Impact of SARS-CoV-2 Pneumonia on Chronic Obstructive Pulmonary Disease: A Comparative Study in ICU Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Assessment and Data Collection Instruments
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| COPD | Chronic obstructive pulmonary disease |
| ICU | Intensive care unit |
| NPD | Non-pulmonary disease |
| APACHE | Acute Physiology and Chronic Health Evaluation |
| IMV | Invasive mechanical ventilation |
| NLR | Neutrophil-to-lymphocyte ratio |
| CRP | C-reactive protein |
| PCT | Procalcitonin |
| IL-6 | Interleukin-6 |
| HT | Hypertension |
| CVD | Cardiovascular disease |
| CKD | Chronic kidney disease, |
| DM | Diabetes mellitus |
| ND | Neurological disease |
| CCI | Charlson comorbidity index |
| ACE2 | Angiotensin-converting enzyme 2 |
| SOFA | Sequential Organ Failure Assessment |
| NAID | Non-anemic iron deficiency |
References
- Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef] [PubMed]
- Tummala, A.; Ramesh, V.; Balakrishna, N.; Koyyada, R.; Singh, A.D.; Patnam, S.; Satish Kumar, M.; Varahala, S.; Manda, S.V.; Narreddy, S. Diagnostic Values of Laboratory Biomarkers in Predicting a Severe Course of COVID-19 on Hospital Admission. BioMed Res. Int. 2022, 7, 5644956. [Google Scholar]
- Awatade, N.T.; Wark, P.A.B.; Chan, A.S.L.; Mamun, S.M.A.A.; Mohd Esa, N.Y.; Matsunaga, K.; Rhee, C.K.; Hansbro, P.M.; Sohal, S.S. The Complex Association between COPD and COVID-19. J. Clin. Med. 2023, 31, 3791. [Google Scholar] [CrossRef] [PubMed]
- Motoc, N.Ș.; Făgărășan, I.; Urda-Cîmpean, A.E.; Todea, D.A. Prognosis Predictive Markers in Patients with Chronic Obstructive Pulmonary Disease and COVID-19. Diagnostics 2023, 13, 2597. [Google Scholar] [CrossRef]
- Salai, G.; Vrazic, H.; Kovacevic, I.; Janes, L.M.; Marasovic, I.; Ranilovic, D.; Vukoja, D.; Zelenika Margeta, M.; Huljev-Sipos, I.; Lalic, K.; et al. Investigating the role of obstructive pulmonary diseases and eosinophil count at admission on all-cause mortality in SARS-CoV-2 patients: A single center registry-based retrospective cohort study. Wien. Klin. Wochenschr. 2023, 135, 235–243. [Google Scholar] [CrossRef]
- Gómez Antúnez, M.; Muiño Míguez, A.; Bendala Estrada, A.D.; Maestro de la Calle, G.; Monge Monge, D.; Boixeda, R.; Ena, J.; Mella Pérez, C.; Anton Santos, J.M.; Lumbreras Bermejo, C.; et al. Clinical Characteristics and Prognosis of COPD Patients Hospitalized with SARS-CoV-2. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 5, 3433–3445. [Google Scholar]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance, 27 May 2020. Reference Number: WHO/2019-nCoV/clinical/2020.5. Available online: https://www.who.int/publications/i/item/clinical-management-of-covid-19/ (accessed on 27 October 2025).
