A Novel Nanopore-Based Genotyping System for Norovirus GII: Validation and Application to Pediatric Gastroenteritis Cases in Moscow, Russia
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of ONT Compatible NoV-GII Genotyping Primers
2.2. Pipeline for Automated Genotyping and Phylogenetics Analysis
2.3. Sample Collection and Initial Screening
2.4. Target Enrichment and Nanopore Sequencing
3. Results
3.1. Development of ONT-Compatible NoV-GII Genotyping System
3.2. Pipeline for Automated Genotyping and Phylogenetic Analysis
3.3. In Vitro Studies: Genotyping Results, Phylogenetic and Epidemiological Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.M.; Hall, A.J.; Robinson, A.E.; Verhoef, L.; Premkumar, P.; Parashar, U.D.; Koopmans, M.; Lopman, B.A. Global Prevalence of Norovirus in Cases of Gastroenteritis: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2014, 14, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Akdag, A.I.; Gupta, S.; Khan, N.; Upadhayay, A.; Ray, P. Epidemiology and Clinical Features of Rotavirus, Adenovirus, and Astrovirus Infections and Coinfections in Children with Acute Gastroenteritis Prior to Rotavirus Vaccine Introduction in Meerut, North India. J. Med. Virol. 2020, 92, 1102–1109. [Google Scholar] [CrossRef]
- Alsved, M.; Fraenkel, C.-J.; Bohgard, M.; Widell, A.; Söderlund-Strand, A.; Lanbeck, P.; Holmdahl, T.; Isaxon, C.; Gudmundsson, A.; Medstrand, P.; et al. Sources of Airborne Norovirus in Hospital Outbreaks. Clin. Infect. Dis. 2020, 70, 2023–2028. [Google Scholar] [CrossRef]
- Nicolay, N.; Boulet, L.; Le Bourhis-Zaimi, M.; Badjadj-Kab, L.; Henry, L.; Erouart, S.; Borgey, F. The Role of Dependency in a Norovirus Outbreak in a Nursing Home. Eur. Geriatr. Med. 2018, 9, 837–844. [Google Scholar] [CrossRef]
- Isakbaeva, E.T.; Widdowson, M.-A.; Beard, R.S.; Bulens, S.N.; Mullins, J.; Monroe, S.S.; Bresee, J.; Sassano, P.; Cramer, E.H.; Glass, R.I. Norovirus Transmission on Cruise Ship. Emerg. Infect. Dis. 2005, 11, 154–157. [Google Scholar] [CrossRef] [PubMed]
- CDC Norovirus. Available online: https://www.cdc.gov/norovirus/data-research/index.html#:~:text=Norovirus%20worldwide,children%20under%205%20years%20old (accessed on 29 August 2024).
- Vinjé, J.; Estes, M.K.; Esteves, P.; Green, K.Y.; Katayama, K.; Knowles, N.J.; L’Homme, Y.; Martella, V.; Vennema, H.; White, P.A.; et al. ICTV Virus Taxonomy Profile: Caliciviridae. J. Gen. Virol. 2019, 100, 1469–1470. [Google Scholar] [CrossRef]
- Chhabra, P.; de Graaf, M.; Parra, G.I.; Chan, M.C.-W.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H.; et al. Updated Classification of Norovirus Genogroups and Genotypes. J. Gen. Virol. 2019, 100, 1393–1406. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K.B.; Dilley, A.; O’Grady, T.; Johnson, J.A.; Lopman, B.; Viscidi, E. A Narrative Review of Norovirus Epidemiology, Biology, and Challenges to Vaccine Development. npj Vaccines 2024, 9, 94. [Google Scholar] [CrossRef]
- Vodop’ianov, A.S.; Pisanov, R.V.; Vodop’ianov, S.O.; Chemisova, O.S.; Gerasimenko, A.A.; Noskov, A.K.; Slis, S.S.; Nenadskaya, S.A.; Koreneva, A.D.; Kolomoitseva, A.V.; et al. Assessment of Genetic Diversity of Noroviruses Circulating in TemporaryAccommodation Centers for Refugees in the Rostov Region in 2022 Using the NoroNetRus Online Software. PHLE 2022, 1, 82–88. [Google Scholar] [CrossRef]
- Cannon, J.L.; Bonifacio, J.; Bucardo, F.; Buesa, J.; Bruggink, L.; Chan, M.C.-W.; Fumian, T.M.; Giri, S.; Gonzalez, M.D.; Hewitt, J.; et al. Global Trends in Norovirus Genotype Distribution among Children with Acute Gastroenteritis. Emerg. Infect. Dis. 2021, 27, 1438–1445. [Google Scholar] [CrossRef]
- Winder, N.; Gohar, S.; Muthana, M. Norovirus: An Overview of Virology and Preventative Measures. Viruses 2022, 14, 2811. [Google Scholar] [CrossRef]
- On the State of Sanitary and Epidemiological Wellbeing of the Population in the Russian Federation in 2020: State Report; Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing: Moscow, Russia, 2021; ISBN 978-5-7508-1849-5.
