Impact of Obesity-Associated SARS-CoV-2 Mutations on COVID-19 Severity and Clinical Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Viral Genome Sequencing and Variant Calling
2.3. Immunological Assays
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics and SARS-CoV-2 Clade Distribution in the Pre-Vaccine Era
3.2. Identification of BMI-Associated Viral Mutations
3.3. Impact of Mutations on Clinical Outcomes
3.4. Immune Response Profiling: Association of SARS-CoV-2 Mutations with Neutralizing Antibody Levels Against the Nucleocapsid Protein
3.5. Inflammatory Markers and Clinical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenthal, A.; Waitzberg, R. The Challenges Brought by the COVID-19 Pandemic to Health Systems Exposed Pre-Existing Gaps. Health Policy Open 2022, 4, 100088. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, U.; Bedston, S.; McCowan, C.; Oke, J.; Patterson, L.; Robertson, C.; Akbari, A.; Azcoaga-Lorenzo, A.; Bradley, D.T.; Fagbamigbe, A.F.; et al. Severe COVID-19 Outcomes after Full Vaccination of Primary Schedule and Initial Boosters: Pooled Analysis of National Prospective Cohort Studies of 30 Million Individuals in England, Northern Ireland, Scotland, and Wales. Lancet 2022, 400, 1305–1320. [Google Scholar] [CrossRef] [PubMed]
- Buikema, A.R.; Buzinec, P.; Paudel, M.L.; Andrade, K.; Johnson, J.C.; Edmonds, Y.M.; Jhamb, S.K.; Chastek, B.; Raja, H.; Cao, F.; et al. Racial and Ethnic Disparity in Clinical Outcomes among Patients with Confirmed COVID-19 Infection in a Large US Electronic Health Record Database. iScience 2021, 39, 101075. [Google Scholar] [CrossRef] [PubMed]
- Jaisinghani, P.; Kumar, R. Obesity and Viral Infections. Gastroenterol. Clin. N. Am. 2023, 52, 393–402. [Google Scholar] [CrossRef]
- De Leeuw, A.J.M.; Luttikhuis, M.A.M.O.; Wellen, A.C.; Müller, C.; Cornelis, M.; Calkhoven, F. Obesity and Its Impact on COVID-19. Obes. Pandemic. 2022, 99, 899–915. [Google Scholar] [CrossRef]
- Singh, R.; Singh Rathore, S.; Khan, H.; Karale, S.; Chawla, Y.; Iqbal, K.; Bhurwal, A.; Tekin, A.; Jain, N.; Mehra, I.; et al. Association of Obesity with COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and Meta-Regression. Front. Endocrinol. 2022, 13, 780872. [Google Scholar] [CrossRef]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between Body-Mass Index and COVID-19 Severity in 6·9 Million People in England: A Prospective, Community-Based, Cohort Study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef]
- Haththotuwa, R.N.; Wijeyaratne, C.N.; Senarath, U. Worldwide Epidemic of Obesity. In Obesity and Obstetrics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–8. [Google Scholar] [CrossRef]
- Ely, E.W.; Brown, L.M.; Fineberg, H.V. Long COVID Defined. N. Engl. J. Med. 2024, 391, 1746–1753. [Google Scholar] [CrossRef]
- Vimercati, L.; De Maria, L.; Quarato, M.; Caputi, A.; Gesualdo, L.; Migliore, G.; Cavone, D.; Sponselli, S.; Pipoli, A.; Inchingolo, F.; et al. Association between Long COVID and Overweight/Obesity. J. Clin. Med. 2021, 10, 4143. [Google Scholar] [CrossRef]
- Florencio, L.L.; Fernández-De-Las-Peñas, C. Long COVID: Systemic Inflammation and Obesity as Therapeutic Targets. Lancet Respir. Med. 2022, 10, 726–727. [Google Scholar] [CrossRef]