- Silva, S.B.T.; Victor, A.; Gotine, A.R.E.M.; de Assis, D.M.; Wada, M.Y.; do Carmo, G.M.I.; de Almeida Guimarães, L.N.; Santana, E.A. Factors associated with death from COVID-19 in traditional peoples and communities in Brazil. PLoS ONE 2025, 20, e0327140. [Google Scholar]
- Varmaghani, M.; Dehghani, M.; Heidari, E.; Sharifi, F.; Moghaddam, S.S.; Farzadfar, F. Global prevalence of chronic obstructive pulmonary disease: Systematic review and meta-analysis. East. Mediterr. Health J. 2019, 25, 47–57. [Google Scholar] [CrossRef]
- Puebla Neira, D.A.; Watts, A.; Seashore, J.; Duarte, A.; Nishi, S.P.; Polychronopoulou, E.; Kuo, Y.F.; Baillargeon, J.; Sharma, G. Outcomes of Patients with COPD Hospitalized for Coronavirus Disease 2019. Chronic Obstr. Pulm. Dis. 2021, 8, 517–527. [Google Scholar] [CrossRef]
- He, Y.; Xie, M.; Zhao, J.; Liu, X. Clinical Characteristics and Outcomes of Patients with Severe COVID-19 and Chronic Obstructive Pulmonary Disease (COPD). Med. Sci. Monit. 2020, 26, e927212. [Google Scholar] [CrossRef]
- Andreen, N.; Andersson, L.M.; Sundell, N.; Gustavsson, L.; Westin, J. Mortality of COVID-19 is associated with comorbidity in patients with chronic obstructive pulmonary disease. Infect. Dis. 2022, 54, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Szylińska, A.; Kotfis, K.; Bott-Olejnik, M.; Wańkowicz, P.; Rotter, I. Post-Stroke Outcomes of Patients with Chronic Obstructive Pulmonary Disease. Brain Sci. 2022, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Wang, R.; Gong, X.; Yuan, Y. Stroke risk of COPD patients and death risk of COPD patients following a stroke: A systematic review and meta-analysis. Medicine 2023, 102, e35502. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Rajeevan, H.; Simonov, M.; Lee, S.; Wilson, F.P.; Desir, G.V.; Vinetz, J.M.; Yan, X.; Wang, Z.; Clark, B.J.; et al. Differences in Mortality Among Patients with Asthma and COPD Hospitalized With COVID-19. J. Allergy Clin. Immunol. Pract. 2023, 11, 3383–3390. [Google Scholar] [CrossRef]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef]
- Attaway, A.A.; Zein, J.; Hatipoğlu, U.S. SARS-CoV-2 infection in the COPD population is associated with increased healthcare utilization: An analysis of Cleveland clinic’s COVID-19 registry. EClinicalMedicine 2020, 26, 100515. [Google Scholar] [CrossRef]
- Guan, W.J.; Liang, W.H.; Shi, Y.; Gan, L.X.; Wang, H.B.; He, J.X.; Zhong, N.S. Chronic Respiratory Diseases and the Outcomes of COVID-19: A Nationwide Retrospective Cohort Study of 39,420 Cases. J. Allergy Clin. Immunol. Pract. 2021, 9, 2645–2655. [Google Scholar] [CrossRef]
- Lim, Z.J.; Subramaniam, A.; Ponnapa Reddy, M.; Blecher, G.; Kadam, U.; Afroz, A.; Billah, B.; Ashwin, S.; Kubicki, M.; Bilotta, F.; et al. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 54–66. [Google Scholar] [CrossRef]
