USA, 2000. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- GitHub-Tseemann/Snippy: Rapid Haploid Variant Calling and Core Genome Alignment. Available online: https://github.com/tseemann/snippy (accessed on 11 April 2025).
- Pedersen, B.S.; Quinlan, A.R. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics 2018, 34, 867–868. [Google Scholar] [CrossRef]
- Available online: https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html (accessed on 24 November 2025).
- pyCircos. Available online: https://github.com/ponnhide/pyCircos (accessed on 16 May 2025).
- Cingolani, P.; Cunningham, F.; McLaren, W.; Wang, K. Variant Annotations in VCF Format. 2015. Available online: https://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf (accessed on 12 May 2025).
- Fulton, R.W.; Ridpath, J.F.; Ore, S.; Confer, A.W.; Saliki, J.T.; Burge, L.J.; Payton, M.E. Bovine viral diarrhoea virus (BVDV) subgenotypes in diagnostic laboratory accessions: Distribution of BVDV1a, 1b, and 2a subgenotypes. Vet. Microbiol. 2005, 111, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Ridpath, J.F.; Fulton, R.W.; Kirkland, P.D.; Neill, J.D. Prevalence and antigenic differences observed between Bovine viral diarrhea virus subgenotypes isolated from cattle in Australia and feedlots in the southwestern United States. J. Vet. Diagn. Investig. 2010, 22, 184–191. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, J.; Tan, B.; Zhang, S. A Systematic Study of Bovine Viral Diarrhoea Virus Co-Infection with Other Pathogens. Viruses 2025, 17, 700. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.I.; Deng, M.C.; Huang, Y.L.; Chang, C.Y. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015, 7, 3506–3529. [Google Scholar] [CrossRef]
- Klemens, O.; Dubrau, D.; Tautz, N. Characterization of the Determinants of NS2-3-Independent Virion Morphogenesis of Pestiviruses. J. Virol. 2015, 89, 11668–11680. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heimann, M.; Sosa, G.R.; Martoglio, B.; Thiel, H.; Rümenapf, T. Core Protein of Pestiviruses Is Processed at the C Terminus by Signal Peptide Peptidase. J. Virol. 2006, 80, 1915–1921. [Google Scholar] [CrossRef]
- Riedel, C.; Lamp, B.; Hagen, B.; Indik, S.; Rümenapf, T. The core protein of a pestivirus protects the incoming virus against IFN-induced effectors. Sci. Rep. 2017, 7, 44459. [Google Scholar] [CrossRef]
- Yamane, D.; Zahoor, M.A.; Mohamed, Y.M.; Azab, W.; Kato, K.; Tohya, Y.; Akashi, H. Inhibition of sphingo-sine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J. Biol. Chem. 2009, 284, 13648–13659. [Google Scholar] [CrossRef]
- Xu, J.; Mendez, E.; Caron, P.R.; Lin, C.; Murcko, M.A.; Collett, M.S.; Rice, C.M. Bovine viral diarrhea virus NS3 serine proteinase: Polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J. Virol. 1997, 71, 5312–5322. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye Melkamsew, A.; Sisay Tessema, T.; Paeshuyse, J. Host Immune Response to Bovine Viral Diarrhea Virus (BVDV): Insights and Strategies for Effective Vaccine Design. Vaccines 2025, 13, 456. [Google Scholar] [CrossRef] [PubMed]



| Sample ID | PV871979 | PV871980 | PV871981 | PV871982 | PV871983 | PV871984 | PV871985 | PV871986 | PV871987 | PV871988 |
|---|---|---|---|---|---|---|---|---|---|---|
| Sequencing Platform | NovaSeq | NovaSeq | MiSeq | MiSeq | MiSeq | NovaSeq | NovaSeq | MiSeq | NovaSeq | NovaSeq |
| Sequencing Strategy | 150PE | 150PE | 300PE | 300PE | 300PE | 150PE | 150PE | 300PE | 150PE | 150PE |
| Sample ID | PV871979 | PV871980 | PV871981 | PV871982 | PV871983 | PV871984 | PV871985 | PV871986 | PV871987 | PV871988 |
|---|---|---|---|---|---|---|---|---|---|---|
