Viral Community and Novel Viral Genomes Associated with the Sugarcane Weevil, Sphenophorus levis (Coleoptera: Curculionidae) in Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection
2.2. Total RNA Extraction, Library Preparation, and Next-Generation Sequencing (NGS)
2.3. RNA-Seq Data Analysis
2.4. Viral Genome Analysis
2.5. Phylogenetic Analysis
3. Results and Discussion
3.1. Virome Composition
3.2. Characterization of Novel Viral Genomes
3.2.1. Sphenophorus Levis Associated Virus (SLAV)
3.2.2. Sphenophorus levis Reo-like Virus (SLRV)
3.2.3. Sphenophorus levis Tombus-like Virus (SLTV)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leite, L.G.; Batista Filho, A.B.; Tavares, F.M.; Ginarte, C.M.A.; Almeida, L.C.; Botelho, P.S.M. Alternativa de Controle: Bicudo da Cana-de-açúcar. Comunicado Técnico, Instituto Biológico. Número 39; 2006; pp. 1–9. Available online: www.biologico.sp.gov.br/publicacoes/comunicados-documentos-tecnicos/comunicados-tecnicos/alternativa-de-controle-bicudo-da-cana-de-acucar (accessed on 6 August 2024).
- Vaurie, P. Revision of the Genus Sphenophorus in South America. In American Museum Novitates; American Museum of Natural History: New York, NY, USA, 1978; pp. 1–30. [Google Scholar]
- Dinardo-Miranda, L.L.; Fracasso, J.V. Sugarcane straw and the populations of pests and nematodes. Sci. Agric. 2013, 70, 305–310. [Google Scholar] [CrossRef]
- Badilla, F.F.; Alves, S.B. Controle do gorgulho da cana-de-açúcar Sphenophorus levis Vaurie, 1978 (Coleoptera: Curculionidae) com Beauveria spp. em condições de laboratório e campo. Anais da Sociedade Entomológica do Brasil. 1991, 20, 251–263. [Google Scholar] [CrossRef]
- Urach Ferreira, P.H.; Ferreira, M.D.C. Sphenophorus levis behavior studies: Evaluating insect attractiveness or repellency to one insecticide treatment and assessing nocturnal insect activity and location pattern. Insects 2023, 14, 205. [Google Scholar] [CrossRef]
- Aguiar, A.T.E.; Gonçalves, C.; Paterniani, M.E.A.G.Z.; Tucci, M.L.S.A.; de Castro, C.E.F. Boletim 200. Instruções Agrícolas Para as Principais Culturas Econômicas, 7th ed.; Instituto Agronômico: Campinas, Brazil, 2014; pp. 106–113. Available online: https://www.iac.sp.gov.br/publicacoes/publicacao.php?n=42 (accessed on 6 August 2024).
- Xavier, M.A.; Landell, M.G.A.; Pires, R.C.M.; Rossetto, R.; Dinardo-Miranda, L.L.; Perecin, D.; do Prado, H.; Garcia, J.C.; Vitti, A.C.; Fracasso, J.; et al. Gemas brotadas de cana-de-açúcar: Produção sustentável e utilização experimental na formação de áreas de multiplicação. Doc. IAC 2020, 115, 1–52. [Google Scholar]
- Casteliani, A.; de Fatima Martins, L.; Maringoli Cardoso, J.F.; Oliveira Silva, M.S.; Abe da Silva, R.S.; Chacon-Orozco, J.G.; Barbosa Casteliani, A.G.; Půža, V.; Harakava, R.; Leite, L.G. Behavioral aspects of Sphenophorus levis (Coleoptera: Curculionidae), damage to sugarcane and its natural infection by Steinernema carpocapsae (Nematoda: Rhabditidae). Crop Prot. 2020, 137, 105262. [Google Scholar] [CrossRef]
- Vinha, F.B.; Rodrigues, L.R.; Pinto, A.D.S. Controle do gorgulho-da-cana Sphenophorus levis com fungos entomopatogênicos em diferentes doses e formulações. Nucleus 2019, 16, 329–335. [Google Scholar] [CrossRef]
- Vinha, F.B.; de Assis Delfanti, L.A.; Pagliarani, V.D.; Ferreira, V.S.; de Sene Pinto, A. Entomopathogenic fungi on the control of Sphenophorus levis in sugarcane crop. Sci. Agrar. Parana. 2020, 19, 280–288. [Google Scholar] [CrossRef]
- Fonseca, L.R.S.; Cangani, A.C.V.; Santos, D.P.; Okabayashi, H.F.; Marinho-Prado, J.S. Virulência de Blastosporos de Beauveria Caledonica Sobre Coleobrocas. Anais do 17° Congresso Interinstitucional de Iniciação Científica—CIIC 2023. 2023. 10p. Available online: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1160592 (accessed on 21 August 2025).