- Cazzola, M.; Ora, J.; Bianco, A.; Rogliani, P.; Matera, M.G. Management of COPD patients during COVID: Difficulties and experiences. Expert Rev. Respir. Med. 2021, 15, 1025–1033. [Google Scholar]
- Palladino, M. Complete blood count alterations in COVID-19 patients: A narrative review. Biochem. Med. 2021, 31, 030501. [Google Scholar]
- Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [Google Scholar] [CrossRef] [PubMed]
- Gemicioglu, B.; Uzun, H.; Borekci, S.; Karaali, R.; Kurugoglu, S.; Atukeren, P.; Sirolu, S.; Durmus, S.; Dirican, A.; Kuskucu, M.A.; et al. Focusing on Asthma and Chronic Obstructive Pulmonary Disease with COVID-19. J. Infect. Dev. Ctries. 2021, 15, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, S.; Feng, Y.; Wu, W.; Chang, C.; Chen, S.; Zhen, G.; Yi, L. Decreased eosinophil counts and elevated lactate dehydrogenase predict severe COVID-19 in patients with underlying chronic airway diseases. Postgrad. Med. J. 2022, 98, 906–913. [Google Scholar] [PubMed]
- Nasif, W.A.; Mukhtar, M.H.; Althubiti, M.A.; Alamodi, H.S.; Balkhir, O.Y.; Qurban, Y.K.; Alhasni, M.G.; Alharbi, A.K.; Alnemary, S.O.; Fatani, S.H. Serum Ferritin and its Importance for SARS-CoV-2-Infected Patients. Clin. Lab. 2022, 68, 1543–1552. [Google Scholar]
- Hardang, I.M.; Søyseth, V.; Kononova, N.; Hagve, T.A.; Einvik, G. COPD: Iron Deficiency and Clinical Characteristics in Patients with and Without Chronic Respiratory Failure. Chronic Obstr. Pulm. Dis. 2024, 11, 261–269. [Google Scholar]
- Amado, C.A.; Ghadban, C.; Agüero, J.; Lavín, B.A.; Martín-Audera, P.; Guerra, A.R.; Berja, A.; Aranda, N.; Guzun, A.; Insua, A.I.; et al. Non-Anemic Iron Deficiency Predicts COPD Exacerbations and Hospitalizations: Results from a Prospective Cohort. J. Clin. Med. 2025, 14, 4154. [Google Scholar] [CrossRef]
- Srinivasamurthy, S.K.; Mittal, P.; Goyal, A.; Ballal, S.; Maharana, L.; Goyal, K.; Rana, M.; Ali, H.; Oliver, B.G.G.; Paudel, K.R.; et al. Ferroptosis and iron homeostasis in chronic obstructive pulmonary disease: Therapeutic opportunities of iron chelators. J. Trace Elem. Med. Biol. 2025, 92, 127766. [Google Scholar] [CrossRef]
- Meng, D.; Zhu, C.; Jia, R.; Li, Z.; Wang, W.; Song, S. The molecular mechanism of ferroptosis and its role in COPD. Front. Med. 2023, 9, 1052540. [Google Scholar] [CrossRef]
- Rodrigo-Muñoz, J.M.; Sastre, B.; Cañas, J.A.; Gil-Martínez, M.; Redondo, N.; Del Pozo, V. Eosinophil Response Against Classical and Emerging Respiratory Viruses: COVID-19. J. Investig. Allergol. Clin. Immunol. 2021, 31, 94–107. [Google Scholar] [CrossRef]
- Bai, X.; Niu, Y.; Wei, S.; Zhu, Z.; Xu, M.; Liu, H.; Liu, X.; Wang, R. COPD patients with high blood eosinophil counts exhibit a lower rate of omicron infection and milder post-infection symptoms. Clin. Respir. J. 2024, 18, e13790. [Google Scholar]
