Investigation of Oral Shedding of Torquetenovirus (TTV) in Moderate-to-Severe COVID-19 Hospitalised Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Patients and Samples
2.3. Saliva Sample Collection
2.4. Molecular Analyses
2.4.1. Detection of SARS-CoV-2
2.4.2. Detection and Quantification of TTV
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishizawa, T.; Okamoto, H.; Konishi, K.; Yoshizawa, H.; Miyakawa, Y.; Mayumi, M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem. Biophys. Res. Commun. 1997, 241, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Jaksch, P.; Kundi, M.; Gorzer, I.; Murakozy, G.; Lambers, C.; Benazzo, A.; Hoetzenecker, K.; Klepetko, W.; Puchhammer-Stockl, E. Torque Teno Virus as a Novel Biomarker Targeting the Efficacy of Immunosuppression After Lung Transplantation. J. Infect. Dis. 2018, 218, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Rakibuzzaman, A.; Ramamoorthy, S. Torque teno viruses in health and disease. Virus Res. 2020, 285, 198013. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Macera, L.; Boggi, U.; Nelli, L.C.; Maggi, F. Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T lymphocytes as the main replication-competent cells. J. Gen. Virol. 2015, 96 Pt 1, 115–117. [Google Scholar]
- Frye, B.C.; Bierbaum, S.; Falcone, V.; Kohler, T.C.; Gasplmayr, M.; Hettich, I.; Durk, T.; Idzko, M.; Zissel, G.; Hengel, H.; et al. Kinetics of Torque Teno Virus-DNA Plasma Load Predict Rejection in Lung Transplant Recipients. Transplantation 2019, 103, 815–822. [Google Scholar] [CrossRef] [PubMed]
- De Vlaminck, I.; Khush, K.K.; Strehl, C.; Kohli, B.; Luikart, H.; Neff, N.F.; Okamoto, J.; Snyder, T.M.; Cornfield, D.N.; Nicolls, M.R.; et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 2013, 155, 1178–1187. [Google Scholar] [CrossRef]
- Liang, G.; Bushman, F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Microbiol. 2021, 19, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Spezia, P.G.; Macera, L.; Salvadori, S.; Navarro, D.; Lanza, M.; Antonelli, G.; Pistello, M.; Maggi, F. Assessment of prevalence and load of torquetenovirus viraemia in a large cohort of healthy blood donors. Clin. Microbiol. Infect. 2020, 26, 1406–1410. [Google Scholar] [CrossRef]
- Gorzer, I.; Haloschan, M.; Jaksch, P.; Klepetko, W.; Puchhammer-Stockl, E. Plasma DNA levels of Torque teno virus and immunosuppression after lung transplantation. J. Heart Lung Transplant. 2014, 33, 320–323. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.; Albert, E.; Giménez, E.; Ruiz-Merlo, T.; Parra, P.; López-Medrano, F.; Juan, R.S.; Polanco, N.; Andrés, A.; Navarro, D.; et al. Monitoring of alphatorquevirus DNA levels for the prediction of immunosuppression-related complications after kidney transplantation. Am. J. Transpl. 2019, 19, 1139–1149. [Google Scholar] [CrossRef]
- Forque, L.; Albert, E.; Gimenez, E.; Torres, I.; Carbonell, N.; Ferreres, J.; Blasco, M.L.; Navarro, D. Monitoring of Torque Teno virus DNAemia in critically ill COVID-19 patients: May it help to predict clinical outcomes? J. Clin. Virol. 2022, 148, 105082. [Google Scholar] [CrossRef]