- Lukášová, K.; Holuša, J. Comparison of pathogens infection level in Ips typographus (Coleoptera: Curculionidae) beetles sampled in pheromone traps and at place of overwintering. Acta Parasitol. 2015, 60, 462–465. [Google Scholar] [CrossRef]
- Käfer, S.; Paraskevopoulou, S.; Zirkel, F.; Wieseke, N.; Donath, A.; Petersen, M.; Jones, T.C.; Liu, S.; Zhou, X.; Middendorf, M.; et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLOS Pathog. 2019, 15, e1008224. [Google Scholar] [CrossRef]
- Sutela, S.; Siitonen, J.; Ylioja, T.; Vainio, E.J. Viral diversity in the European spruce bark beetle Ips typographus as revealed through high-throughput sequencing. Crop Prot. 2024, 181, 106706. [Google Scholar] [CrossRef]
- Silva, L.A.; Jordan, C.; de Carvalho, V.R.; Wilcken, C.F.; Ribeiro, B.M. Identification and genome sequencing of RNA viruses in the eucalyptus snout beetle Gonipterus spp. (Coleoptera: Curculionidae). Arch. Virol. 2020, 65, 2993–2997. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yuan, B.; Xiao, S.; Zhang, J.; Jia, W.; Fang, Q.; Wang, F.; Song, Q.; Ye, G. Diverse RNA Viruses Discovered in Three Parasitoid Wasps of the Rice Weevil Sitophilus oryzae. mSphere 2021, 6, e00331-21. [Google Scholar] [CrossRef] [PubMed]
- François, S.; Antoine-Lorquin, A.; Kulikowski, M.; Frayssinet, M.; Filloux, D.; Fernandez, E.; Roumagnac, P.; Froissart, R.; Ogliastro, M. Characterisation of the Viral Community Associated with the Alfalfa Weevil (Hypera postica) and Its Host Plant, Alfalfa (Medicago sativa). Viruses 2021, 13, 791. [Google Scholar] [CrossRef]
- Da Silva, L.A.; Basso, M.F.; Ribeiro, B.M. A novel picorna-like virus identified in the cotton boll weevil Anthonomus grandis (Coleoptera: Curculionidae). Arch. Virol. 2023, 168, 29. [Google Scholar] [CrossRef]
- Henderson, C.W.; Johnson, C.L.; Lodhi, S.A.; Bilimoria, S.L. Replication of Chilo iridescent virus in the cotton boll weevil, Anthonomus grandis, and development of an infectivity assay. Arch. Virol. 2001, 146, 767–775. [Google Scholar] [CrossRef]
- Hunter, W.B.; Lapointe, S.L.; Sinisterra, X.H.; Achor, D.S.; Funk, C.J. Iridovirus in the root weevil Diaprepes abbreviatus. J. Insect Sci. 2003, 3, 9. [Google Scholar] [CrossRef]
- Mahmoud, Y.A.; Salama, H.S.; Moawed, S.M.; Ebadah, I.M.A.; Sadek, H.E.; Khalifa, I.A. Virulence of a New Isolate of Cytoplasmic Polyhedrosis Virus Against the Red Palm Weevil, Rhynchophorus Ferrugineus (Oliv.) (Order: Coleoptera, Family: Curculionidae). Asian J. Agric. Hortic. Res. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Etebari, K.; Lenancker, P.; Powell, K.S.; Furlong, M.J. Transcriptomics Reveal Several Novel Viruses from Canegrubs (Coleoptera: Scarabaeidae) in Central Queensland, Australia. Viruses 2022, 14, 649. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Bushmanova, E.; Antipov, D.; Lapidus, A.; Prjibelski, A.D. rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 2019, 8, giz100. [Google Scholar] [CrossRef]
- Von Meijenfeldt, F.B.; Arkhipova, K.; Cambuy, D.D.; Coutinho, F.H.; Dutilh, B.E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019, 20, 217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. The Vegan Package. Community Ecology Package, Version 2.7-1. Available online: https://CRAN.R-project.org/package=vegan (accessed on 12 September 2025).