- Lacavalerie, M.R.; Pierre-Francois, S.; Agossou, M.; Inamo, J.; Cabie, A.; Barnay, J.L.; Neviere, R. Obese Patients With Long COVID-19 Display Abnormal Hyperventilatory Response and Impaired Gas Exchange at Peak Exercise. Future Cardiol. 2022, 18, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Loosen, S.H.; Jensen, B.E.O.; Tanislav, C.; Luedde, T.; Roderburg, C.; Kostev, K. Obesity and Lipid Metabolism Disorders Determine the Risk for Development of Long COVID Syndrome: A Cross-Sectional Study from 50,402 COVID-19 Patients. Infection 2022, 50, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Kerr, S.; Bedston, S.; Cezard, G.; Sampri, A.; Murphy, S.; Bradley, D.T.; Morrison, K.; Akbari, A.; Whiteley, W.; Sullivan, C.; et al. Undervaccination and Severe COVID-19 Outcomes: Meta-Analysis of National Cohort Studies in England, Northern Ireland, Scotland, and Wales. Lancet 2024, 403, 554–566. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; O’Donnell, C.P.; Wrigley Kelly, N.E.; Hogan, A.E. COVID-19 Severity and Obesity: Are MAIT Cells a Factor? Lancet Respir. Med. 2021, 9, 445–447. [Google Scholar] [CrossRef]
- Tadayon Najafabadi, B.; Rayner, D.G.; Shokraee, K.; Shokraie, K.; Panahi, P.; Rastgou, P.; Seirafianpour, F.; Momeni Landi, F.; Alinia, P.; Parnianfard, N.; et al. Obesity as an Independent Risk Factor for COVID-19 Severity and Mortality. Cochrane Database Syst. Rev. 2023, 2023, CD015201. [Google Scholar] [CrossRef]
- Mohammad, S.; Aziz, R.; Al Mahri, S.; Malik, S.S.; Haji, E.; Khan, A.H.; Khatlani, T.S.; Bouchama, A. Obesity and COVID-19: What Makes Obese Host so Vulnerable? Immun. Ageing 2021, 18, 1. [Google Scholar] [CrossRef]
- Aburto, S.; Cisterna, M.; Acuña, J.; Ruíz, C.; Viscardi, S.; Márquez, J.L.; Villano, I.; Letelier, P.; Guzmán, N. Obesity as a Risk Factor for Severe COVID-19 in Hospitalized Patients: Epidemiology and Potential Mechanisms. Healthcare 2022, 10, 1838. [Google Scholar] [CrossRef]
- Gibson, P.G.; Qin, L.; Puah, S.H. COVID-19 Acute Respiratory Distress Syndrome (ARDS): Clinical Features and Differences from Typical Pre-COVID-19 ARDS. Med. J. Aust. 2020, 213, 54. [Google Scholar] [CrossRef]
- Batah, S.S.; Fabro, A.T. Pulmonary Pathology of ARDS in COVID-19: A Pathological Review for Clinicians. Respir. Med. 2021, 176, 106239. [Google Scholar] [CrossRef]
- Aghili, S.M.M.; Ebrahimpur, M.; Arjmand, B.; Shadman, Z.; Sani, M.P.; Qorbani, M.; Larijani, B.; Payab, M. Obesity in COVID-19 Era, Implications for Mechanisms, Comorbidities, and Prognosis: A Review and Meta-Analysis. Int. J. Obes. 2021, 45, 998–1016. [Google Scholar] [CrossRef]
- Jalaleddine, N.; Bouzid, A.; Hachim, M.; Sharif-Askari, N.S.; Mahboub, B.; Senok, A.; Halwani, R.; Hamoudi, R.A.; Al Heialy, S. ACE2 Polymorphisms Impact COVID-19 Severity in Obese Patients. Sci. Rep. 2022, 12, 21491. [Google Scholar] [CrossRef] [PubMed]
- Ningombam, S.S.; Kumar, R.; Tanwar, P. Mutant Strains of SARS-CoV-2 Are More Prone to Infect Obese Patient: A Review. Wien. Klin. Wochenschr. 2021, 133, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Rathnasinghe, R.; Jangra, S.; Ye, C.; Cupic, A.; Singh, G.; Martínez-Romero, C.; Mulder, L.C.F.; Kehrer, T.; Yildiz, S.; Choi, A.; et al. Characterization of SARS-CoV-2 Spike Mutations Important for Infection of Mice and Escape from Human Immune Sera. Nat. Commun. 2022, 13, 3921. [Google Scholar] [CrossRef] [PubMed]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated Levels of IL-6 and CRP Predict the Need for Mechanical Ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef]
- Poggiali, E.; Zaino, D.; Immovilli, P.; Rovero, L.; Losi, G.; Dacrema, A.; Nuccetelli, M.; Vadacca, G.B.; Guidetti, D.; Vercelli, A.; et al. Lactate Dehydrogenase and C-Reactive Protein as Predictors of Respiratory Failure in COVID-19 Patients. Clin Chim Acta 2020, 509, 135–138. [Google Scholar] [CrossRef]
- De Michieli, L.; Jaffe, A.S.; Sandoval, Y. Use and Prognostic Implications of Cardiac Troponin in COVID-19. Heart Fail. Clin. 2023, 19, 163. [Google Scholar] [CrossRef]