- Giménez, E.; Monzó, C.; Albert, E.; Fuentes-Trillo, A.; Seda, E.; Piñana, J.L.; Boluda, J.C.H.; Solano, C.; Chaves, J.; Navarro, D. Diversity and dynamic changes of anelloviruses in plasma following allogeneic hematopoietic stem cell transplantation. J. Med. Virol. 2021, 93, 5167–5172. [Google Scholar] [CrossRef]
- Pifferi, M.; Maggi, F.; Andreoli, E.; Lanini, L.; Marco, E.D.; Fornai, C.; Vatteroni, M.L.; Pistello, M.; Ragazzo, V.; Macchia, P.; et al. Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J. Infect. Dis. 2005, 192, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xue, Q.; Jiao, W.; Wu, J.; Yu, Y.; Zhao, L.; Xu, Y.; Deng, X.; Fang, G.; Zheng, Y.; et al. Associations Between Sputum Torque Teno Virus Load and Lung Function and Disease Severity in Patients with Chronic Obstructive Pulmonary Disease. Front. Med. 2021, 8, 618757. [Google Scholar] [CrossRef]
- Focosi, D.; Antonelli, G.; Pistello, M.; Maggi, F. Torquetenovirus: The human virome from bench to bedside. Clin. Microbiol. Infect. 2016, 22, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Albert, E.; Solano, C.; Pascual, T.; Torres, I.; Macera, L.; Focosi, D.; Maggi, F.; Gimenez, E.; Amat, P.; Navarro, D. Dynamics of Torque Teno virus plasma DNAemia in allogeneic stem cell transplant recipients. J. Clin. Virol. 2017, 94, 22–28. [Google Scholar] [CrossRef]
- Mitchell, A.B.; Glanville, A.R. Kinetics of TTV-DNA Plasma Load: A Global Measure of Immune Suppression? Transplantation 2019, 103, 660–661. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Ceron, J.J.; Lamy, E.; Martinez-Subiela, S.; Lopez-Jornet, P.; Capela, E.S.F.; Eckersall, P.D.; Tvarijonaviciute, A. Use of Saliva for Diagnosis and Monitoring the SARS-CoV-2: A General Perspective. J. Clin. Med. 2020, 9, 1491. [Google Scholar] [CrossRef]
- Mendes-Correa, M.C.; Tozetto-Mendoza, T.R.; Freire, W.S.; Paiao, H.G.O.; Ferraz, A.B.C.; Mamana, A.C.; Ferreira, N.E.; de Paula, A.V.; Felix, A.C.; Romano, C.M.; et al. Torquetenovirus in saliva: A potential biomarker for SARS-CoV-2 infection? PLoS ONE 2021, 16, e0256357. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Tempestini, E.; Lanini, L.; Andreoli, E.; Fornai, C.; Giannecchini, S.; Vatteroni, M.; Pistello, M.; Marchi, S.; Ciccorossi, P.; et al. Blood levels of TT virus following immune stimulation with influenza or hepatitis B vaccine. J. Med. Virol. 2005, 75, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Tozetto-Mendoza, T.R.; Bongiovanni, A.M.; Minis, E.; Linhares, I.M.; Boester, A.; Freire, W.S.; Lima, S.H.; de Oliveira, N.P.G.; Mendes-Correa, M.C.; Forney, L.J.; et al. Torquetenovirus Titer in Vaginal Secretions from Pregnant and Postpartum Women: Association with Absence of Lactobacillus crispatus and Levels of Lactic Acid and Matrix Metalloproteinase-8. Reprod. Sci. 2020, 27, 2075–2081. [Google Scholar] [CrossRef]
- Lazari, L.C.; Zerbinati, R.M.; Rosa-Fernandes, L.; Santiago, V.F.; Rosa, K.F.; Angeli, C.B.; Schwab, G.; Palmieri, M.; Sarmento, D.J.S.; Marinho, C.R.F.; et al. MALDI-TOF mass spectrometry of saliva samples as a prognostic tool for COVID-19. J. Oral. Microbiol. 2022, 14, 2043651. [Google Scholar] [CrossRef] [PubMed]
