Neurological Manifestations of SARS-CoV-2
Abstract
1. Introduction
2. Methods
3. Results
3.1. CNS Involvement in Human SARS-CoV-2 Infection
3.1.1. Neurological Symptoms in COVID-19 Patients
3.1.2. Neuropathological Findings
3.1.3. SARS-CoV-2 Neurotropism
3.1.4. Immune Response in the CNS
3.1.5. Neuroinflammation
3.1.6. Implications for Long-Term Neurological Sequelae
3.1.7. Multi-Omics Insights into COVID-19–Associated CNS Pathology
3.2. Animal Models
3.3. Non-Human Primates (NHPs)
3.3.1. SARS-CoV-2 CNS Tropism and Neuropathological Findings in NHPs
3.3.2. CNS Immune and Inflammatory Response in NHPs
3.3.3. Summary and Outlook in NHPs
3.4. Mouse Models
3.4.1. SARS-CoV CNS Tropism and Neuropathological Findings in Mice
3.4.2. CNS Immune and Inflammatory Response in Mice
3.4.3. Summary and Outlook in Mice
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Yang, X.; Li, Y.; Huang, J.; Jiang, J.; Su, N. Specific Cytokines in the Inflammatory Cytokine Storm of Patients with COVID-19-Associated Acute Respiratory Distress Syndrome and Extrapulmonary Multiple-Organ Dysfunction. Virol. J. 2021, 18, 117. [Google Scholar] [CrossRef]
- Zingaropoli, M.A.; Iannetta, M.; Piermatteo, L.; Pasculli, P.; Latronico, T.; Mazzuti, L.; Campogiani, L.; Duca, L.; Ferraguti, G.; De Michele, M.; et al. Neuro-Axonal Damage and Alteration of Blood–Brain Barrier Integrity in COVID-19 Patients. Cells 2022, 11, 2480. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, K.E.; Rosenberg, G.A. Shared Inflammatory Pathology of Stroke and COVID-19. Int. J. Mol. Sci. 2022, 23, 5150. [Google Scholar] [CrossRef]
- Hernández-Parra, H.; Reyes-Hernández, O.D.; Figueroa-González, G.; González-Del Carmen, M.; González-Torres, M.; Peña-Corona, S.I.; Florán, B.; Cortés, H.; Leyva-Gómez, G. Alteration of the Blood-Brain Barrier by COVID-19 and Its Implication in the Permeation of Drugs into the Brain. Front. Cell. Neurosci. 2023, 17, 1125109. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, L.; Albecka, A.; Mallery, D.L.; Kellner, M.J.; Paul, D.; Carter, A.P.; James, L.C.; Lancaster, M.A. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell 2020, 27, 951. [Google Scholar] [CrossRef] [PubMed]
- Stüdle, C.; Nishihara, H.; Wischnewski, S.; Kulsvehagen, L.; Perriot, S.; Ishikawa, H.; Schroten, H.; Frank, S.; Deigendesch, N.; Du Pasquier, R.; et al. SARS-CoV-2 Infects Epithelial Cells of the Blood-Cerebrospinal Fluid Barrier Rather than Endothelial Cells or Pericytes of the Blood-Brain Barrier. Fluids Barriers CNS 2023, 20, 76. [Google Scholar] [CrossRef]
- Qiao, H.; Deng, X.; Qui, L.; Qu, Y.; Chiu, Y.; Chen, F.; Xia, S.; Muenzel, C.; Ge, T.; Zhang, Z.; et al. SARS-CoV-2 Induces Blood-Brain Barrier and Choroid Plexus Barrier Impairments and Vascular Inflammation in Mice. J. Med. Virol. 2024, 96, e29671. [Google Scholar] [CrossRef]
- Misra, S.; Kolappa, K.; Prasad, M.; Radhakrishnan, D.; Thakur, K.T.; Solomon, T.; Michael, B.D.; Winkler, A.S.; Beghi, E.; Guekht, A.; et al. Frequency of Neurologic Manifestations in COVID-19: A Systematic Review and Meta-Analysis. Neurology 2021, 97, e2269–e2281. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Siati, D.R.D.; Horoi, M.; Bon, S.D.L.; Rodriguez, A.; Dequanter, D.; Blecic, S.; Afia, F.E.; Distinguin, L.; et al. Olfactory and Gustatory Dysfunctions as a Clinical Presentation of Mild-to-Moderate Forms of the Coronavirus Disease (COVID-19): A Multicenter European Study. Eur. Arch. Otorhinolaryngol. 2020, 277, 2251. [Google Scholar] [CrossRef]
