Quantifying the Inhibitory Efficacy of HIV-1 Therapeutic Interfering Particles at a Single CD4 T-Cell Resolution
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochemistry of HIV-1 and TIP Replication Cycle
2.2. Deterministic Equations for HIV-1 and TIP-2
- is the number of free HIV-1 virions in the vicinity of the cell;
- is the number of free TIPs in the vicinity of the cell;
- is the number of virions;
- is the number of TIPs bound to CD4 and the co-receptor.
- is the number of genomic RNA molecules in the cytoplasm;
- is the number of TIP RNA molecules in the cytoplasm;
- is the number of proviral DNA molecules synthesised by reverse transcription;
- is the number of proviral TIP DNA molecules synthesised by reverse transcription;
- is the number of DNA molecules in the nucleus;
- is the number of TIP DNA molecules in the nucleus;
- is the number of integrated DNA;
- is the number of integrated TIP DNA;
- is the number of molecules of the apolipoprotein B editing complex (APOBEC3) induced due to HIV-1 and TIPs;
- is the number of molecules of the cellular enzyme (SAMHD1), responsible for blocking the replication of HIV-1 in resting CD4+ T lymphocytes, induced by HIV-1 and TIP-2.
- is the number of HIV mRNA molecules in the nucleus: g for genomic or full-length;
- is the number of TIP-2 mRNA molecules in the nucleus: g for genomic or full-length;
- is the number of HIV singly spliced (ss) mRNA molecules in the nucleus;
- is the number of HIV doubly spliced (ds) mRNA molecules in the nucleus;
- is the number of HIV mRNA molecules in the cytoplasm: g for genomic or full-length;
- is the number of TIP-2 mRNA molecules in the cytoplasm: g for genomic;
- is the number of HIV singly spliced (ss) mRNA molecules in the cytoplasm;
- is the number of HIV doubly spliced (ds) mRNA molecules in the cytoplasm.
- is the number of viral RNA molecules at the membrane;
- is the number of TIP-2 RNA molecules at the membrane;
- is the number of Vpu protein molecules at the membrane;
- is the number of pre-virion complexes at the membrane (containing two HIV RNA molecules);
- is the number of pre-TIP-2 complexes at the membrane (containing two TIP RNA molecules);
- is the number of heterozygous pre-HIV-TIP-2 complexes at the membrane (containing one HIV RNA and one TIP-2 RNA).
- is the number of immature HIV-1 virions after budding from the cell;
- is the number of immature TIP-2 particles after budding from the cell;
- is the number of immature HIV-TIP particles after budding from the cell;
- is the number of mature HIV-1 virions outside the cell;
- is the number of mature TIP-2 particles outside the cell;
- is the number of mature HIV-TIP particles outside the cell;
- is the number of Tetherin molecules;
- is the number of the RIG-1 protein molecules activated in response to HIV-1 and TIP-2 RNAs;
- s the numbers of the IRF3 proteins
- is the numbers of the NF-kb proteins;
- is the number of intracellular IFN-I molecules.
- is the number of extracellular IFN-I molecules;
- is the number of STAT-1–STAT-2 heterodimers;
- is the number of molecules of the apolipoprotein B editing complex;
- is the number of molecules of a cellular enzyme responsible for blocking the replication of HIV in resting CD4+ T lymphocytes;
- is the number of Tetherin molecules.
2.3. Initial Value Problem
- Initial number of free virions: ;
- Initial number of free TIP-2 particles: ;
- Initial number of extracellular interferon molecules: ;
- All other components are set to have zero values.
2.4. Stochastic Model
Algorithm 1 Gillespie’s direct method |
|
- A binary search algorithm is employed to efficiently select the next reaction index m;
- Precomputed arrays included in the code are used to identify which components and propensities need updating after each transition, avoiding unnecessary recalculations;
- The algorithm was implemented in C++, utilizing arrays of pointers to functions. This allows the code to call only the specific propensity functions (for stochastic processes) and ODE right-hand sides (for deterministic processes) that are affected by the most recent transition, significantly reducing computational overhead [14].