- Azzi, L.; Carcano, G.; Gianfagna, F.; Grossi, P.; Gasperina, D.D.; Genoni, A.; Fasano, M.; Sessa, F.; Tettamanti, L.; Carinci, F.; et al. Saliva is a reliable tool to detect SARS-CoV-2. J. Infect. 2020, 81, e45–e50. [Google Scholar] [CrossRef] [PubMed]
- Haloschan, M.; Bettesch, R.; Gorzer, I.; Weseslindtner, L.; Kundi, M.; Puchhammer-Stockl, E. TTV DNA plasma load and its association with age, gender, and HCMV IgG serostatus in healthy adults. Age 2014, 36, 9716. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, M.; Tominaga, N.; Miyamura, T.; Soda, A.; Moriuchi, M.; Moriuchi, H. TT virus prevalence, viral loads and genotypic variability in saliva from healthy Japanese children. Acta Paediatr. 2008, 97, 1686–1690. [Google Scholar] [CrossRef] [PubMed]
- Giacconi, R.; Maggi, F.; Macera, L.; Pistello, M.; Provinciali, M.; Giannecchini, S.; Martelli, F.; Spezia, P.G.; Mariani, E.; Galeazzi, R.; et al. Torquetenovirus (TTV) load is associated with mortality in Italian elderly subjects. Exp. Gerontol. 2018, 112, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Pirhadi, R.; Talaulikar, V.S.; Onwude, J.; Manyonda, I. Could Estrogen Protect Women From COVID-19? J. Clin. Med. Res. 2020, 12, 634–639. [Google Scholar] [CrossRef]
- Lipsa, A.; Prabhu, J.S. Gender disparity in COVID-19: Role of sex steroid hormones. Asian Pac. J. Trop. Med. 2021, 14, 5–9. [Google Scholar]
- Mukherjee, S.; Pahan, K. Is COVID-19 Gender-sensitive? J. Neuroimmune Pharmacol. 2021, 16, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Honorato, L.; Witkin, S.S.; Mendes-Correa, M.C.; Toscano, A.L.C.C.; Linhares, I.M.; de Paula, A.V.; Paiao, H.G.O.; de Paula, V.S.; Lopes, A.O.; Lima, S.H.; et al. The Torque Teno Virus Titer in Saliva Reflects the Level of Circulating CD4(+) T Lymphocytes and HIV in Individuals Undergoing Antiretroviral Maintenance Therapy. Front. Med. 2021, 8, 809312. [Google Scholar] [CrossRef] [PubMed]
- Mallet, F.; Diouf, L.; Meunier, B.; Perret, M.; Reynier, F.; Leissner, P.; Quemeneur, L.; Griffiths, A.D.; Moucadel, V.; Pachot, A.; et al. Herpes DNAemia and TTV Viraemia in Intensive Care Unit Critically Ill Patients: A Single-Centre Prospective Longitudinal Study. Front. Immunol. 2021, 12, 698808. [Google Scholar] [CrossRef] [PubMed]
- Solis, M.; Gallais, F.; Garnier-Kepka, S.; Lefebvre, N.; Benotmane, I.; Ludes, P.O.; Castelain, V.; Meziani, F.; Caillard, S.; Collange, O.; et al. Combining predictive markers for severe COVID-19: Torquetenovirus DNA load and SARS-CoV-2 RNAemia. J. Clin. Virol. 2022, 148, 105120. [Google Scholar] [CrossRef] [PubMed]
- de Roquetaillade, C.; Bredin, S.; Lascarrou, J.B.; Soumagne, T.; Cojocaru, M.; Chousterman, B.G.; Leclerc, M.; Gouhier, A.; Piton, G.; Pene, F.; et al. Timing and causes of death in severe COVID-19 patients. Crit. Care 2021, 25, 224. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.S.; Viazov, S.; Runde, V.; Schaefer, U.W.; Roggendorf, M. Detection of TT virus DNA in specimens other than blood. J. Clin. Virol. 1999, 13, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.M.; Caetano, M.W.; Stincarelli, M.A.; Mamana, A.C.; Zerbinati, R.M.; Sarmento, D.J.S.; Gallottini, M.; Caixeta, R.A.V.; Medina-Pestana, J.; Hasséus, B.; et al. Quantification of torque teno virus (TTV) DNA in saliva and plasma samples in patients at short time before and after kidney transplantation. J. Oral. Microbiol. 2022, 14, 2008140. [Google Scholar] [CrossRef] [PubMed]