- Ho, C.-Y.; Salimian, M.; Hegert, J.; O’Brien, J.; Choi, S.G.; Ames, H.; Morris, M.; Papadimitriou, J.C.; Mininni, J.; Niehaus, P.; et al. Postmortem Assessment of Olfactory Tissue Degeneration and Microvasculopathy in Patients with COVID-19. JAMA Neurol. 2022, 79, 544. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 Is Associated with Changes in Brain Structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Lou, J.J.; Movassaghi, M.; Gordy, D.; Olson, M.G.; Zhang, T.; Khurana, M.S.; Chen, Z.; Perez-Rosendahl, M.; Thammachantha, S.; Singer, E.J.; et al. Neuropathology of COVID-19 (Neuro-COVID): Clinicopathological Update. Free Neuropathol. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683. [Google Scholar] [CrossRef]
- Netland, J.; Meyerholz, D.K.; Moore, S.; Cassell, M.; Perlman, S. Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. J. Virol. 2008, 82, 7264–7275. [Google Scholar] [CrossRef]
- Thakur, K.T.; Miller, E.H.; Glendinning, M.D.; Al-Dalahmah, O.; Banu, M.A.; Boehme, A.K.; Boubour, A.L.; Bruce, S.S.; Chong, A.M.; Claassen, J.; et al. COVID-19 Neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021, 144, 2696–2708. [Google Scholar] [CrossRef]
- Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.-Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; et al. SARS-CoV-2 Infection and Persistence in the Human Body and Brain at Autopsy. Nature 2022, 612, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of Patients with COVID-19 in Germany: A Post-Mortem Case Series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Schurink, B.; Roos, E.; Radonic, T.; Barbe, E.; Bouman, C.S.C.; De Boer, H.H.; De Bree, G.J.; Bulle, E.B.; Aronica, E.M.; Florquin, S.; et al. Viral Presence and Immunopathology in Patients with Lethal COVID-19: A Prospective Autopsy Cohort Study. Lancet Microbe 2020, 1, e290–e299. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Sillett, R.; Zhu, L.; Mendel, J.; Camplisson, I.; Dercon, Q.; Harrison, P.J. Neurological and Psychiatric Risk Trajectories after SARS-CoV-2 Infection: An Analysis of 2-Year Retrospective Cohort Studies Including 1 284 437 Patients. Lancet Psychiatry 2022, 9, 815–827. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, H.; Fan, S.; Feng, F.; Li, Z.; Cheng, L.; Li, H.; Liu, Y.; Zhan, H.; Feng, X.; et al. Elucidating SARS-CoV-2 Neurotropism: A Comprehensive Mendelian Randomization Study on Cerebrospinal Fluid Biomarkers and Their Relevance to COVID-19 Neurological Manifestations. Virol. J. 2025, 22, 123. [Google Scholar] [CrossRef]
- Vogrig, A.; Tartaglia, S.; Dentoni, M.; Fabris, M.; Bax, F.; Belluzzo, M.; Verriello, L.; Bagatto, D.; Gastaldi, M.; Tocco, P.; et al. Central Nervous System Immune-Related Disorders after SARS-CoV-2 Vaccination: A Multicenter Study. Front. Immunol. 2024, 15, 1344184. [Google Scholar] [CrossRef]
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological Associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020, 77, 1018. [Google Scholar] [CrossRef]