3. Results
3.1. Deterministic Model: Co-Infection Kinetics
3.2. Net Effect of Variation in TIP-2 and MOI on Life Cycle Efficacy
- secreted infectious HIV-1:
- secreted TIP-2 particles:
- secreted HIV-1-TIP-2 particles:
3.3. Stochastic Model
3.4. Properties of Stochastic Ensemble Realizations
3.5. Impact of MOI and TIP-2 on Net HIV-1, TIP-2 and Heterozygous Particles Release
3.6. Reproduction Factor for TIP-2 and HIV-1-TIP-2 Particles
3.7. TIP-2 Effect on HIV-1 Life Cycle Efficiency
3.8. Extinction Probability for HIV-1 Life-Cycle
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HIV-1 | Human immunodeficiency virus Type 1 |
TIP | Therapeutic interfering particles |
IFN-I | Interferon Type I |
ISG | Interferon-stimulated genes |
ODE | Ordinary differential equation |
MOI | Multiplicity of infection |
MC | Markov chain |
References
- Nicolau, V.; Brandao, D.; Rua, T.; Escoval, A. Organisation and integrated healthcare approaches for people living with HIV, multimorbidity, or both: A systematic review. BMC Public Health 2023, 23, 1579. [Google Scholar] [CrossRef]
- Scott, G.Y.; Worku, D. HIV vaccination: Navigating the path to a transformative breakthrough–A review of current evidence. Health Sci. Rep. 2024, 7, e70089. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Landovitz, R.J.; Sax, P.E.; Smith, D.M.; Springer, S.A.; Günthard, H.F.; Thompson, M.A.; Bedimo, R.J.; Benson, C.A.; Buchbinder, S.P.; et al. Antiretroviral drugs for treatment and prevention of HIV in adults: 2024 recommendations of the international antiviral society–USA panel. JAMA 2025, 333, 609–628. [Google Scholar] [CrossRef]
- Mayer, K.H.; Phanuphak, N.; Mgodi, N.; Grinsztejn, B. New HIV prevention approaches: Promise, praxis, and pitfalls. Lancet 2022, 400, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Landovitz, R.; Scott, H.; Deeks, S. Prevention, treatment and cure of HIV infection. Nat. Rev. Microbiol. 2023, 21, 657–670. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L. Development of anti-HIV therapeutics: From conventional drug discovery to cutting-edge technology. Pharmaceuticals 2024, 17, 887. [Google Scholar] [CrossRef]
- Tanner, E.J.; Kirkegaard, K.A.; Weinberger, L.S. Exploiting Genetic Interference for Antiviral Therapy. PLoS Genet. 2016, 12, e1005986. [Google Scholar] [CrossRef]
- Pitchai, F.N.N.; Tanner, E.J.; Khetan, N.; Vasen, G.; Levrel, C.; Kumar, A.J.; Pandey, S.; Ordonez, T.; Barnette, P.; Spencer, D.; et al. Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates. Science 2024, 385, eadn5866. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, V.; White, J.A.; Dragoni, F.; Fray, E.J.; Pathoulas, N.; Moskovljevic, M.; Zhang, H.; Singhal, A.; Lai, J.; Beg, S.A.; et al. Superinfection with intact HIV-1 results in conditional replication of defective proviruses and nonsuppressible viremia in people living with HIV-1. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, T.B.; López, C.B. Defective (Interfering) viral genomes re-explored: Impact on antiviral immunity and virus persistence. Future Virol. 2018, 13, 493–503. [Google Scholar] [CrossRef]
- Fatehi, F.; Bingham, R.J.; Dechant, P.; Stockley, P.G.; Twarock, R. Therapeutic interfering particles exploiting viral replication and assembly mechanisms show promising performance: A modelling study. Sci. Rep. 2021, 11, 23847. [Google Scholar] [CrossRef]
- Gruell, H.; Odidika, S.; Schommers, P. Therapeutic interfering particles against HIV: Molecular parasites reducing viremia. Signal Transduct. Target. Ther. 2024, 9, 287. [Google Scholar] [CrossRef]
- Rouzine, I.M.; Weinberger, L.S. Design requirements for interfering particles to maintain coadaptive stability with HIV-1. J. Virol. 2013, 87, 2081–2093. [Google Scholar] [CrossRef]
- Sazonov, I.; Grebennikov, D.; Savinkov, R.; Soboleva, A.; Pavlishin, K.; Meyerhans, A.; Bocharov, G. Stochastic Modelling of HIV-1 Replication in a CD4 T Cell with an IFN Response. Viruses 2023, 15, 296. [Google Scholar] [CrossRef]
- Shcherbatova, O.; Grebennikov, D.; Sazonov, I.; Meyerhans, A.; Bocharov, G. Modeling of the HIV-1 life cycle in productively infected cells to predict novel therapeutic targets. Pathogens 2020, 9, 255. [Google Scholar] [CrossRef] [PubMed]
- Sazonov, I.; Grebennikov, D.; Meyerhans, A.; Bocharov, G. Markov chain based stochastic modelling of HIV-1 life cycle in a CD4 T cell. Mathematics 2021, 9, 2025. [Google Scholar] [CrossRef]