- Gaur, P.; Zaffran, I.; George, T.; Rahimli Alekberli, F.; Ben-Zimra, M.; Levi-Schaffer, F. The regulatory role of eosinophils in viral, bacterial, and fungal infections. Clin. Exp. Immunol. 2022, 209, 72–82. [Google Scholar] [CrossRef]
- Quinn, A.E.; Zhao, L.; Bell, S.D.; Huq, M.H.; Fang, Y. Exploring Asthma as a Protective Factor in COVID-19 Outcomes. Int. J. Mol. Sci. 2025, 26, 1678. [Google Scholar] [CrossRef]
- Huang, R.; Xie, L.; He, J.; Dong, H.; Liu, T. Association between the peripheral blood eosinophil counts and COVID-19: A meta-analysis. Medicine 2021, 100, e26047. [Google Scholar] [CrossRef]
- Jia, W.Y.; Zhang, J.J. Effects of glucocorticoids on leukocytes: Genomic and non- genomic mechanisms. World J. Clin. Cases 2022, 10, 7187–7194. [Google Scholar] [CrossRef]
| NPD Group (n = 1283) | COPD Group (n = 253) | p Value | ||
|---|---|---|---|---|
| Age (years) | 68.84 ± 14.83 | 74.72 ± 9.95 | <0.001 a | |
| Sex (n/%) | Female | 505 (39.4%) | 103 (40.7%) | |
| Male | 778 (60.6%) | 150 (59.3%) | 0.688 b | |
| Present comorbidities (n/%) | HT | 568 (44.3%) | 149 (58.9%) | <0.001 b |
| CVD | 353 (27.5%) | 112 (44.3%) | <0.001 b | |
| CKD | 116 (9.0%) | 17 (6.7%) | 0.230 b | |
| DM | 382 (29.8%) | 79 (31.2%) | 0.645 b | |
| ND | 239 (18.6%) | 27 (10.7%) | 0.002 b | |
| Malignancy | 120 (9.4%) | 23 (9.1%) | 0.896 b | |
| APACHE II | 19.22 ± 9.13 | 21.42 ± 8.81 | 0.001 a | |
| Duration of symptoms (days) | 7.05 ± 3.28 | 7.22 ± 3.44 | 0.453 a | |
| Length of ICU stay (days) | 10.78 ± 7.94 | 10.35 ± 8.52 | 0.213 c | |
| Length of hospital stay (days) | 15.00 ± 9.05 | 14.18 ± 9.65 | 0.041 c | |
| Severity of disease (n/%) | Moderate | 60 (4.7%) | 13 (5.1%) | |
| Severe | 174 (13.6%) | 29 (11.5%) | 0.648 b | |
| Critical | 1049 (81.8%) | 211 (83.4%) | ||
| Respiratory treatment Modalities (n/%) | Non-invasive | 743 (57.9%) | 118 (46.6%) | 0.001 b |
| Invasive | 540 (42.1%) | 135 (53.4%) | ||
| Survival (n/%) | Discharge | 761 (59.3%) | 125 (49.4%) | 0.004 b |
| Death | 522 (40.7%) | 128 (50.6%) | ||
| NPD Group (n = 1283) | COPD Group (n = 253) | p Value c | |
|---|---|---|---|
| Eosinophil (×109/L) | 0.49 ± 0.82 | 0.51 ± 0.78 | 0.557 |
| Lymphocyte (%) | 11.33 ± 10.97 | 9.76 ± 6.52 | 0.078 |
| Platelet (×109/L) | 248.09 ± 115.35 | 244.68 ± 111.35 | 0.666 |
| NLR | 12.90 ± 12.94 | 14.30 ± 12.61 | 0.093 |
| CRP (mg/L) | 124.91 ± 100.11 | 122.72 ± 93.14 | 0.766 |
| PCT (µg/L) | 0.41 ± 0.72 | 0.36 ± 0.58 | 0.466 |
| D dimer (mg/L) | 4.99 ± 14.14 | 5.51 ± 17.56 | 0.447 |
| IL-6 (pg/mL) | 124.97 ± 212.03 | 139.79 ± 260.81 | 0.337 |
| Ferritin (µg/L) | 872.54 ± 1551.85 | 651.48 ± 896.26 | <0.001 |
| Survivor (n = 125) | Non-Survivor (n = 128) | p Value | ||
|---|---|---|---|---|
| Age (years) | 74.79 ± 11.08 | 74.66 ± 8.73 | 0.914 a | |
| Sex (female) | 53 (42.4%) | 50 (39.1%) | 0.589 b | |
| Comorbidities | HT | 67 (53.6%) | 82 (64.1%) | 0.091 b |
| CVD | 57 (45.6%) | 55 (43.0%) | 0.674 b | |