- Spezia, P.G.; Baj, A.; Ferrante, F.D.; Boutahar, S.; Azzi, L.; Genoni, A.; Gasperina, D.D.; Novazzi, F.; Dentali, F.; Focosi, D.; et al. Detection of Torquetenovirus and Redondovirus DNA in Saliva Samples from SARS-CoV-2-Positive and -Negative Subjects. Viruses 2022, 14, 2482. [Google Scholar] [CrossRef] [PubMed]
- Emmel, V.; Gama, B.; de Paula, A.; Ferreira, G.; Binato, R.; Abdelhay, E. Can torque teno virus be a predictor of SARS-CoV-2 disease progression in cancer patients? J. Infect. Chemother. 2022, 28, 1623–1627. [Google Scholar] [CrossRef]
- Querido, S.; Calça, R.; Weigert, A.; Francisco, D.; Adragão, T.; Pessanha, M.A.; Gomes, P.; Rodrigues, L.; Figueira, J.M.; Cardoso, C.; et al. Kinetics of torquetenovirus DNA load in a recent kidney transplant recipient with mild SARS-CoV-2 infection and a failed antibody response. Transpl. Infect. Dis. 2021, 23, e13524. [Google Scholar] [CrossRef]
- Stincarelli, M.A.; Baj, A.; Guidotti, B.; Spezia, P.G.; Novazzi, F.; Lucenteforte, E.; Tillati, S.; Focosi, D.; Maggi, F.; Giannecchini, S. Plasma Torquetenovirus (TTV) microRNAs and severity of COVID-19. Virol. J. 2022, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, J.; Ricci, V.; Albani, M.; Lanini, L.; Andreoli, E.; Macera, L.; Pistello, M.; Ceccherini-Nelli, L.; Bendinelli, M.; Maggi, F. Torquetenovirus DNA drives proinflammatory cytokines production and secretion by immune cells via toll-like receptor 9. Virology 2009, 394, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Gorzer, I.; Jaksch, P.; Kundi, M.; Seitz, T.; Klepetko, W.; Puchhammer-Stockl, E. Pre-transplant plasma Torque Teno virus load and increase dynamics after lung transplantation. PLoS ONE 2015, 10, e0122975. [Google Scholar] [CrossRef]
- Gorzer, I.; Jaksch, P.; Strassl, R.; Klepetko, W.; Puchhammer-Stockl, E. Association between plasma Torque teno virus level and chronic lung allograft dysfunction after lung transplantation. J. Heart Lung Transplant. 2017, 36, 366–368. [Google Scholar] [CrossRef] [PubMed]
Variable | COVID-19 Moderate (n 88) | COVID-19 Severe (n 88) | Total (n 176) | p |
---|---|---|---|---|
Gender | ||||
Male n (%) | 45 (51.1) | 61 (69.3) | 106 (60.2) | 0.014 *(1) |
Female n (%) | 43 (48.9) | 27 (30.7) | 70 (39.8) | |
Age (mean ± SD years) | 53.82 ± 14.43 | 53.97 ± 13.23 | 53.89 ± 13.80 | 0.944 |
Saliva—SARS-CoV-2 | ||||
Negative n (%) | 38 (43.2) | 24 (27.3) | 62 (35.2) | 0.027 *(1) |
Positive n (%) | 50 (56.8) | 64 (72.7) | 114 (64.8) | |
Breathing in room air spontaneous | ||||
No n (%) | 68 (77.3) | 69 (78.4) | 137 (77.8) | 0.856 (1) |
Yes n (%) | 20 (22.7) | 19 (21.6) | 39 (22.2) | |
Oxygen support | ||||
No n (%) | 26 (29.5) | 45 (51.1) | 71 (40.3) | <0.004 *(1) |
Yes n (%) | 62 (70.5) | 43 (48.9) | 105 (59.7) | |
Orotracheal intubation (OTI) | ||||
No n (%) | 82 (93.2) | 63 (71.6) | 145 (82.4) | <0.001 *(1) |
Yes n (%) | 6 (6.8) | 25 (28.4) | 31 (17.6) | |
Responsiveness | ||||