- Poloni, T.E.; Medici, V.; Moretti, M.; Visonà, S.D.; Cirrincione, A.; Carlos, A.F.; Davin, A.; Gagliardi, S.; Pansarasa, O.; Cereda, C.; et al. COVID-19-related Neuropathology and Microglial Activation in Elderly with and without Dementia. Brain Pathol. 2021, 31, e12997. [Google Scholar] [CrossRef]
- Frontera, J.A.; Sabadia, S.; Lalchan, R.; Fang, T.; Flusty, B.; Millar-Vernetti, P.; Snyder, T.; Berger, S.; Yang, D.; Granger, A.; et al. A Prospective Study of Neurologic Disorders in Hospitalized Patients with COVID-19 in New York City. Neurology 2021, 96, e575–e586. [Google Scholar] [CrossRef] [PubMed]
- Klironomos, S.; Tzortzakakis, A.; Kits, A.; Öhberg, C.; Kollia, E.; Ahoromazdae, A.; Almqvist, H.; Aspelin, Å.; Martin, H.; Ouellette, R.; et al. Nervous System Involvement in Coronavirus Disease 2019: Results from a Retrospective Consecutive Neuroimaging Cohort. Radiology 2020, 297, E324–E334. [Google Scholar] [CrossRef]
- Albornoz, E.A.; Amarilla, A.A.; Modhiran, N.; Parker, S.; Li, X.X.; Wijesundara, D.K.; Aguado, J.; Zamora, A.P.; McMillan, C.L.D.; Liang, B.; et al. SARS-CoV-2 Drives NLRP3 Inflammasome Activation in Human Microglia through Spike Protein. Mol. Psychiatry 2023, 28, 2878–2893. [Google Scholar] [CrossRef]
- Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O.-E.; Liu, F.; Dai, Y.; et al. Neuroinvasion of SARS-CoV-2 in Human and Mouse Brain. J. Exp. Med. 2021, 218, e20202135. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; et al. Olfactory Transmucosal SARS-CoV-2 Invasion as a Port of Central Nervous System Entry in Individuals with COVID-19. Nat. Neurosci. 2021, 24, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-P.; He, Z.-C.; Yao, X.-H.; Tang, R.; Ma, J.; Luo, T.; Zhu, C.; Li, T.-R.; Liu, X.; Zhang, D.; et al. COVID-19-Associated Monocytic Encephalitis (CAME): Histological and Proteomic Evidence from Autopsy. Signal Transduct. Target. Ther. 2023, 8, 24. [Google Scholar] [CrossRef]
- Benameur, K.; Agarwal, A.; Auld, S.C.; Butters, M.P.; Webster, A.S.; Ozturk, T.; Howell, J.C.; Bassit, L.C.; Velasquez, A.; Schinazi, R.F.; et al. Encephalopathy and Encephalitis Associated with Cerebrospinal Fluid Cytokine Alterations and Coronavirus Disease, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis. 2020, 26, 2016–2021. [Google Scholar] [CrossRef]
- Leng, A.; Shah, M.; Ahmad, S.A.; Premraj, L.; Wildi, K.; Li Bassi, G.; Pardo, C.A.; Choi, A.; Cho, S.-M. Pathogenesis Underlying Neurological Manifestations of Long COVID Syndrome and Potential Therapeutics. Cells 2023, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-Cell Landscape of Bronchoalveolar Immune Cells in Patients with COVID-19. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef]
- Wilk, A.J.; Rustagi, A.; Zhao, N.Q.; Roque, J.; Martínez-Colón, G.J.; McKechnie, J.L.; Ivison, G.T.; Ranganath, T.; Vergara, R.; Hollis, T.; et al. A Single-Cell Atlas of the Peripheral Immune Response in Patients with Severe COVID-19. Nat. Med. 2020, 26, 1070–1076. [Google Scholar] [CrossRef]
- Ishikawa, M.; Shimada, Y.; Ozono, T.; Matsumoto, H.; Ogura, H.; Kihara, K.; Mochizuki, H.; Okuno, T.; Sakakibara, S.; Kinoshita, M.; et al. Single-Cell RNA-Seq Analysis Identifies Distinct Myeloid Cells in a Case with Encephalitis Temporally Associated with COVID-19 Vaccination. Front. Immunol. 2023, 14, 998233. [Google Scholar] [CrossRef]