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Lázaro Pinto, B.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Vainio, E.J.; Chiba, S.; Ghabrial, S.A.; Maiss, E.; Roossinck, M.; Sabanadzovic, S.; Suzuki, N.; Xie, J.; Nibert, M.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Partitiviridae. J. Gen. Virol. 2018, 99, 17–18. [Google Scholar] [CrossRef]
- King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. (Eds.) Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Kuhn, J.H.; Dheilly, N.M.; Junglen, S.; Paraskevopoulou, S.; Shi, M.; Di Paola, N. ICTV Virus Taxonomy Profile: Jingchuvirales 2023. J. Gen. Virol. 2023, 104, 001924. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Hughes, H.R. ICTV Virus Taxonomy Profile: Phasmaviridae 2024. J. Gen. Virol. 2024, 105, 002002. [Google Scholar] [CrossRef]
- Walker, P.J.; Freitas-Astúa, J.; Bejerman, N.; Blasdell, K.R.; Breyta, R.; Dietzgen, R.G.; Fooks, A.R.; Kondo, H.; Kurath, G.; Kuzmin, I.V.; et al. ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. J. Gen. Virol. 2022, 103, 6. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.J.; Adkins, S.; Bragard, C.; Gilmer, D.; Li, D.; MacFarlane, S.A.; Wong, S.-M.; Melcher, U.; Ratti, C.; Ryu, K.H.; et al. ICTV Virus Taxonomy Profile: Virgaviridae. J. Gen. Virol. 2017, 98, 1999–2000. [Google Scholar] [CrossRef]
- Gilmer, D.; Ratti, C. ICTV Virus Taxonomy Profile: Benyviridae. J. Gen. Virol. 2017, 98, 1571–1572. [Google Scholar] [CrossRef]
- Varsani, A.; Abd-Alla, A.M.M.; Arnberg, N.; Bateman, K.S.; Benkő, M.; Bézier, A.; Biagini, P.; Bojko, J.; Butkovic, A.; Canuti, M.; et al. Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal DNA Viruses and Retroviruses Subcommittee, 2025. J. Gen. Virol. 2025, 106, 002113. [Google Scholar] [CrossRef]
- Chinchar, V.G.; Hick, P.; Ince, I.A.; Jancovich, J.K.; Marschang, R.; Qin, Q.; Subramaniam, K.; Waltzek, T.B.; Whittington, R.; Williams, T.; et al. ICTV Virus Taxonomy Profile: Iridoviridae. J. Gen. Virol. 2017, 98, 890–891. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.L.; Herniou, E.A.; Bézier, A.; Jehle, J.A.; Burand, J.P.; Theilmann, D.A.; Krell, P.J.; van Oers, M.M.; Nakai, M.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Nudiviridae. J. Gen. Virol. 2020, 101, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.-M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Pénzes, J.J.; et al. ICTV Virus Taxonomy Profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, D.; Harumoto, T.; Nagamine, K.; Fujiwara, A.; Sugimoto, T.N.; Jouraku, A.; Tamura, M.; Katoh, T.K.; Watada, M.A. A male-killing gene encoded by a symbiotic virus of Drosophila. Nat. Commun. 2023, 14, 1357. [Google Scholar] [CrossRef]
- Di Paola, N.; Dheilly, N.M.; Junglen, S.; Paraskevopoulou, S.; Postler, T.S.; Shi, M.; Kuhn, J.H. Jingchuvirales: A New Taxonomical Framework for a Rapidly Expanding Order of Unusual Monjiviricete Viruses Broadly Distributed among Arthropod Subphyla. Appl. Env. Microbiol. 2022, 22, e0195421. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.F. Larinus minutus. In Biological Control: A Guide to Natural Enemies in North America; Shelton, A., Ed.; n.d.; Available online: https://biocontrol.entomology.cornell.edu/weedfeed/Larinus.php (accessed on 1 May 2025).