- Gillespie, D. A General method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Gillespie, D. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007, 58, 35–55. [Google Scholar] [CrossRef]
- Bocharov, G.; Chereshnev, V.; Gainova, I.; Bazhan, S.; Bachmetyev, B.; Argilaguet, J.; Martinez, J.; Meyerhans, A. Human immunodeficiency virus infection: From biological observations to mechanistic mathematical modelling. Math. Model. Nat. Phenom. 2012, 7, 78–104. [Google Scholar] [CrossRef]
- Jung, A.; Maier, R.; Vartanian, J.; Bocharov, G.; Jung, V.; Fischer, U.; Meese, E.; Wain-Hobson, S.; Meyerhans, A. Multiply infected spleen cells in HIV patients. Nature 2002, 418, 144. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Nikolaitchik, O.; Singh, J.; Wright, A.; Bencsics, C.E.; Coffin, J.M.; Ni, N.; Lockett, S.; Pathak, V.K.; Hu, W.S. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc. Natl. Acad. Sci. USA 2009, 106, 13535–13540. [Google Scholar] [CrossRef] [PubMed]
- Mackelprang, R.D.; Filali-Mouhim, A.; Richardson, B.; Lefebvre, F.; Katabira, E.; Ronald, A.; Gray, G.; Cohen, K.W.; Klatt, N.R.; Pecor, T.; et al. Upregulation of IFN-stimulated genes persists beyond the transitory broad immunologic changes of acute HIV-1 infection. iScience 2023, 26, 106454. [Google Scholar] [CrossRef]
- Berg, R.K.; Melchjorsen, J.; Rintahaka, J.; Diget, E.; Søby, S.; Horan, K.A.; Gorelick, R.J.; Matikainen, S.; Larsen, C.S.; Ostergaard, L.; et al. Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS ONE 2012, 7, e29291. [Google Scholar] [CrossRef]
- Peluso, M.J.; Sandel, D.A.; Deitchman, A.N.; Kim, S.J.; Dalhuisen, T.; Tummala, H.P.; Tibúrcio, R.; Zemelko, L.; Borgo, G.M.; Singh, S.S.; et al. Combination immunotherapy induces post-intervention control of HIV. Res. Sq. 2025, rs.3.rs-6141479. [Google Scholar] [CrossRef]
m | Transition | Propensity | m | Transition | Propensity | m | Transition | Propensity |
---|---|---|---|---|---|---|---|---|
1 | 41 | 81 | ||||||
2 | 42 | 82 | ||||||
3 | 43 | 83 | ||||||
4 | 44 | 84 | ||||||
5 | 45 | 85 | ||||||
6 | 46 | 86 | ||||||
7 | 47 | 87 | ||||||
8 | 48 | 88 | ||||||
9 | 49 | 89 | ||||||
10 | 50 | 90 | ||||||
11 | 51 | 91 | ||||||
12 | 52 | 92 | ||||||
13 | 53 | 93 | ||||||
14 | 54 | 94 | ||||||
15 | 55 | 95 | ||||||
16 | 56 | 96 | ||||||
17 | 57 | 97 | ||||||
18 | 58 | 98 | ||||||
19 | 59 | 99 | ||||||
20 | 60 | 100 | ||||||
21 | 61 | 101 | ||||||
22 | 62 | 102 | ||||||
23 | 63 | 103 | ||||||
24 | 64 | 104 | ||||||
25 | 65 | 105 | ||||||
26 | 66 | 106 | ||||||
27 | 67 | 107 | ||||||
28 | 68 | 108 | ||||||
29 | 69 | 109 | ||||||
30 | 70 | 110 | ||||||
31 | 71 | 111 | ||||||
32 | 72 | 112 | ||||||
33 | 73 | 113 | ||||||
34 | 74 | 114 | ||||||
35 | 75 | 115 | ||||||
36 | 76 | 116 | ||||||
37 | 77 | 117 | ||||||
38 | 78 | 118 | ||||||
39 | 79 | – | ||||||
40 | 80 | – |
MOI: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
IFN = 0 | 0.405 | 0.674 | 0.865 | 0.995 | 1.091 | 1.160 | 1.224 | 1.281 | 1.331 | 1.374 |
IFN = 5 | 0.287 | 0.478 | 0.629 | 0.750 | 0.850 | 0.916 | 0.990 | 1.047 | 1.104 | 1.154 |
IFN = 10 | 0.196 | 0.348 | 0.471 | 0.582 | 0.663 | 0.735 | 0.797 | 0.857 | 0.905 | 0.961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sazonov, I.; Grebennikov, D.; Savinkov, R.; Meyerhans, A.; Bocharov, G. Quantifying the Inhibitory Efficacy of HIV-1 Therapeutic Interfering Particles at a Single CD4 T-Cell Resolution. Viruses 2025, 17, 1378. https://doi.org/10.3390/v17101378
Sazonov I, Grebennikov D, Savinkov R, Meyerhans A, Bocharov G. Quantifying the Inhibitory Efficacy of HIV-1 Therapeutic Interfering Particles at a Single CD4 T-Cell Resolution. Viruses. 2025; 17(10):1378. https://doi.org/10.3390/v17101378
Chicago/Turabian StyleSazonov, Igor, Dmitry Grebennikov, Rostislav Savinkov, Andreas Meyerhans, and Gennady Bocharov. 2025. "Quantifying the Inhibitory Efficacy of HIV-1 Therapeutic Interfering Particles at a Single CD4 T-Cell Resolution" Viruses 17, no. 10: 1378. https://doi.org/10.3390/v17101378
APA StyleSazonov, I., Grebennikov, D., Savinkov, R., Meyerhans, A., & Bocharov, G. (2025). Quantifying the Inhibitory Efficacy of HIV-1 Therapeutic Interfering Particles at a Single CD4 T-Cell Resolution. Viruses, 17(10), 1378. https://doi.org/10.3390/v17101378