- Jung, N.; Kim, T.-K. Spatial Transcriptomics in Neuroscience. Exp. Mol. Med. 2023, 55, 2105–2115. [Google Scholar] [CrossRef]
- Alldred, M.J.; Ginsberg, S.D. Microisolation of Spatially Characterized Single Populations of Neurons for RNA Sequencing from Mouse and Postmortem Human Brain Tissues. J. Clin. Med. 2023, 12, 3304. [Google Scholar] [CrossRef]
- Lee, S.; Devanney, N.A.; Golden, L.R.; Smith, C.T.; Schwartz, J.L.; Walsh, A.E.; Clarke, H.A.; Goulding, D.S.; Allenger, E.J.; Morillo-Segovia, G.; et al. APOE Modulates Microglial Immunometabolism in Response to Age, Amyloid Pathology, and Inflammatory Challenge. Cell Rep. 2023, 42, 112196. [Google Scholar] [CrossRef]
- Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020, 182, 59–72.e15. [Google Scholar] [CrossRef]
- Messner, C.B.; Demichev, V.; Wendisch, D.; Michalick, L.; White, M.; Freiwald, A.; Textoris-Taube, K.; Vernardis, S.I.; Egger, A.-S.; Kreidl, M.; et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020, 11, 11–24.e4. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, D.; Farztdinov, V.; Yan, Y.; Meisel, C.; Sadlowski, H.; Kühn, J.; Perschel, F.H.; Endres, M.; Düzel, E.; Vielhaber, S.; et al. The Brain Reacting to COVID-19: Analysis of the Cerebrospinal Fluid Proteome, RNA and Inflammation. J. Neuroinflammation 2023, 20, 30. [Google Scholar] [CrossRef]
- Schwabenland, M.; Salié, H.; Tanevski, J.; Killmer, S.; Lago, M.S.; Schlaak, A.E.; Mayer, L.; Matschke, J.; Püschel, K.; Fitzek, A.; et al. Deep Spatial Profiling of Human COVID-19 Brains Reveals Neuroinflammation with Distinct Microanatomical Microglia-T-Cell Interactions. Immunity 2021, 54, 1594–1610.e11. [Google Scholar] [CrossRef]
- Lee, M.H.; Perl, D.P.; Steiner, J.; Pasternack, N.; Li, W.; Maric, D.; Safavi, F.; Horkayne-Szakaly, I.; Jones, R.; Stram, M.N.; et al. Neurovascular Injury with Complement Activation and Inflammation in COVID-19. Brain 2022, 145, 2555–2568. [Google Scholar] [CrossRef]
- Chandrashekar, A.; Liu, J.; Martinot, A.J.; McMahan, K.; Mercado, N.B.; Peter, L.; Tostanoski, L.H.; Yu, J.; Maliga, Z.; Nekorchuk, M.; et al. SARS-CoV-2 Infection Protects against Rechallenge in Rhesus Macaques. Science 2020, 369, 812–817. [Google Scholar] [CrossRef]
- Rutkai, I.; Mayer, M.G.; Hellmers, L.M.; Ning, B.; Huang, Z.; Monjure, C.J.; Coyne, C.; Silvestri, R.; Golden, N.; Hensley, K.; et al. Neuropathology and Virus in Brain of SARS-CoV-2 Infected Non-Human Primates. Nat. Commun. 2022, 13, 1745. [Google Scholar] [CrossRef]
- Beckman, D.; Bonillas, A.; Diniz, G.B.; Ott, S.; Roh, J.W.; Elizaldi, S.R.; Schmidt, B.A.; Sammak, R.L.; Van Rompay, K.K.A.; Iyer, S.S.; et al. SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19. Cell Rep. 2022, 41, 111573. [Google Scholar] [CrossRef]
- Trevino, T.N.; Fogel, A.B.; Minshall, R.; Richner, J.M.; Lutz, S.E. Caveolin-1 Mediates Neuroinflammation and Cognitive Impairment in SARS-CoV-2 Infection. bioRxiv 2023. [Google Scholar] [CrossRef]
- Koopman, G.; Verhoeven, T.; Mooij, P.; Acar, R.F.; Harmand, T.; Flanagan, L.; Bakker, J.; Böszörményi, K.P.; Bontrop, R.E.; Langermans, J.A.M.; et al. Imaging the Immune Sequelae of Infection with SARS-CoV-2 in Nonhuman Primates by Using Two Nanobody PET-tracers. J. Med. Virol. 2024, 96, e29956. [Google Scholar] [CrossRef]