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 22, 539–543. [Google Scholar] [CrossRef]
- Paraskevopoulou, S.; Käfer, S.; Zirkel, F.; Donath, A.; Petersen, M.; Liu, S.; Zhou, X.; Drosten, C.; Misof, B.; Junglen, S. Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evol. 2021, 30, veab030. [Google Scholar] [CrossRef]
- Gilbert, C.; Belliardo, C. The diversity of endogenous viral elements in insects. Curr. Opin. Insect Sci. 2022, 49, 48–55. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Koonin, E.V. Viriforms—A New Category of Classifiable Virus-Derived Genetic Elements. Biomolecules 2023, 13, 289. [Google Scholar] [CrossRef]
- Starrett, G.J.; Tisza, M.J.; Welch, N.L.; Belford, A.K.; Peretti, A.; Pastrana, D.V.; Buck, C.B. Adintoviruses: A proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evol. 2021, 7, veaa055. [Google Scholar] [CrossRef]
- Starchevskaya, M.; Kamanova, E.; Vyatkin, Y.; Tregubchak, T.; Bauer, T.; Bodnev, S.; Rotskaya, U.; Polenogova, O.; Kryukov, V.; Antonets, D. The Metagenomic Analysis of Viral Diversity in Colorado Potato Beetle Public NGS Data. Viruses 2023, 15, 395. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.A.; Coffman, K.A.; Gilbert, C.; Ravindran, S.; Albery, G.F.; Abbott, J.; Argyridou, E.; Bellosta, P.; Betancourt, A.J.; Colinet, H.; et al. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol. 2021, 7, veab031. [Google Scholar] [CrossRef] [PubMed]
- Budkina, A.Y.; Korneenko, E.V.; Kotov, I.A.; Kiselev, D.A.; Artyushin, I.V.; Speranskaya, A.S.; Khafizov, K.; Akimkin, V.G. Utilizing the VirIdAl Pipeline to Search for Viruses in the Metagenomic Data of Bat Samples. Viruses 2021, 13, 2006. [Google Scholar] [CrossRef]
- Nalcacioglu, R.; Muratoglu, H.; Yesilyurt, A.; van Oers, M.M.; Vlak, J.M.; Demirbag, Z. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. J. Invertebr. Pathol. 2016, 138, 104–111. [Google Scholar] [CrossRef]
- Jenkins, D.A.; Hunter, W.B.; Goenaga, R. Effects of invertebrate iridescent virus 6 in Phyllophaga vandinei and its potential as a biocontrol delivery system. J. Insect Sci. 2011, 11, 44. [Google Scholar] [CrossRef]
- Paudel, S.; Marshall, S.D.G.; Richards, N.K.; Hazelman, G.; Tanielu, P.; Jackson, T.A. Coconut Rhinoceros Beetle in Samoa: Review of a Century-Old Invasion and Prospects for Control in a Changing Future. Insects 2022, 13, 487. [Google Scholar] [CrossRef] [PubMed]
- Armién, A.G.; Polon, R.; Rejmanek, D.; Moeller, R.B.; Crossley, B.M. Outbreak of densovirus with high mortality in a commercial mealworm (Tenebrio molitor) farm: A molecular, bright-field, and electron microscopic characterization. Vet. Pathol. 2023, 60, 689–703. [Google Scholar] [CrossRef]
- Liu, S.; Valencia-Jiménez, A.; Darlington, M.; Vélez, A.M.; Bonning, B.C. Genome Sequence of a Small RNA Virus of the Southern Corn Rootworm, Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae). Microbiol. Resour. Announc. 2020, 9, e00379-20. [Google Scholar] [CrossRef] [PubMed]
