A Review of the Utility of Established Cell Lines for Isolation and Propagation of the Southern African Territories Serotypes of Foot-and-Mouth Disease Virus
Abstract
:1. Introduction
1.1. FMD Virus Adhesion and Entry
1.2. The Role of Cells in FMDV Diagnosis and Vaccine Production
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Search Strategy
3. Results
4. FMDV Propagation Cell Lines
4.1. Commonly Used Cell Lines
4.1.1. Thyroid-Derived Cells
4.1.2. Tongue Epithelial-Derived Cells
4.1.3. Kidney-Derived Cell Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azeem, A. A review on foot and mouth disease in dairy animals, etiology, pathogenesis and clinical findings. Pure Appl. Biol. 2020, 9, 821–832. [Google Scholar] [CrossRef]
- Cao, Y.; Li, K.; Xing, X.; Bao, H.; Huang, N.; Zhu, G.; Bai, X.; Sun, P.; Fu, Y.; Li, P.; et al. Selection of Vaccine Candidate for Foot-and-Mouth Disease Virus Serotype O Using a Blocking Enzyme-Linked Immunosorbent Assay. Vaccines 2021, 9, 387. [Google Scholar] [CrossRef]
- Perez-Martin, E.; Beechler, B.; Zhang, F.; Scott, K.; De Klerk-Lorist, L.-M.; Limon, G.; Dugovich, B.; Gubbins, S.; Botha, A.; Hetem, R.; et al. Viral dynamics and immune responses to foot-and-mouth disease virus in African buffalo (Syncerus caffer). Vet. Res. 2022, 53, 63. [Google Scholar] [CrossRef]
- Mogotsi, K.; Kgosikoma, O.E.; Lubinda, K.F. Wildlife-livestock interface, veterinary cordon fence damage, lack of protection zones, livestock theft and owner apathy: Complex socio-ecological dynamics in Foot and Mouth disease control in southern Africa. Pastoralism 2016, 6, 21. [Google Scholar] [CrossRef]
- Sarry, M.; Vitour, D.; Zientara, S.; Bakkali Kassimi, L.; Blaise-Boisseau, S. Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Viruses 2022, 14, 2129. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, P.; LaRocco, M.; Baxt, B.; Rieder, E. Examination of soluble integrin resistant mutants of foot-and-mouth disease virus. Virol. J. 2013, 10, 2. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, W.; Zhang, X.; Wang, C.; Gao, L.; Yang, F.; Cao, W.; Li, K.; Tian, H.; Liu, X.; et al. Foot-and-Mouth Disease Virus Capsid Protein VP1 Interacts with Host Ribosomal Protein SA To Maintain Activation of the MAPK Signal Pathway and Promote Virus Replication. J. Virol. 2020, 94, e01350-19. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Y.; Shang, Y.; Zhang, Z.; Liu, X. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol. J. 2015, 12, 9. [Google Scholar] [CrossRef]
- OiE Manual. 2022. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.01.08_FMD.pdf (accessed on 30 November 2024).