No n (%) | 9 (10.2) | 26 (29.5) | 35 (19.9) | 0.001 *(1) |
Yes n (%) | 79 (89.8) | 62 (70.5) | 141 (80.1) | |
Mobility | ||||
No n (%) | 23 (26.1) | 61 (69.3) | 84 (47.7) | <0.001 *(1) |
Yes n (%) | 65 (73.9) | 27 (30.7) | 92 (52.3) | |
Oral feeding | ||||
No n (%) | 7 (8.0) | 27 (30.7) | 34 (19.3) | <0.001 *(1) |
Yes n (%) | 81 (92.0) | 61 (69.3) | 142 (80.7) | |
Use of nasogastric tube | ||||
No n (%) | 81 (92.0) | 63 (71.6) | 144 (81.8) | <0.001 *(1) |
Yes n (%) | 7 (8.0) | 25 (28.4) | 32 (18.2) | |
History of COVID-19 vaccination | ||||
No n (%) | 77 (87.5) | 78 (88.6) | 155 (88.1) | 0.816 (1) |
Yes n (%) | 11 (12.5) | 10 (11.4) | 21 (11.9) | |
Outcome | ||||
Discharge n (%) | 84 (95.5) | 71 (80.7) | 155 (88.1) | 0.003 (1) |
Death n (%) | 4 (4.5) | 17 (19.3) | 21 (11.9) | |
Signs & Symptoms | ||||
Fever | ||||
No n (%) | 33 (37.5) | 30 (34.1) | 63 (35.8) | 0.637 (1) |
Yes n (%) | 55 (62.5) | 58 (65.9) | 113 (64.2) | |
Cough | ||||
No n (%) | 27 (30.7) | 29 (33.0) | 56 (31.8) | 0.746 (1) |
Yes n (%) | 61 (69.3) | 59 (67.0) | 120 (68.2) | |
Headache | ||||
No n (%) | 58 (65.9) | 55 (62.5) | 113 (64.2) | 0.637 (1) |
Yes n (%) | 30 (34.1) | 33 (37.5) | 63 (35.8) | |
Sore throat | ||||
No n (%) | 70 (79.5) | 74 (84.1) | 144 (81.8) | 0.434 (1) |
Yes n (%) | 18 (20.5) | 14 (15.9) | 32 (18.2) | |
Myalgia | ||||
No n (%) | 55 (62.5) | 54 (61.4) | 109 (61.9) | 0.877 (1) |
Yes n (%) | 33 (37.5) | 34 (38.6) | 67 (38.1) | |
Fatigue | ||||
No n (%) | 46 (52.3) | 50 (56.8) | 96 (54.5) | 0.545 (1) |
Yes n (%) | 42 (47.7) | 38 (43.2) | 80 (45.5) | |
Coryza | ||||
No n (%) | 78 (88.6) | 71 (80.7) | 149 (84.7) | 0.143 (1) |
Yes n (%) | 10 (11.4) | 17 (19.3) | 27 (15.3) | |
Dyspnoea | ||||
No n (%) | 33 (37.5) | 35 (39.8) | 68 (38.6) | 0.757 (1) |
Yes n (%) | 55 (62.5) | 53 (60.2) | 108 (61.4) | |
Anosmia/Ageusia | ||||
No n (%) | 69 (78.4) | 59 (67.0) | 128 (72.7) | 0.091 (1) |
Yes n (%) | 19 (21.6) | 29 (33.0) | 48 (27.3) | |
Nausea/Vomit | ||||
No n (%) | 79 (89.8) | 77 (87.5) | 156 (88.6) | 0.635 (1) |
Yes n (%) | 9 (10.2) | 11 (12.5) | 20 (11.4) | |
Diarrhoea | ||||
No n (%) | 72 (81.8) | 76 (86.4) | 148 (84.) | 0.410 (1) |
Yes n (%) | 16 (18.2) | 12 (13.6) | 28 (15.9) | |
Inappetence | ||||
No n (%) | 78 (88.6) | 81 (92.0) | 159 (90.3) | 0.444 (1) |
Yes n (%) | 10 (11.4) | 7 (8.0) | 17 (9.7) | |
Facial pain | ||||
No n (%) | 86 (97.7) | 83 (94.3) | 169 (96.0) | 0.444 (2) |
Yes n (%) | 2 (2.3) | 5 (5.7) | 7 (4.0) | |
Dizziness | ||||
No n (%) | 82 (93.2) | 86 (97.7) | 168 (95.5) | 0.278 (2) |
Yes n (%) | 6 (6.8) | 2 (2.3) | 8 (4.5) | |
Abdominal pain | ||||
No n (%) | 87 (98.9) | 87 (98.9) | 174 (98.9) | 0.999 (2) |
Yes n (%) | 1 (1.1) | 1 (1.1) | 2 (1.1) |
Variable | TTV DNA Status | p | ||
---|---|---|---|---|
Negative (n. 78) | Positive (n. 98) | Total (n. 176) | ||
Gender | ||||
Male n (%) | 42 (39.6) | 64 (60.4) | 106 (100) | 0.123 (1) |
Female n (%) | 36 (51.4) | 34 (48.6) | 70 (100) | |
Disease severity | ||||
Moderate n (%) | 44 (50.0) | 44 (50.0) | 88 (100) | 0.129 (1) |
Severe n (%) | 34 (38.6) | 54 (61.4) | 88 (100) | |
Saliva—SARS-CoV-2 | ||||
Negative n (%) | 24 (38.7) | 38 (61.3) | 62 (100) | 0.269 (1) |