- Pérez-García, N.; García-González, J.; Requena-Mullor, M.; Rodríguez-Maresca, M.Á.; Alarcón-Rodríguez, R. Comparison of Analytical Values D-Dimer, Glucose, Ferritin and C-Reactive Protein of Symptomatic and Asymptomatic COVID-19 Patients. Int. J. Environ. Res. Public Health 2022, 19, 5354. [Google Scholar] [CrossRef]
- Li, C.J.; Chang, S.C. SARS-CoV-2 Spike S2-Specific Neutralizing Antibodies. Emerg. Microbes Infect. 2023, 12, 2220582. [Google Scholar] [CrossRef]
- Martono; Fatmawati, F.; Mulyanti, S. Risk Factors Associated with the Severity of COVID-19. Malays. J. Med. Sci. 2023, 30, 84–92. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Yek, C.; Warner, S.; Wiltz, J.L.; Sun, J.; Adjei, S.; Mancera, A.; Silk, B.J.; Gundlapalli, A.V.; Harris, A.M.; Boehmer, T.K.; et al. Risk Factors for Severe COVID-19 Outcomes Among Persons Aged ≥18 Years Who Completed a Primary COVID-19 Vaccination Series-465 Health Care Facilities, United States, December 2020–October 2021. Morb. Mortal. Wkly. Report 2022, 71, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Abbasian, M.H.; Mahmanzar, M.; Rahimian, K.; Mahdavi, B.; Tokhanbigli, S.; Moradi, B.; Sisakht, M.M.; Deng, Y. Global Landscape of SARS-CoV-2 Mutations and Conserved Regions. J. Transl. Med. 2023, 21, 152. [Google Scholar] [CrossRef]
- UK Health Security Agency. SARS-CoV-2 Variants of Concern and Variants Under Investigation in England; UK Health Security Agency: London, UK, 2023.
- Chatterjee, S.; Bhattacharya, M.; Nag, S.; Dhama, K.; Chakraborty, C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023, 15, 167. [Google Scholar] [CrossRef]
- Jaros, R.K.; Fadason, T.; Cameron-Smith, D.; Golovina, E.; O’Sullivan, J.M. Comorbidity Genetic Risk and Pathways Impact SARS-CoV-2 Infection Outcomes. Sci. Rep. 2023, 13, 9879. [Google Scholar] [CrossRef]
- García-López, R.; Rivera-Gutiérrez, X.; Rosales-Rivera, M.; Zárate, S.; Muñoz-Medina, J.E.; Roche, B.; Herrera-Estrella, A.; Gómez-Gil, B.; Sanchez-Flores, A.; Taboada, B.; et al. SARS-CoV-2 BW Lineage, a Fast-Growing Omicron Variant from Southeast Mexico Bearing Relevant Escape Mutations. Infection 2023, 51, 1549–1555. [Google Scholar] [CrossRef]
- Liu, S.; Shen, J.; Fang, S.; Li, K.; Liu, J.; Yang, L.; Hu, C.D.; Wan, J. Genetic Spectrum and Distinct Evolution Patterns of SARS-CoV-2. Front Microbiol 2020, 11, 593548. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Iglesias-Caballero, M.; Puerta-Alcalde, P.; Mas, V.; Cuesta-Chasco, G.; Garcia-Pouton, N.; Varona, S.; Pozo, F.; Vázquez-Morón, S.; Marcos, M.A.; et al. Emergence of Progressive Mutations in SARS-CoV-2 From a Hematologic Patient With Prolonged Viral Replication. Front. Microbiol. 2022, 13, 826883. [Google Scholar] [CrossRef]
- Abedi, F.; Rezaee, R.; Hayes, A.W.; Nasiripour, S.; Karimi, G. MicroRNAs and SARS-CoV-2 Life Cycle, Pathogenesis, and Mutations: Biomarkers or Therapeutic Agents? Cell Cycle 2021, 20, 143–153. [Google Scholar] [CrossRef]
- Surleac, M.; Banica, L.; Casangiu, C.; Cotic, M.; Florea, D.; Sandulescu, O.; Milu, P.; Streinu-Cercel, A.; Vlaicu, O.; Paraskevis, D.; et al. Molecular Epidemiology Analysis of SARS-CoV-2 Strains Circulating in Romania during the First Months of the Pandemic. Life 2020, 10, 152. [Google Scholar] [CrossRef]