- Rweyemamu, M.; Maree, F.; Kasanga, C.; Scott, K.; Opperman, P.; Chitray, M.; Sangula, A.; Sallu, R.; Sinkala, Y.; Wambura, P.; et al. Challenges and prospects for the control of foot-and-mouth disease: An African perspective. Vet. Med. Res. Rep. 2014, 5, 119–138. [Google Scholar] [CrossRef]
- Fana, E.M.; Mpoloka, S.W.; Leteane, M.; Seoke, L.; Masoba, K.; Mokopasetso, M.; Rapharing, A.; Kabelo, T.; Made, P.; Hyera, J. A Five-Year Retrospective Study of Foot-and-Mouth Disease Outbreaks in Southern Africa, 2014 to 2018. Vet. Med. Int. 2021, 2021, 7438809. [Google Scholar] [CrossRef] [PubMed]
- Vosloo, W.; Bastos, A.D.S.; Sangare, O.; Hargreaves, S.K.; Thomson, G.R.A. Review of the status of foot and mouth disease in sub-Saharan Africa. Rev. Sci. Tech. 2002, 21, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Kerfua, S.D.; Railey, A.F.; Marsh, T.L. Household production and consumption impacts of foot and mouth disease at the Uganda-Tanzania border. Front. Vet. Sci. 2023, 10, 1156458. [Google Scholar] [CrossRef]
- Brehm, K.E.; Kumar, N.; Thulke, H.-H.; Haas, B. High potency vaccines induce protection against heterologous challenge with foot-and-mouth disease virus. Vaccine 2008, 26, 1681–1687. [Google Scholar] [CrossRef]
- Kabelo, T.I.; Fana, E.M.; Hyera, J.M.; Lebani, K. A review of foot-and-mouth disease status and control measures in Botswana. Trop. Anim. Health Prod. 2023, 55, 278. [Google Scholar] [CrossRef]
- Li, K.; Wang, C.; Yang, F.; Cao, W.; Zhu, Z.; Zheng, H. Virus–Host Interactions in Foot-and-Mouth Disease Virus Infection. Front. Immunol. 2021, 12, 571509. [Google Scholar] [CrossRef]
- Lawrence, P.; Rai, D.; Conderino, J.S.; Uddowla, S.; Rieder, E. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 2016, 492, 38–52. [Google Scholar] [CrossRef]
- O’Donnell, V.; Pacheco, J.M.; Gregg, D.; Baxt, B. Analysis of Foot-and-Mouth Disease Virus Integrin Receptor Expression in Tissues from Naïve and Infected Cattle. J. Comp. Pathol. 2009, 141, 98–112. [Google Scholar] [CrossRef]
- Le, N.M.T.; So, K.-K.; Chun, J.; Kim, D.-H. Expression of virus-like particles (VLPs) of foot-and-mouth disease virus (FMDV) using Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2024, 108, 81. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-C.; Guo, H.-C.; Sun, S.-Q.; Jin, Y.; Wei, Y.-Q.; Feng, X.; Yao, X.-P.; Cao, S.-Z.; Xiang Liu, D.; Liu, X.-T. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase. Sci. Rep. 2016, 6, 19294. [Google Scholar] [CrossRef] [PubMed]
- Chitray, M.; Kotecha, A.; Nsamba, P.; Ren, J.; Maree, S.; Ramulongo, T.; Paul, G.; Theron, J.; Fry, E.E.; Stuart, D.I.; et al. Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses. PLoS Pathog. 2020, 16, e1008828. [Google Scholar] [CrossRef]
- Xing, Y.; Wen, Z.; Gao, W.; Lin, Z.; Zhong, J.; Jiu, Y. Multifaceted Functions of Host Cell Caveolae/Caveolin-1 in Virus Infections. Viruses 2020, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- Fry, E.E. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 1999, 18, 543–554. [Google Scholar] [CrossRef]
- Lee, G.; Hwang, J.-H.; Kim, A.; Park, J.-H.; Lee, M.J.; Kim, B.; Kim, S.-M. Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors. Viruses 2020, 12, 1012. [Google Scholar] [CrossRef] [PubMed]
- Berryman, S.; Clark, S.; Kakker, N.K.; Silk, R.; Seago, J.; Wadsworth, J.; Chamberlain, K.; Knowles, N.J.; Jackson, T. Positively Charged Residues at the Five-Fold Symmetry Axis of Cell Culture-Adapted Foot-and-Mouth Disease Virus Permit Novel Receptor Interactions. J. Virol. 2013, 87, 8735–8744. [Google Scholar] [CrossRef]