- Litov, A.G.; Belova, O.A.; Kholodilov, I.S.; Gadzhikurbanov, M.N.; Gmyl, L.V.; Oorzhak, N.D.; Saryglar, A.A.; Ishmukhametov, A.A.; Karganova, G.G. Possible Arbovirus Found in Virome of Melophagus ovinus. Viruses 2021, 13, 2375. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pelegrín, L.; Llopis-Giménez, Á.; Crava, C.M.; Ortego, F.; Hernández-Crespo, P.; Ros, V.I.D.; Herrero, S. Expanding the Medfly Virome: Viral Diversity, Prevalence, and sRNA Profiling in Mass-Reared and Field-Derived Medflies. Viruses 2022, 14, 623. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.H.; Che, X.; Garcia, J.A.; Klena, J.D.; Lee, B.; Muller, D.; Ulrich, W.; Corrigan, R.M.; Nichol, S.; Jain, K.; et al. Viral Diversity of House Mice in New York City. mBio 2018, 9, e01354-17. [Google Scholar] [CrossRef]
- Current ICTVTaxonomy Release|ICTV. Available online: https://ictv.global/taxonomy (accessed on 5 May 2025).
- Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; et al. Virus Taxonomy in the Age of Metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [Google Scholar] [CrossRef]
- Nakashima, N.; Noda, H. Nonpathogenic Nilaparvata lugens reovirus is transmitted to the brown planthopper through rice plant. Virology 1995, 207, 303–307. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Attoui, H.; Bányai, K.; Brussaard, C.P.D.; Danthi, P.; del Vas, M.; Dermody, T.S.; Duncan, R.; Fāng, Q.; Johne, R.; et al. ICTV Virus Taxonomy Profile: Spinareoviridae 2022. J. Gen. Virol. 2022, 103, 001781. [Google Scholar] [CrossRef]
- Lu, X.; Ji, L.; Wang, H.; Zhang, Q.; Wang, X.; Liu, Y.; Shen, Q.; Yang, S.; Ma, X.; Zhang, W.; et al. Highly diverse RNA viruses and phage sequences concealed within birds. Microbiol. Spectr. 2024, 12, e0080224. [Google Scholar] [CrossRef] [PubMed]
- Thekke-Veetil, T.; Lagos-Kutz, D.; McCoppin, N.K.; Hartman, G.L.; Ju, H.K.; Lim, H.S.; Domier, L.L. Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses. Viruses 2020, 12, 1376. [Google Scholar] [CrossRef]
- Taliansky, M.E.; Robinson, D.J. Molecular biology of umbraviruses: Phantom warriors. J. Gen. Virol. 2023, 84, 1951–1960. [Google Scholar] [CrossRef]
- Marzano, S.L.; Nelson, B.D.; Ajayi-Oyetunde, O.; Bradley, C.A.; Hughes, T.J.; Hartman, G.L.E.; Eastburn, D.M.; Domier, L.L. Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens. J. Virol. 2016, 90, 6846–6863. [Google Scholar] [CrossRef] [PubMed]
Host Common Name | Scientific Name | Location | Virus Name | Taxonomy | Accession | Ref. |
---|---|---|---|---|---|---|
European spruce bark beetle | Ips typographus | Czech Republic | Ips typographus entomopoxvirus (ItEPV) | Poxviridae | NA | [12] |
Germany | Coleopteran orthomyxo-related virus OKIAV196 | Orthomyxoviridae | PRJNA183205 | [13] | ||
Coleopteran orthomyxo-related virus OKIAV200 | ||||||
Finland | Ips virga-like virus 1 and 2 | Virgaviridae | OR537183, OR537184 | [14] | ||
Ips tombus-like virus 1, 2 and 3 | Tombusviridae | OR537185, OR537186, OR537211 | ||||
Ips spici-like virus 1 | Spiciviridae | OR537187 | ||||