- Serafini, R.A.; Frere, J.J.; Zimering, J.; Giosan, I.M.; Pryce, K.D.; Golynker, I.; Panis, M.; Ruiz, A.; tenOever, B.R.; Zachariou, V. SARS-CoV-2 Airway Infection Results in the Development of Somatosensory Abnormalities in a Hamster Model. Sci. Signal. 2023, 16, eade4984. [Google Scholar] [CrossRef] [PubMed]
- Richner, J.; Class, J.; Simons, L.; Lorenzo-Redondo, R.; Cooper, L.; Dangi, T.; Penaloza-MacMaster, P.; Ozer, E.; Rong, L.; Hultquist, J. SARS-CoV-2 Bottlenecks and Tissue-Specific Adaptation in the Central Nervous System. Res. Sq. 2023. preprint. [Google Scholar]
- Agrawal, S.; Farfel, J.M.; Arfanakis, K.; Al-Harthi, L.; Shull, T.; Teppen, T.L.; Evia, A.M.; Patel, M.B.; Ely, E.W.; Leurgans, S.E.; et al. Brain Autopsies of Critically Ill COVID-19 Patients Demonstrate Heterogeneous Profile of Acute Vascular Injury, Inflammation and Age-Linked Chronic Brain Diseases. Acta Neuropathol. Commun. 2022, 10, 186. [Google Scholar] [CrossRef]
- Li, H.; McLaurin, K.A.; Mactutus, C.F.; Rappaport, J.; Datta, P.K.; Booze, R.M. SARS-CoV-2 RNA Persists in the Central Nervous System of Non-Human Primates Despite Clinical Recovery. Mol. Biomed. 2023, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Usai, C.; Mateu, L.; Brander, C.; Vergara-Alert, J.; Segalés, J. Animal Models to Study the Neurological Manifestations of the Post-COVID-19 Condition. Lab. Anim. 2023, 52, 202–210. [Google Scholar] [CrossRef]
- Winkler, E.S.; Chen, R.E.; Alam, F.; Yildiz, S.; Case, J.B.; Uccellini, M.B.; Holtzman, M.J.; Garcia-Sastre, A.; Schotsaert, M.; Diamond, M.S. SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. J. Virol. 2022, 96, e01511-21. [Google Scholar] [CrossRef]
- Amruta, N.; Ismael, S.; Leist, S.R.; Gressett, T.E.; Srivastava, A.; Dinnon, K.H.; Engler-Chiurazzi, E.B.; Maness, N.J.; Qin, X.; Kolls, J.K.; et al. Mouse Adapted SARS-CoV-2 (MA10) Viral Infection Induces Neuroinflammation in Standard Laboratory Mice. Viruses 2022, 15, 114. [Google Scholar] [CrossRef]
- Glazkova, D.V.; Bogoslovskaya, E.V.; Urusov, F.A.; Kartashova, N.P.; Glubokova, E.A.; Gracheva, A.V.; Faizuloev, E.B.; Trunova, G.V.; Khokhlova, V.A.; Bezborodova, O.A.; et al. Generation of SARS-CoV-2 Mouse Model by Transient Expression of the Human ACE2 Gene Mediated by Intranasal Administration of AAV-hACE2. Mol. Biol. 2022, 56, 705–712. [Google Scholar] [CrossRef]
- Rothan, H.; Kumari, P.; Stone, S.; Natekar, J.; Arora, K.; Auroni, T.; Kumar, M. SARS-CoV-2 Infects Primary Neurons from Human ACE2 Expressing Mice and Upregulates Genes Involved in the Inflammatory and Necroptotic Pathways. Pathogens 2022, 11, 257. [Google Scholar] [CrossRef]
- Proust, A.; Queval, C.J.; Harvey, R.; Adams, L.; Bennett, M.; Wilkinson, R.J. Differential Effects of SARS-CoV-2 Variants on Central Nervous System Cells and Blood–Brain Barrier Functions. J. Neuroinflammation 2023, 20, 184. [Google Scholar] [CrossRef]
- Martinez, T.E.; Mayilsamy, K.; Mohapatra, S.S.; Mohapatra, S. Modulation of Paracellular Permeability in SARS-CoV-2 Blood-to-Brain Transcytosis. Viruses 2024, 16, 785. [Google Scholar] [CrossRef]