- Lawrence, P.; Rieder, E. Insights into Jumonji C-domain containing protein 6 (JMJD6): A multifactorial role in foot-and-mouth disease virus replication in cells. Virus Genes 2017, 53, 340–351. [Google Scholar] [CrossRef]
- Jamal, S.M.; Belsham, G.J. Foot-and-mouth disease: Past, present and future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef] [PubMed]
- LaRocco, M.; Ahmed, Z.; Rodriguez-Calzada, M.; Azzinaro, P.A.; Barrette, R.; Krug, P.; Rodriguez, L.L.; De Los Santos, T.; Medina, G.N. An adventitious agent-free clonal cell line that is highly susceptible to foot -and-mouth disease virus. Biologicals 2021, 72, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Dolskiy, A.A.; Grishchenko, I.V.; Yudkin, D.V. Cell Cultures for Virology: Usability, Advantages, and Prospects. Int. J. Mol. Sci. 2020, 21, 7978. [Google Scholar] [CrossRef] [PubMed]
- LaRocco, M.; Krug, P.W.; Kramer, E.; Ahmed, Z.; Pacheco, J.M.; Duque, H.; Baxt, B.; Rodriguez, L.L. A continuous bovine kidney cell line constitutively expressing bovine αvβ6 integrin has increased susceptibility to foot-and-mouth disease virus. J. Clin. Microbiol. 2013, 51, 1714–1720, Correction in J. Clin. Microbiol. 2015, 53, 755. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Eschbaumer, M. Cell culture propagation of foot-and-mouth disease virus: Adaptive amino acid substitutions in structural proteins and their functional implications. Virus Genes 2020, 56, 1–15. [Google Scholar] [CrossRef]
- Gauger, P.C.; Vincent, A.L. Serum Virus Neutralization Assay for Detection and Quantitation of Serum-Neutralizing Antibodies to Influenza A Virus in Swine. In Animal Influenza Virus; Spackman, E., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2014; Volume 1161, pp. 313–324. ISBN 978-1-4939-0757-1. [Google Scholar]
- Tekleghiorghis, T.; Weerdmeester, K.; Van Hemert-Kluitenberg, F.; Moormann, R.J.M.; Dekker, A. Comparison of Test Methodologies for Foot-and-Mouth Disease Virus Serotype A Vaccine Matching. Clin. Vaccine Immunol. 2014, 21, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J.Y.; Ryu, K.-H.; Kim, A.-Y.; Kim, J.; Ko, Y.-J.; Lee, E.G. Production of a Foot-and-Mouth Disease Vaccine Antigen Using Suspension-Adapted BHK-21 Cells in a Bioreactor. Vaccines 2021, 9, 505. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.; El-Sayed, A.; Castañeda Vazquez, H. Foot-and-mouth disease vaccines: Recent updates and future perspectives. Arch. Virol. 2019, 164, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Niedbalski, W.; Fitzner, A.; Bulenger, K. Recent progress in vaccines against foot-and-mouth disease. Med. Weter. 2019, 75, 528–534. [Google Scholar] [CrossRef]
- Mao, R.; Sun, D.; Yang, F.; Tian, H.; Zhu, Z.; Zheng, H.; Liu, X. Establishment and Evaluation of a Stable Bovine Thyroid Cell Line for Investigating Foot-and-Mouth Disease Virus. Front. Microbiol. 2018, 9, 2149. [Google Scholar] [CrossRef]
- Kabelo, T.; Fana, E.; Lebani, K. Assessment of the sensitivity of primary cells and cell lines to the Southern African Territories (SAT) serotypes in the diagnosis of foot-and-mouth disease virus. Heliyon 2020, 6, e03905. [Google Scholar] [CrossRef] [PubMed]
- Brehm, K.E.; Ferris, N.P.; Lenk, M.; Riebe, R.; Haas, B. Highly Sensitive Fetal Goat Tongue Cell Line for Detection and Isolation of Foot-and-Mouth Disease Virus. J. Clin. Microbiol. 2009, 47, 3156–3160. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Hoffmann, B.; Zimmer, A.; Beer, M.; Eschbaumer, M. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virol. J. 2018, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; Harvey, Y.; Perez-Martin, E.; Wilsden, G.; Juleff, N.; Charleston, B.; Seago, J. The selection of naturally stable candidate foot-and-mouth disease virus vaccine strains for East Africa. Vaccine 2021, 39, 5015–5024. [Google Scholar] [CrossRef]