Ips narna-like virus 1 and 2 | Narnaviridae | OR537188, OR537189 | ||||
Ips partiti-like virus 1 | Partitiviridae | OR537190 to OR537193 | ||||
Ips sobemo-like virus 1 | Solemoviridae | OR537194, OR537195 | ||||
Ips phenui-like virus 1 and 2 | Phenuiviridae | OR537196, OR537198 | ||||
Ips phenuiviral-like M segment 1 and 2 | OR537197, OR537199 | |||||
Ips phenuiviral-like M segment 2 | OR537200 | |||||
Ips erranti-like virus 1 to 6 | Metaviridae | OR537201 to OR537206 | ||||
Ips quenya-like virus 1 | NA | OR537207 to OR537209 | ||||
Ips beny-like virus 1 | Benyviridae | OR537210 | ||||
Lesser knapweed flower weevil | Larinus minutus | USA | Coleopteran chu-related virus OKIAV151 | Chuviridae | PRJNA183205 | [13] |
Coleopteran phenui-related virus OKIAV293 | Phenuiviridae | |||||
Maize weevil | Sitophilus zeamais | Coleopteran phenui-related virus OKIAV287 | ||||
Coleopteran orthomyxo-related virus OKIAV158 | Orthomyxoviridae | |||||
Citrus root weevil | Diaprepes abbreviatus | Coleopteran hanta-related virus OKIAV221 | Hantaviridae | |||
Eucalyptus snout beetle | Gonipterus spp. | Brazil | Gonipterus platensis bunya-Like virus (GPV) | NA | MT435497, MT435498 | [15] |
Gonipterus platensis macula-like virus (GPMV) | Tymoviridae | MT435496 | ||||
Rice weevil | Sitophilus oryzae | China | Weevil wasp positive-strand RNA virus 2 (WWPSRV-2) | Iflaviridae | MW864601 | [16] |
Alfalfa weevil | Hypera postica | France | Hypera postica associated alphaflexivirus (HpaAV) | Alphaflexiviridae | MW676130 | [17] |
Hypera postica associated iflavirus 1 (HpaIV1) | Iflaviridae | MW676131 | ||||
Hypera postica associated iflavirus 2 (HpaIV2) | MW676132 | |||||
Hypera postica associated permutotetravirus | Permutotetraviridae | MW676133 | ||||
Hypera postica associated sinaivirus | Sinhaliviridae | MW676134 | ||||
Hypera postica associated sobemovirus 1 | Solemoviridae | MW676135 | ||||
Hypera postica associated sobemovirus 2 | MW676136 | |||||
Hypera postica associated sobemovirus 3 | MW676137 | |||||
Hypera postica associated virus 1 (HpaV1) | NA | MW676138 | ||||
Cotton boll weevil | Anthonomus grandis | Brazil | Anthonomus grandis iflavirus 1 (AgIV-1) | Iflaviridae | OK413669 | [18] |
Sample_ Method | Clean Reads | Assembly Overview | Classified as Virus | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n° Total Contigs | n° Contigs ≥ 100 | n° Contigs ≥ 500 | N50 | L50 | n° of Contigs | Contig Length Range (bp) | Reads | Family/Species Level (%) | ||
Slevis5_ polyA | 66,576,852 | 49,708 | 45,113 | 16,515 | 1711 | 4237 | 12 | 223–4944 | 31,708 | 31,708 (100) |
Slevis5_
RNAtotal | 64,836,018 | 88,189 | 78,445 | 20,910 | 1647 | 5040 | 69 | 98–12,414 | 593,718 | 291,497 (49.1) |
Slevis6_
polyA | 65,820,764 | 52,098 | 46,845 | 16,879 | 1754 | 4271 | 17 | 170–5513 | 20,403 | 20,136 (98.7) |
Slevis6_
RNAtotal | 66,187,054 | 87,926 | 77,964 | 20,527 | 1655 | 4920 | 60 | 207–11,578 | 712,046 | 329,353 (46.3) |
Slevis7_