Positive n (%) | 54 (47.4) | 60 (52.6) | 114 (100) | |
Breath in room air spontaneous | ||||
No n (%) | 61 (44.5) | 76 (55.5) | 137 (100) | 0.917 (1) |
Yes n (%) | 17 (43.6) | 22 (56.4) | 39 (100) | |
Oxygen support | ||||
No n (%) | 24 (33.8) | 47 (66.2) | 71 (100) | 0.021 *(1) |
Yes n (%) | 54 (51.4) | 51 (48.6) | 105 (100) | |
Orotracheal intubation (OTI) | ||||
No n (%) | 71 (49.0) | 74 (51.0) | 145 (100) | 0.007 *(1) |
Yes n (%) | 7 (22.6) | 24 (77.4) | 31 (100) | |
Responsiveness | ||||
No n (%) | 10 (28.6) | 25 (71.4) | 35 (100) | 0.036 *(1) |
Yes n (%) | 68 (48.2) | 73 (51.8) | 141 (100) | |
Mobility | ||||
No n (%) | 32 (38.1) | 52 (61.9) | 84 (100) | 0.112 (1) |
Yes n (%) | 46 (50.0) | 46 (50.0) | 92 (100) | |
Oral feeding | ||||
No n (%) | 8 (23.5) | 26 (76.5) | 34 (100) | 0.007 *(1) |
Yes n (%) | 70 (49.3) | 72 (50.7) | 142 (100) | |
Use of nasogastric tube | ||||
No n (%) | 71 (49.3) | 73 (50.7) | 144 (100) | 0.005 *(1) |
Yes n (%) | 7 (21.9) | 25 (78.1) | 32 (100) | |
History of COVID-19 vaccination | ||||
No n (%) | 68 (43.9) | 87 (56.1) | 155 (100) | 0.746 (1) |
Yes n (%) | 10 (47.6) | 11 (52.4) | 21 (100) | |
Outcome | ||||
Discharge n (%) | 75 (48.4) | 80 (51.6) | 155 (100) | 0.003 *(1) |
Death n (%) | 3 (14.3) | 18 (85.7) | 21 (100) |
Variable | N | Median | IQR | Rank (2) | p(1) |
---|---|---|---|---|---|
Disease severity | |||||
Moderate | 88 | 3.04 | 5.01 | 77.89 | 0.004 * |
Severe | 88 | 4.99 | 6.26 | 99.11 | |
Outcome | |||||
Discharge | 155 | 3.96 | 5.38 | 82.95 | <0.001 * |
Death | 21 | 6.27 | 6.78 | 129.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caixeta, R.A.V.; Batista, A.M.; Caetano, M.W.; Palmieri, M.; Schwab, G.; Zerbinati, R.M.; Victor, A.S.P.; Gallo, C.d.B.; Tozetto-Mendoza, T.R.; Junges, R.; et al. Investigation of Oral Shedding of Torquetenovirus (TTV) in Moderate-to-Severe COVID-19 Hospitalised Patients. Viruses 2024, 16, 831. https://doi.org/10.3390/v16060831
Caixeta RAV, Batista AM, Caetano MW, Palmieri M, Schwab G, Zerbinati RM, Victor ASP, Gallo CdB, Tozetto-Mendoza TR, Junges R, et al. Investigation of Oral Shedding of Torquetenovirus (TTV) in Moderate-to-Severe COVID-19 Hospitalised Patients. Viruses. 2024; 16(6):831. https://doi.org/10.3390/v16060831
Chicago/Turabian StyleCaixeta, Rafael Antônio Velôso, Alexandre Mendes Batista, Matheus Willian Caetano, Michelle Palmieri, Gabriela Schwab, Rodrigo Melim Zerbinati, Andressa Silva Pereira Victor, Camila de Barros Gallo, Tânia Regina Tozetto-Mendoza, Roger Junges, and et al. 2024. "Investigation of Oral Shedding of Torquetenovirus (TTV) in Moderate-to-Severe COVID-19 Hospitalised Patients" Viruses 16, no. 6: 831. https://doi.org/10.3390/v16060831
APA StyleCaixeta, R. A. V., Batista, A. M., Caetano, M. W., Palmieri, M., Schwab, G., Zerbinati, R. M., Victor, A. S. P., Gallo, C. d. B., Tozetto-Mendoza, T. R., Junges, R., Ortega, K. L., Costa, A. L. F., Sarmento, D. J. d. S., Pallos, D., Lindoso, J. A. L., Giannecchini, S., & Braz-Silva, P. H. (2024). Investigation of Oral Shedding of Torquetenovirus (TTV) in Moderate-to-Severe COVID-19 Hospitalised Patients. Viruses, 16(6), 831. https://doi.org/10.3390/v16060831