- Fukai, K.; Onozato, H.; Kitano, R.; Yamazoe, R.; Morioka, K.; Yamada, M.; Ohashi, S.; Yoshida, K.; Kanno, T. Availability of a fetal goat tongue cell line ZZ-R 127 for isolation of Foot-and-mouth disease virus (FMDV) from clinical samples collected from animals experimentally infected with FMDV. J. Vet. Diagn. Investig. 2013, 25, 770–774. [Google Scholar] [CrossRef]
- Zabal, O.; Fondevila, N. Selection of Highly Susceptible Cell Lines to Foot and Mouth Disease Virus Infection. Open J. Vet. Med. 2013, 3, 263–266. [Google Scholar] [CrossRef]
- Kamal, T.; Naeem, K.; Munir, A.; Ali, M.; Ullah, A. Comparative Study for the Sensitivity of BHK-21 and Bovine Kidney Cell Line for the Isolation of FMD Viruses. In Proceedings of the 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2014. [Google Scholar]
- Burman, A.; Clark, S.; Abrescia, N.G.A.; Fry, E.E.; Stuart, D.I.; Jackson, T. Specificity of the VP1 GH Loop of Foot-and-Mouth Disease Virus for αv Integrins. J. Virol. 2006, 80, 9798–9810. [Google Scholar] [CrossRef]
- Johns, H.L.; Berryman, S.; Monaghan, P.; Belsham, G.J.; Jackson, T. A Dominant-Negative Mutant of rab5 Inhibits Infection of Cells by Foot-and-Mouth Disease Virus: Implications for Virus Entry. J. Virol. 2009, 83, 6247–6256. [Google Scholar] [CrossRef] [PubMed]
- Maree, F.F.; Blignaut, B.; De Beer, T.A.P.; Rieder, E. Analysis of SAT Type Foot-And-Mouth Disease Virus Capsid Proteins and the Identification of Putative Amino Acid Residues Affecting Virus Stability. PLoS ONE 2013, 8, e61612. [Google Scholar] [CrossRef]
- Ali, A.; Zahur, A.B.; Farooq, U.; Latif, A.; Naeem, K.; Afzal, M.; Ullah, R.W.; Shabana; Muhammad, Z.Y. Comparative Sensitivity of LFBK and LFBK αVβ6 Cell Lines for Isolation of Foot and Mouth Disease Virus from Riverine Buffaloes by Using Oro- Pharyngeal Fluid. J. Virol. Antivir. Res. 2019, 8, 1. [Google Scholar] [CrossRef]
- Gray, A.R.; Wood, B.A.; Henry, E.; Azhar, M.; King, D.P.; Mioulet, V. Evaluation of Cell Lines for the Isolation of Foot-and-Mouth Disease Virus and Other Viruses Causing Vesicular Disease. Front. Vet. Sci. 2020, 7, 426. [Google Scholar] [CrossRef] [PubMed]
- Wungak, Y.S.; Olugasa, B.O.; Ishola, O.; Lazarus, D.; Chukwuedo, A.A.; Ularamu, H.G. Isolation and serotyping of foot-and-mouth disease virus in cattle collected from north central, Nigeria. Niger. Vet. J. 2019, 40, 3. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, Q.; Chang, H.; Wu, Y.; Pan, S.; Li, Y.; Zhang, Y. Inability of FMDV replication in equine kidney epithelial cells is independent of integrin αvβ3 and αvβ6. Virology 2016, 492, 251–258. [Google Scholar] [CrossRef]
- Amadori, M.; Volpe, G.; Defilippi, P.; Berneri, C. Phenotypic Features of BHK-21 Cells Used for Production of Foot-and-mouth Disease Vaccine. Biologicals 1997, 25, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Pfaff, F.; Zimmer, A.; Beer, M.; Eschbaumer, M. Adherent and suspension baby hamster kidney cells have a different cytoskeleton and surface receptor repertoire. PLoS ONE 2021, 16, e0246610. [Google Scholar] [CrossRef]
- Gray, A.R.; Wood, B.A.; Henry, E.; King, D.P.; Mioulet, V. Elimination of Non-cytopathic Bovine Viral Diarrhea Virus From the LFBK-αvβ6 Cell Line. Front. Vet. Sci. 2021, 8, 715120. [Google Scholar] [CrossRef]