- Castanheira, F.V.S.; Nguyen, R.; Willson, M.; Davoli-Ferreira, M.; David, B.A.; Kelly, M.M.; Lee, W.-Y.; Kratofil, R.M.; Zhang, W.X.; Bui-Marinos, M.; et al. Intravital Imaging of Three Different Microvascular Beds in SARS-CoV-2–Infected Mice. Blood Adv. 2023, 7, 4170–4181. [Google Scholar] [CrossRef]
- Sriramula, S.; Theobald, D.; Parekh, R.U.; Akula, S.M.; O’Rourke, D.P.; Eells, J.B. Emerging Role of Kinin B1 Receptor in Persistent Neuroinflammation and Neuropsychiatric Symptoms in Mice Following Recovery from SARS-CoV-2 Infection. Cells 2023, 12, 2107. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Baz, I.; Trobajo-Sanmartín, C.; Miqueleiz, A.; Casado, I.; Navascués, A.; Burgui, C.; Ezpeleta, C.; Castilla, J.; Guevara, M.; the Working Group for the Study of COVID-19 in Navarra. Risk Reduction of Hospitalisation and Severe Disease in Vaccinated COVID-19 Cases during the SARS-CoV-2 Variant Omicron BA.1-Predominant Period, Navarre, Spain, January to March 2022. Eurosurveillance 2023, 28, 2200337. [Google Scholar] [CrossRef]
- Byambasuren, O.; Stehlik, P.; Clark, J.; Alcorn, K.; Glasziou, P. Effect of Covid-19 Vaccination on Long Covid: Systematic Review. BMJ Med. 2023, 2, e000385. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Pavord, S.; Scully, M.; Hunt, B.J.; Lester, W.; Bagot, C.; Craven, B.; Rampotas, A.; Ambler, G.; Makris, M. Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis. N. Engl. J. Med. 2021, 385, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after Breakthrough SARS-CoV-2 Infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
| Study Type | Cohort (n) | Methods (Most Relevant) | Main CNS Findings | Key Interpretation | Limitations | Citation (Year) | 
|---|---|---|---|---|---|---|
| Autopsy cohort | 41 | H&E, IHC, qRT-PCR, RNAscope | Hypoxic–ischemic injury, microglial nodules, low viral RNA | Vascular and immune-mediated injury predominate over viral replication | No age-matched controls; prolonged hospitalization confounds pathology | [15] | 
| Systematic autopsy | 44 total (11 brains) | ddPCR, ISH, IHC, IF, sequencing | Viral RNA in 10/11 brains (90%); minimal inflammation | Evidence of viral persistence without productive infection | Fatal-only cohort; unvaccinated; limited functional data | [16] | 
| Autopsy series | 43 | IHC (GFAP, HLA-DR, CD8), qRT-PCR | Astrogliosis, microglial activation, CD8+ T-cell infiltration (53% RNA/protein +) | Consistent innate inflammation with limited neurotropism | No matched controls; unclear clinical correlation | [17] | 
| Prospective autopsy | 17 fatal cases | IHC, ISH multi-organ panel | Endotheliitis, microthrombi, vascular congestion | Confirms systemic vascular injury as CNS driver | No mild-case controls; variable sampling | [18] | 
| Olfactory tissue autopsy | 23 | Histology, IHC for endothelial markers | Olfactory tissue degeneration, microvasculopathy | Supports peripheral/vascular entry route | Small n; single-region analysis | [10] | 
| Population MRI (pre–post) | 785 (UK Biobank) | Longitudinal MRI analysis | Cortical thinning in olfactory-linked regions | Structural brain changes after mild infection | Community cohort; no mechanistic data | [11] | 
| EHR mega-cohort | 1,284,437 | TriNetX EHR data comparison | 2-year ↑ risk of seizures, dementia, psychosis, “brain fog” | Defines long-term neuropsychiatric burden post-COVID-19 | Diagnostic miscoding; observational design | [19] | 