| Read Number | 114,836,246 | 106,501,370 | 2,233,016 | 2,067,572 | 1,741,588 | 144,038,856 | 103,669,536 | 1,383,686 | 122,942,354 | 163,000,356 |
| High Quality | 108,538,404 | 101,522,160 | 1,762,376 | 1,659,102 | 1,159,380 | 119,946,540 | 95,299,274 | 540,206 | 107,756,610 | 152,216,554 |
| Assembled | 12,965 | 61,141 | 955 | 7731 | 16,914 | 15,855 | 83,855 | 3018 | 1468 | 6002 |
| % Assembled | 0.01217 | 0.05740 | 0.04277 | 0.37392 | 0.97118 | 0.01101 | 0.08089 | 0.21811 | 0.00119 | 0.00368 |
| Sample ID | PV871979 | PV871980 | PV871981 | PV871982 | PV871983 | PV871984 | PV871985 | PV871986 | PV871987 | PV871988 |
|---|---|---|---|---|---|---|---|---|---|---|
| # Contigs | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Total length (bp) | 12,476 | 12,882 | 12,477 | 12,475 | 12,713 | 13,109 | 12,630 | 12,838 | 12,478 | 13,129 |
| % GC | 45.93 | 46.21 | 46.41 | 45.82 | 45.85 | 45.88 | 46.61 | 46.06 | 46.25 | 45.84 |
| Coverage | 163 | 1488 | 20 | 161 | 354 | 289 | >5000 | 1736 | 17 | 157 |
| # N | 196 | 203 | 826 | 244 | 69 | 13 | 196 | 290 | 409 | 77 |
| # Ambiguous bases | 253 | 233 | 842 | 274 | 211 | 49 | 234 | 300 | 472 | 134 |
| # Ambiguous bases per 100 kbp | 2027.89 | 1808.73 | 6748.42 | 2196.39 | 1659.72 | 373.79 | 1852.73 | 2336.81 | 3782.66 | 1020.64 |
| Sample ID | PV871979 | PV871980 | PV871981 | PV871982 | PV871983 | PV871984 | PV871985 | PV871986 | PV871987 | PV871988 |
|---|---|---|---|---|---|---|---|---|---|---|
| Synonymous | 585 | 591 | 553 | 591 | 647 | 586 | 600 | 735 | 773 | 607 |
| Missense | 162 | 171 | 162 | 149 | 180 | 172 | 163 | 182 | 169 | 174 |
| Intergenic | 7 | 8 | 6 | 8 | 14 | 16 | 13 | 9 | 7 | 11 |
| Frameshift | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Stop gained | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Total | 754 | 770 | 721 | 748 | 841 | 774 | 776 | 926 | 950 | 793 |
| Prod | 5′UTR | Npro | core | Erns | E1 | E2 | P7 | NS2 | NS3 | NS4A | NS4B | NS5A | NS5B | 3′UTR | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Syn | 0 | 6 | 1 | 1 | 5 | 4 | 0 | 4 | 7 | 2 | 3 | 5 | 0 | 0 | 38 |
| Mis | 0 | 1 | 3 | 0 | 2 | 3 | 0 | 6 | 1 | 0 | 1 | 2 | 0 | 0 | 19 |
| Other | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| Total | 4 | 7 | 4 | 1 | 7 | 7 | 0 | 10 | 8 | 2 | 4 | 7 | 0 | 0 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lostia, G.; Coradduzza, E.; Bertoldi, L.; Rocchigiani, A.M.; Bechere, R.; Pasini, C.; Stevanato, L.; Fiori, M.S.; Ruiu, A.; Puggioni, G. Identification and Characterization of a Novel BVDV-1b Cluster in Sardinia Through Whole Genome Sequencing. Viruses 2025, 17, 1606. https://doi.org/10.3390/v17121606
Lostia G, Coradduzza E, Bertoldi L, Rocchigiani AM, Bechere R, Pasini C, Stevanato L, Fiori MS, Ruiu A, Puggioni G. Identification and Characterization of a Novel BVDV-1b Cluster in Sardinia Through Whole Genome Sequencing. Viruses. 2025; 17(12):1606. https://doi.org/10.3390/v17121606
Chicago/Turabian StyleLostia, Giada, Elisabetta Coradduzza, Loris Bertoldi, Angela Maria Rocchigiani, Roberto Bechere, Cinzia Pasini, Lorenzo Stevanato, Mariangela Stefania Fiori, Angelo Ruiu, and Giantonella Puggioni. 2025. "Identification and Characterization of a Novel BVDV-1b Cluster in Sardinia Through Whole Genome Sequencing" Viruses 17, no. 12: 1606. https://doi.org/10.3390/v17121606
APA StyleLostia, G., Coradduzza, E., Bertoldi, L., Rocchigiani, A. M., Bechere, R., Pasini, C., Stevanato, L., Fiori, M. S., Ruiu, A., & Puggioni, G. (2025). Identification and Characterization of a Novel BVDV-1b Cluster in Sardinia Through Whole Genome Sequencing. Viruses, 17(12), 1606. https://doi.org/10.3390/v17121606