| ND | 14 (11.2%) | 123 (10.2%) | 0.840 b | |
| Renal disease | 5 (4%) | 12 (9.4%) | 0.088 b | |
| DM | 36 (28.8%) | 43 (33.6%) | 0.411 b | |
| Malignancy | 8 (6.4%) | 15 (11.7%) | 0.141 b | |
| APACHE II | 15.78 ± 5.21 | 26.93 ± 8.09 | <0.001 a | |
| Duration of symptoms (days) | 7.12 ± 3.21 | 7.31 ± 3.65 | 0.724 a | |
| Length of ICU stay (days) | 10.16 ± 8.38 | 10.54 ± 8.67 | 0.644 c | |
| Length of hospital stay (days) | 15.62 ± 9.77 | 12.77 ± 9.36 | 0.002 c | |
| Severity of disease (n/%) | Moderate | 73 (100%) | 0 (0%) | |
| Severe | 202 (99.5%) | 1 (0.5%) | n/c | |
| Critical | 649 (51.5%) | 611 (48.5%) | ||
| Respiratory treatment modalities | Non-invasive | 117 (93.6%) | 1 (0.8%) | <0.001 b |
| IMV | 8 (6.4%) | 127 (99.2%) | ||
| Survivor (n = 125) | Non-Survivor (n = 128) | p Value c | |
|---|---|---|---|
| Eosinophil (×109/L) | 0.62 ± 0.80 | 0.41 ± 0.74 | <0.001 |
| Lymphocyte (%) | 11.27 ± 6.83 | 8.27 ± 5.86 | <0.001 |
| Platelet (×109/L) | 264.54 ± 114.14 | 225.89 ± 105.43 | 0.008 |
| NLR | 10.88 ± 10.08 | 17.65 ± 13.91 | <0.001 |
| CRP (mg/L) | 113.19 ± 80.92 | 132.03 ± 108.48 | 0.264 |
| PCT (µg/L) | 0.31 ± 0.55 | 0.41 ± 0.61 | 0.002 |
| D dimer (mg/L) | 4.39 ± 19.70 | 6.60 ± 15.18 | 0.104 |
| IL-6 (pg/mL) | 74.17 ± 111.97 | 203.87 ± 337.16 | <0.001 |
| Ferritin (µg/L) | 570.38 ± 897.25 | 730.67 ± 891.66 | 0.174 |
| p Value | Odds Ratio | 95% CI | |
|---|---|---|---|
| APACHE II | 0.058 | - | - |
| Length of hospital stay | 0.010 | 1.083 | 1.019–1.150 |
| IMV | <0.001 | 38,908.467 | 117.078–12,930,435.95 |
| Eosinophil (×109/L) | 0.215 | - | - |
| Platelet (×109/L) | 0.100 | - | - |
| NLR | 0.011 | 1.134 | 1.028–1.250 |
| IL-6 (pg/mL) | 0.301 | - | - |
| PCT (µg/L) | 0.029 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calili, D.K.; Yuzbasioglu, N.; Gozukara, M.G.; Bolukbasi, D.; Turan, I.O.; Izdes, S. Impact of SARS-CoV-2 Pneumonia on Chronic Obstructive Pulmonary Disease: A Comparative Study in ICU Patients. Viruses 2025, 17, 1594. https://doi.org/10.3390/v17121594
Calili DK, Yuzbasioglu N, Gozukara MG, Bolukbasi D, Turan IO, Izdes S. Impact of SARS-CoV-2 Pneumonia on Chronic Obstructive Pulmonary Disease: A Comparative Study in ICU Patients. Viruses. 2025; 17(12):1594. https://doi.org/10.3390/v17121594
Chicago/Turabian StyleCalili, Duygu Kayar, Nihal Yuzbasioglu, Melih Gaffar Gozukara, Demet Bolukbasi, Isil Ozkocak Turan, and Seval Izdes. 2025. "Impact of SARS-CoV-2 Pneumonia on Chronic Obstructive Pulmonary Disease: A Comparative Study in ICU Patients" Viruses 17, no. 12: 1594. https://doi.org/10.3390/v17121594
APA StyleCalili, D. K., Yuzbasioglu, N., Gozukara, M. G., Bolukbasi, D., Turan, I. O., & Izdes, S. (2025). Impact of SARS-CoV-2 Pneumonia on Chronic Obstructive Pulmonary Disease: A Comparative Study in ICU Patients. Viruses, 17(12), 1594. https://doi.org/10.3390/v17121594