| CSF/biomarker + genetic | 40 COVID-19 + 15 controls | CSF/plasma biomarkers, Mendelian randomization | ↑ GFAP, S100B, CHI3L1; regional volume changes | Links systemic inflammation to brain structural alteration | Small sample; cross-sectional | [20] | 
| Post-vaccine CNS immune disorders | 19 | MRI, CSF cytokine panels, diagnostic criteria | Autoimmune encephalitis, myelitis, ADEM ≈ 2 w post-dose | Rare immune events post-vaccination illustrates neuroinflammatory potential | Small sample; under-reporting possible | [21] | 
| Model Type | Species/Model | Infection Route | Key Findings | Relevance to Human Disease | Citation (Year) | 
|---|---|---|---|---|---|
| Primary infection/re-challenge | Rhesus macaques (NHP) | Intranasal + intratracheal (~106 PFU) | Robust humoral/cellular immunity; >5 log10 viral-load reduction post-re-challenge | Demonstrates protective systemic immunity without severe CNS infection | [44] | 
| Multi-route SARS-CoV-2 | Rhesus + cynomolgus macaques | Conjunctival, nasal, pharyngeal, intratracheal (~3.6 × 106 PFU) | Neuroinflammation, microhemorrhages, hypoxia; sparse endothelial virus | Models long-COVID-like neuropathology without productive infection | [45] | 
| Aged/comorbid NHP | Rhesus macaques (T2D, aged) | Intranasal + intratracheal (2.5 × 106 PFU) | Viral RNA + protein in olfactory cortex; microgliosis; worse in aged/T2D animals | Demonstrates age/metabolic risk factors driving CNS injury | [46] | 
| Transgenic hACE2 mouse | K18-hACE2 mice (8–12 wk) | Intranasal (~103 TCID50) | Viral spread via olfactory bulb; neuronal death; high mortality | Reveals ACE2-dependent neurotropism; limited by non-physiologic expression | [14] | 
| Mouse-adapted MA10 strain | WT mice (C57BL/6 J) | Intranasal (~104 PFU) | BBB disruption, VCAM-1 ↑, cognitive impairment | Caveolin-1–mediated endothelial injury explains vascular pathology | [47] | 
| Inflammasome model | K18-hACE2 mice/human microglia/hamster | Intranasal + in vitro exposure | NLRP3 inflammasome activation; MCC950 inhibits neuroinflammation/improves survival | Links SARS-CoV-2 spike protein to inflammasome-driven CNS injury mechanisms | [27] | 
| BBB & choroid plexus model | BALB/c mice | Intranasal (2 × 104 PFU) | BBB and choroid plexus damage; vascular inflammation | Defines vascular route to CNS involvement | [7] | 
| NHP imaging study | Macaques (NHP) | PET tracers for immune cell uptake | Brain glial activation post-infection: no viral replication detected | Non-invasive marker of neuroinflammation for future vaccine studies | [48] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miftahof, J.; Bernauer, B.; Tan, C.S. Neurological Manifestations of SARS-CoV-2. Viruses 2025, 17, 1432. https://doi.org/10.3390/v17111432
Miftahof J, Bernauer B, Tan CS. Neurological Manifestations of SARS-CoV-2. Viruses. 2025; 17(11):1432. https://doi.org/10.3390/v17111432
Chicago/Turabian StyleMiftahof, Jasmine, Blake Bernauer, and Chen Sabrina Tan. 2025. "Neurological Manifestations of SARS-CoV-2" Viruses 17, no. 11: 1432. https://doi.org/10.3390/v17111432
APA StyleMiftahof, J., Bernauer, B., & Tan, C. S. (2025). Neurological Manifestations of SARS-CoV-2. Viruses, 17(11), 1432. https://doi.org/10.3390/v17111432
 
        

 
       