- Nagpal, S.; Pinna, N.K.; Pant, N.; Singh, R.; Srivastava, D.; Mande, S.S. Can Machines Learn the Mutation Signatures of SARS-CoV-2 and Enable Viral-Genotype Guided Predictive Prognosis? J. Mol. Biol. 2022, 434, 7684. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sabarinathan, R.; Bala, P.; Donipadi, V.; Vashisht, D.; Katika, M.R.; Kandakatla, M.; Mitra, D.; Dalal, A.; Bashyam, M.D. A Comprehensive Profile of Genomic Variations in the SARS-CoV-2 Isolates from the State of Telangana, India. J. Gen. Virol. 2021, 102, 001562. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.F.; Morales, L.A.A.; Kassen, R. Effects of Synonymous Mutations beyond Codon Bias: The Evidence for Adaptive Synonymous Substitutions from Microbial Evolution Experiments. Genome Biol. Evol. 2021, 13, evab141. [Google Scholar] [CrossRef] [PubMed]
- Ramazzotti, D.; Angaroni, F.; Maspero, D.; Mauri, M.; D’aliberti, D.; Fontana, D.; Antoniotti, M.; Elli, E.M.; Graudenzi, A.; Piazza, R. Large-Scale Analysis of SARS-CoV-2 Synonymous Mutations Reveals the Adaptation to the Human Codon Usage during the Virus Evolution. Virus. Evol. 2022, 8, veac026. [Google Scholar] [CrossRef]
- Ziesel, A.; Jabbari, H. Structural Impact of Synonymous Mutations in Six SARS-CoV-2 Variants of Concern 2024. bioRxiv 2024. [Google Scholar] [CrossRef]
- Jalal, D.; Elzayat, M.G.; El-Shqanqery, H.E.; Diab, A.A.; Yahia, A.; Samir, O.; Bakry, U.; Amer, K.; ElNaqeeb, M.; Hassan, W.; et al. SARS-CoV-2 Genome Variations and Evolution Patterns in Egypt: A Multi-Center Study. Sci. Rep. 2022, 12, 14511. [Google Scholar] [CrossRef]
- Shrestha, L.; Lin, M.J.; Xie, H.; Mills, M.G.; Mohamed Bakhash, S.A.; Gaur, V.P.; Livingston, R.J.; Castor, J.; Bruce, E.A.; Botten, J.W.; et al. Clinical Performance Characteristics of the Swift Normalase Amplicon Panel for Sensitive Recovery of Severe Acute Respiratory Syndrome Coronavirus 2 Genomes. J. Mol. Diagn. 2022, 24, 963–976. [Google Scholar] [CrossRef]
- Sweet, D.R.; Freeman, M.L.; Zidar, D.A. Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention. Pathog. Immun. 2023, 8, 17–50. [Google Scholar] [CrossRef]
Mutation | Mutation Type | Viral Segment | Median BMI of Carriers | Number of Cases | Minor Allele Frequency (MAF) |
---|---|---|---|---|---|
C25904T | Missense | orf3A | 32.00 | 11 | 0.02 |
C313T | Synonymous | nsp1 (orf1ab) | 29.30 | 15 | 0.02 |
T22882G | Missense | spike | 29.26 | 12 | 0.02 |
G28083T | Stop-gain | orf8 | 29.22 | 22 | 0.03 |
C14599T | Synonymous | nsp12 (orf1ab) | 29.05 | 17 | 0.03 |
A20268G | Synonymous | nsp15 (orf1ab) | 28.04 | 91 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martinez, A.B.; Tristancho-Baró, A.; Garcia-Rodriguez, B.; Clavel-Millan, M.; Palacian, M.P.; Milagro, A.; Rezusta, A.; Arbones-Mainar, J.M. Impact of Obesity-Associated SARS-CoV-2 Mutations on COVID-19 Severity and Clinical Outcomes. Viruses 2025, 17, 38. https://doi.org/10.3390/v17010038
Martínez-Martinez AB, Tristancho-Baró A, Garcia-Rodriguez B, Clavel-Millan M, Palacian MP, Milagro A, Rezusta A, Arbones-Mainar JM. Impact of Obesity-Associated SARS-CoV-2 Mutations on COVID-19 Severity and Clinical Outcomes. Viruses. 2025; 17(1):38. https://doi.org/10.3390/v17010038
Chicago/Turabian StyleMartínez-Martinez, Ana B., Alexander Tristancho-Baró, Beatriz Garcia-Rodriguez, Marina Clavel-Millan, Maria Pilar Palacian, Ana Milagro, Antonio Rezusta, and Jose M. Arbones-Mainar. 2025. "Impact of Obesity-Associated SARS-CoV-2 Mutations on COVID-19 Severity and Clinical Outcomes" Viruses 17, no. 1: 38. https://doi.org/10.3390/v17010038
APA StyleMartínez-Martinez, A. B., Tristancho-Baró, A., Garcia-Rodriguez, B., Clavel-Millan, M., Palacian, M. P., Milagro, A., Rezusta, A., & Arbones-Mainar, J. M. (2025). Impact of Obesity-Associated SARS-CoV-2 Mutations on COVID-19 Severity and Clinical Outcomes. Viruses, 17(1), 38. https://doi.org/10.3390/v17010038