- On the State of Sanitary and Epidemiological Wellbeing of the Population in the Russian Federation in 2021: State Report; Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing: Moscow, Russia, 2022; ISBN 978-5-7508-1910-2.
- On the State of Sanitary and Epidemiological Wellbeing of the Population in the Russian Federation in 2022: State Report; Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing: Moscow, Russia, 2023; ISBN 978-5-7508-2012-2.
- On the State of Sanitary and Epidemiological Wellbeing of the Population in the Russian Federation in 2023: State Report; Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing: Moscow, Russia, 2024; ISBN 978-5-7508-2132-7.
- On the State of Sanitary and Epidemiological Wellbeing of the Population in the Russian Federation in 2024: State Report; Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing: Moscow, Russia, 2025; ISBN 978-5-7508-2350-5.
- MU 3.1.1.2969-11 Epidemiological Surveillance, Laboratory Diagnosis and Prevention of Norovirus Infection: Methodological Guidelines; Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2012; ISBN 978-5-7508-1108-3.
- Katayama, K.; Shirato-Horikoshi, H.; Kojima, S.; Kageyama, T.; Oka, T.; Hoshino, F.B.; Fukushi, S.; Shinohara, M.; Uchida, K.; Suzuki, Y.; et al. Phylogenetic Analysis of the Complete Genome of 18 Norwalk-like Viruses. Virology 2002, 299, 225–239. [Google Scholar] [CrossRef]
- Parra, G.I.; Squires, R.B.; Karangwa, C.K.; Johnson, J.A.; Lepore, C.J.; Sosnovtsev, S.V.; Green, K.Y. Static and Evolving Norovirus Genotypes: Implications for Epidemiology and Immunity. PLoS Pathog. 2017, 13, e1006136. [Google Scholar] [CrossRef]
- Scott, G.; Ryder, D.; Buckley, M.; Hill, R.; Treagus, S.; Stapleton, T.; Walker, D.I.; Lowther, J.; Batista, F.M. Long Amplicon Nanopore Sequencing for Dual-Typing RdRp and VP1 Genes of Norovirus Genogroups I and II in Wastewater. Food Environ. Virol. 2024, 16, 479–491. [Google Scholar] [CrossRef]
- Kroneman, A.; Vega, E.; Vennema, H.; Vinjé, J.; White, P.A.; Hansman, G.; Green, K.; Martella, V.; Katayama, K.; Koopmans, M. Proposal for a Unified Norovirus Nomenclature and Genotyping. Arch. Virol. 2013, 158, 2059–2068. [Google Scholar] [CrossRef]
- Brown, J.R.; Roy, S.; Ruis, C.; Yara Romero, E.; Shah, D.; Williams, R.; Breuer, J. Norovirus Whole-Genome Sequencing by SureSelect Target Enrichment: A Robust and Sensitive Method. J. Clin. Microbiol. 2016, 54, 2530–2537. [Google Scholar] [CrossRef]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Brister, J.R.; Chan, J.; Comeau, D.C.; Connor, R.; DiCuccio, M.; Farrell, C.M.; Feldgarden, M.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2024, 52, D33–D43. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Gukov, B.; Chernistov, A.; Nikolaeva, P.; Matsvay, A. NorotyperII. Available online: https://github.com/laboratory-of-molecular-epidemiology/norotyperii (accessed on 30 September 2025).