polyA | 73,325,198 | 49,782 | 45,249 | 16,530 | 1707 | 4245 | 10 | 257–2552 | 29,589 | 29,589 (100) |
Slevis7_
RNAtotal | 70,918,208 | 89,845 | 79,265 | 20,892 | 1651 | 5008 | 71 | 73–6746 | 520,298 | 274,528 (52.8) |
Total | 407,664,094 | 417,548 | 372,881 | 112,253 | 239 | 1,907,762 | 976,811 (51.2) |
Family | Genome | Genome Size | Host Range |
---|---|---|---|
Partitiviridae [31] | linear bipartite dsRNA | 3–4.8 kbp | Plants, fungi and protozoa |
Totiviridae [32] | linear monopartite dsRNA | 4.6–6.7 kbp | Fungi and protozoa |
Chuviridae [33] | linear or circular, monopartite or bipartite ssRNA(−) | 9.1–12.2 kb | Arachnids, barnacles, crustaceans, insects, fish and reptiles |
Aliusviridae [33] | linear monopartite ssRNA(−) | 9.9–15.3 kb | Insects |
Phasmaviridae [34] | linear tripartite ssRNA(−) | 9.7–15.8 kb | Insects |
Orthomyxoviridae [32] | linear multipartite ssRNA(−) | ~13.5 kb | Aquatic birds, human, pig, horse and seals |
Rhabdoviridae [35] | linear monopartite or bipartite ssRNA(−) | 10–16 kb | Vertebrates, invertebrates and plants |
Tombusviridae [32] | linear monopartite or bipartite ssRNA(+) | 3.7–4.8 kb | Plants |
Virgaviridae [36] | linear monopartite or multipartite ssRNA(+) | 6.3–13 kb | Plants |
Benyviridae [37] | linear multipartite ssRNA(+) | ~15.8 kb | Plants |
Polydnaviriformidae [32] | multiple copies of segmented, circular supercoiled dsDNA | 150–250 kbp | Parasitoid wasps (Ichneumonidae and Braconidae) of Lepidoptera |
Eupolintoviridae [38] | linear dsDNA | 15–40 kbp | Eukaryotic genomes |
Iridoviridae [39] | linear dsDNA | 140–303 kbp | Fish, amphibians, reptiles, insects and crustaceans |
Nudiviridae [40] | circular dsDNA | 96–232 kbp | Insects and crustaceans |
Parvoviridae [41] | linear ssDNA | 4–6 kb | Vertebrates and invertebrates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haisi, A.; Nogueira, M.F.; Possebon, F.S.; Junior, J.P.A.; Marinho-Prado, J.S. Viral Community and Novel Viral Genomes Associated with the Sugarcane Weevil, Sphenophorus levis (Coleoptera: Curculionidae) in Brazil. Viruses 2025, 17, 1312. https://doi.org/10.3390/v17101312
Haisi A, Nogueira MF, Possebon FS, Junior JPA, Marinho-Prado JS. Viral Community and Novel Viral Genomes Associated with the Sugarcane Weevil, Sphenophorus levis (Coleoptera: Curculionidae) in Brazil. Viruses. 2025; 17(10):1312. https://doi.org/10.3390/v17101312
Chicago/Turabian StyleHaisi, Amanda, Márcia Furlan Nogueira, Fábio Sossai Possebon, João Pessoa Araújo Junior, and Jeanne Scardini Marinho-Prado. 2025. "Viral Community and Novel Viral Genomes Associated with the Sugarcane Weevil, Sphenophorus levis (Coleoptera: Curculionidae) in Brazil" Viruses 17, no. 10: 1312. https://doi.org/10.3390/v17101312
APA StyleHaisi, A., Nogueira, M. F., Possebon, F. S., Junior, J. P. A., & Marinho-Prado, J. S. (2025). Viral Community and Novel Viral Genomes Associated with the Sugarcane Weevil, Sphenophorus levis (Coleoptera: Curculionidae) in Brazil. Viruses, 17(10), 1312. https://doi.org/10.3390/v17101312