- House, J.A.; House, C.; Llewellyn, M.E. Characteristics of the porcine kidney cell line IB-RS-2 clone D10 (IB-RS-2 D10) which is free of hog cholera virus. In Vitro Cell. Dev. Biol. 1988, 24, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Poonsuk, K.; Giménez-Lirola, L.; Zimmerman, J.J. A review of foot-and-mouth disease virus (FMDV) testing in livestock with an emphasis on the use of alternative diagnostic specimens. Anim. Health Res. Rev. 2018, 19, 100–112. [Google Scholar] [CrossRef]
- Du, J.; Chang, H.; Gao, S.; Xue, S.; Cong, G.; Shao, J.; Lin, T.; Liu, Z.; Liu, X.; Cai, X. Molecular characterization and expression analysis of porcine integrins αvβ3, αvβ6 and αvβ8 that are potentially involved in FMDV infection. Mol. Cell. Probes 2010, 24, 256–265. [Google Scholar] [CrossRef]
- Ren, X.; Yin, M.; Zhao, Q.; Zheng, Z.; Wang, H.; Lu, Z.; Li, X.; Qian, P. Foot-and-Mouth Disease Virus Induces Porcine Gasdermin E-Mediated Pyroptosis through the Protease Activity of 3Cpro. J. Virol. 2023, 97, e00686-23. [Google Scholar] [CrossRef]
Keywords | Combinations |
---|---|
Foot-and-Mouth Disease Virus | AND cell lines |
FMDV | AND SAT serotypes |
FMDV | AND receptors |
Cell lines | AND diagnostics |
Diagnostics | AND FMDV |
Propagation | AND FMDV |
Cell Line | Origin | FMDV Serotypes Propagated in the Cells | Receptors | References |
---|---|---|---|---|
Bovine thyroid cells—telomerase reverse transcriptase-(hTERT-BTY). | Bovine thyroid | A, Asia-1, O | αVβ6 | [37,42] |
Foetal goat cell line (ZZ-R 127) | Goat tongue | A, Asia-1, C, O, SAT 1, SAT 2, SAT 3. | presumably αVβ6 | [39,42] |
Ovine Kidney cell line (OVK) | Ovine kidneys | A, C, O | αv- | [43] |
Bovine kidney (BK) | Bovine kidneys | O | αVβ6, αVβ3 | [44] |
Baby hamster kidney (BHK-21) | Hamster kidneys | A, Asia-1, C, O, SAT 1, SAT 2, SAT 3. | αVβ3, heparan sulphate, JMJD6 | [6,17,21,31,41,42,45] |
LFBKαvβ6 LFBK | Porcine kidneys | A, Asia-1, O, SAT 1, SAT 2, SAT 3. | Overexpressed αVβ6, heparan sulphate, JMJD6 | [18,21,29,30] |
Instituto Biologico Rim Suino pig kidney number 2 (IB-RS-2) | Porcine kidneys | A, C, O, SAT 1, SAT 2, SAT 3. | αVβ8, αVβ6 | [29,42,43,44,46] |
Porcine kidney 15 (PK-15) or swine kidney 6 (SK-6) | Porcine kidneys | O | αVβ8, αVβ6, αVβ3 | [37,39,46,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaboiphiwe, K.; Kabelo, T.I.; Mosholombe, P.T.; Hyera, J.; Fana, E.M.; Masisi, K.; Lebani, K. A Review of the Utility of Established Cell Lines for Isolation and Propagation of the Southern African Territories Serotypes of Foot-and-Mouth Disease Virus. Viruses 2025, 17, 39. https://doi.org/10.3390/v17010039
Gaboiphiwe K, Kabelo TI, Mosholombe PT, Hyera J, Fana EM, Masisi K, Lebani K. A Review of the Utility of Established Cell Lines for Isolation and Propagation of the Southern African Territories Serotypes of Foot-and-Mouth Disease Virus. Viruses. 2025; 17(1):39. https://doi.org/10.3390/v17010039
Chicago/Turabian StyleGaboiphiwe, Kitsiso, Tshephang Iris Kabelo, Petronella Thato Mosholombe, Joseph Hyera, Elliot Mpolokang Fana, Kabo Masisi, and Kebaneilwe Lebani. 2025. "A Review of the Utility of Established Cell Lines for Isolation and Propagation of the Southern African Territories Serotypes of Foot-and-Mouth Disease Virus" Viruses 17, no. 1: 39. https://doi.org/10.3390/v17010039
APA StyleGaboiphiwe, K., Kabelo, T. I., Mosholombe, P. T., Hyera, J., Fana, E. M., Masisi, K., & Lebani, K. (2025). A Review of the Utility of Established Cell Lines for Isolation and Propagation of the Southern African Territories Serotypes of Foot-and-Mouth Disease Virus. Viruses, 17(1), 39. https://doi.org/10.3390/v17010039