- Di Tommaso, P.; Chatzou, M.; Floden, E.W.; Barja, P.P.; Palumbo, E.; Notredame, C. Nextflow Enables Reproducible Computational Workflows. Nat. Biotechnol. 2017, 35, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.; Volkening, J. Porechop. Available online: https://github.com/rrwick/porechop/ (accessed on 30 September 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Vierstraete, A.R.; Braeckman, B.P. Amplicon_sorter: A Tool for Reference-free Amplicon Sorting Based on Sequence Similarity and for Building Consensus Sequences. Ecol. Evol. 2022, 12, e8603. [Google Scholar] [CrossRef]
- McGinnis, S.; Madden, T.L. BLAST: At the Core of a Powerful and Diverse Set of Sequence Analysis Tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Steenwyk, J.L.; Buida, T.J.; Li, Y.; Shen, X.-X.; Rokas, A. ClipKIT: A Multiple Sequence Alignment Trimming Software for Accurate Phylogenomic Inference. PLoS Biol. 2020, 18, e3001007. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Bi, C.; Qiu, Z.; Li, M.; Gao, X. DeepSimulator1.5: A More Powerful, Quicker and Lighter Simulator for Nanopore Sequencing. Bioinformatics 2020, 36, 2578–2580. [Google Scholar] [CrossRef]
- Fu, J.; Ai, J.; Bao, C.; Zhang, J.; Wu, Q.; Zhu, L.; Hu, J.; Xing, Z. Evolution of the GII.3[P12] Norovirus from 2010 to 2019 in Jiangsu, China. Gut Pathog. 2021, 13, 34. [Google Scholar] [CrossRef]
- Kendra, J.A.; Tohma, K.; Parra, G.I. Global and Regional Circulation Trends of Norovirus Genotypes and Recombinants, 1995–2019: A Comprehensive Review of Sequences from Public Databases. Rev. Med. Virol. 2022, 32, e2354. [Google Scholar] [CrossRef] [PubMed]
- Methodological Recommendations MR 4.4/3.1.1.0230-21 “Genotyping in Epidemiological Surveillance of Norovirus Infection” (Approved by the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing on January 19, 2021) | GARANT. Available online: https://base.garant.ru/405678783/ (accessed on 10 June 2025).
- Bull, R.A.; Hansman, G.S.; Clancy, L.E.; Tanaka, M.M.; Rawlinson, W.D.; White, P.A. Norovirus Recombination in ORF1/ORF2 Overlap. Emerg. Infect. Dis. 2005, 11, 1079–1085. [Google Scholar] [CrossRef]
- Motomura, K.; Yokoyama, M.; Ode, H.; Nakamura, H.; Mori, H.; Kanda, T.; Oka, T.; Katayama, K.; Noda, M.; Tanaka, T.; et al. Divergent Evolution of Norovirus GII/4 by Genome Recombination from May 2006 to February 2009 in Japan. J. Virol. 2010, 84, 8085–8097. [Google Scholar] [CrossRef]
- Mahar, J.E.; Bok, K.; Green, K.Y.; Kirkwood, C.D. The Importance of Intergenic Recombination in Norovirus GII.3 Evolution. J. Virol. 2013, 87, 3687–3698. [Google Scholar] [CrossRef]
- Khamrin, P.; Kumthip, K.; Yodmeeklin, A.; Jampanil, N.; Phengma, P.; Yamsakul, P.; Okitsu, S.; Kobayashi, T.; Ushijima, H.; Maneekarn, N. Changing Predominance of Norovirus Recombinant Strains GII.2[P16] to GII.4[P16] and GII.4[P31] in Thailand, 2017 to 2018. Microbiol. Spectr. 2022, 10, e00448-22. [Google Scholar] [CrossRef]
- Ao, Y.; Lu, L.; Xu, J. Emergence of GII.4 Sydney[P16]-like Norovirus-Associated Gastroenteritis, China, 2020–2022. Emerg. Infect. Dis. 2023, 29, 1837. [Google Scholar] [CrossRef]
- Van Beek, J.; De Graaf, M.; Al-Hello, H.; Allen, D.J.; Ambert-Balay, K.; Botteldoorn, N.; Brytting, M.; Buesa, J.; Cabrerizo, M.; Chan, M.; et al. Molecular Surveillance of Norovirus, 2005–2016: An Epidemiological Analysis of Data Collected from the NoroNet Network. Lancet Infect. Dis. 2018, 18, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Ao, Y.; Jia, R.; Zhong, H.; Liu, P.; Xu, M.; Su, L.; Cao, L.; Xu, J. Changing Predominance of Norovirus Strains in Children with Acute Gastroenteritis in Shanghai, 2018–2021. Virol. Sin. 2023, 38, 671–679. [Google Scholar] [CrossRef]
- De Graaf, M.; Van Beek, J.; Vennema, H.; Podkolzin, A.T.; Hewitt, J.; Bucardo, F.; Templeton, K.; Mans, J.; Nordgren, J.; Reuter, G.; et al. Emergence of a Novel GII.17 Norovirus—End of the GII.4 Era? Eurosurveillance 2015, 20, 21178. [Google Scholar] [CrossRef]
- Shirai, T.; Phadungsombat, J.; Ushikai, Y.; Yoshikaie, K.; Shioda, T.; Sakon, N. Epidemiological Features of Human Norovirus Genotypes before and after COVID-19 Countermeasures in Osaka, Japan. Viruses 2024, 16, 654. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-T.; Xu, Q.; Liu, M.-C.; Wang, T.; Che, T.-L.; Teng, A.-Y.; Lv, C.-L.; Wang, G.-L.; Hong, F.; Liu, W.; et al. Prevalence and Etiological Characteristics of Norovirus Infection in China: A Systematic Review and Meta-Analysis. Viruses 2023, 15, 1336. [Google Scholar] [CrossRef]
- Chhabra, P.; Wong, S.; Niendorf, S.; Lederer, I.; Vennema, H.; Faber, M.; Nisavanh, A.; Jacobsen, S.; Williams, R.; Colgan, A.; et al. Increased Circulation of GII.17 Noroviruses, Six European Countries and the United States, 2023 to 2024. Eurosurveillance 2024, 29, 2400625. [Google Scholar] [CrossRef] [PubMed]
- Siebenga, J.J.; Vennema, H.; Zheng, D.; Vinjé, J.; Lee, B.E.; Pang, X.; Ho, E.C.M.; Lim, W.; Choudekar, A.; Broor, S.; et al. Norovirus Illness Is a Global Problem: Emergence and Spread of Norovirus GII.4 Variants, 2001–2007. J. Infect. Dis. 2009, 200, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Epifanova, N.V.; Sashina, T.A.; Morozova, O.V.; Oparina, S.V.; Novikova, N.A. An Increase in Prevalence of Recombinant GII.3[P12] Norovirus in Sporadic Acute Diarrhea in Children in Nizhny Novgorod, Russia, 2018–2021. Virus Genes 2022, 58, 467–472. [Google Scholar] [CrossRef] [PubMed]







| Primer | Sequence |
|---|---|
| noro_gt_fw | TTTCTGTTGGTGCTGATATTGC- GGMAACACBGTCATMTGTGCMAC |
| noro_gt_rv | ACTTGCCTGTCGCTCTATCTTC- CCWGCWAHRAAAGCTCCAGCCATTA |
| noro_VP1_fw | TTTCTGTTGGTGCTGATATTGC- GAGGGCGATCGCAATCTKGCTCCC |
| noro_RdRp_rv | ACTTGCCTGTCGCTCTATCTTC- GCGTCAYTCGACGCCATCTTCATTCACA |
| Primer | Fraction of Sequences Covered with No Mismatches | Fraction of Sequences Covered with No Mismatches in Terminal 5 3′ Bases | Fraction of Sequences Covered with No More than 1 Mismatch |
|---|---|---|---|
| noro_gt_fw | 72.5% | 97.1% | 92.1% |
| noro_gt_rv | 68.0% | 99.4% | 91.2% |
| noro_VP1_fw | 98.1% | 98.3% | 99.5% |
| noro_RdRp_rv | 93.2% | 98.7% | 99.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stetsenko, I.F.; Lapshina, V.K.; Nikolaeva, P.A.; Gukov, B.S.; Chernitsov, A.V.; Luparev, A.R.; Davydova, E.E.; Gordukova, M.A.; Galeeva, E.V.; Matsvay, A.D.; et al. A Novel Nanopore-Based Genotyping System for Norovirus GII: Validation and Application to Pediatric Gastroenteritis Cases in Moscow, Russia. Viruses 2025, 17, 1440. https://doi.org/10.3390/v17111440
Stetsenko IF, Lapshina VK, Nikolaeva PA, Gukov BS, Chernitsov AV, Luparev AR, Davydova EE, Gordukova MA, Galeeva EV, Matsvay AD, et al. A Novel Nanopore-Based Genotyping System for Norovirus GII: Validation and Application to Pediatric Gastroenteritis Cases in Moscow, Russia. Viruses. 2025; 17(11):1440. https://doi.org/10.3390/v17111440
Chicago/Turabian StyleStetsenko, Ivan F., Vasilina K. Lapshina, Polina A. Nikolaeva, Boris S. Gukov, Alexandr V. Chernitsov, Andrey R. Luparev, Ekaterina E. Davydova, Maria A. Gordukova, Elena V. Galeeva, Alina D. Matsvay, and et al. 2025. "A Novel Nanopore-Based Genotyping System for Norovirus GII: Validation and Application to Pediatric Gastroenteritis Cases in Moscow, Russia" Viruses 17, no. 11: 1440. https://doi.org/10.3390/v17111440
APA StyleStetsenko, I. F., Lapshina, V. K., Nikolaeva, P. A., Gukov, B. S., Chernitsov, A. V., Luparev, A. R., Davydova, E. E., Gordukova, M. A., Galeeva, E. V., Matsvay, A. D., & Shipulin, G. A. (2025). A Novel Nanopore-Based Genotyping System for Norovirus GII: Validation and Application to Pediatric Gastroenteritis Cases in Moscow, Russia. Viruses, 17(11), 1440. https://doi.org/10.3390/v17111440

