Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Influenza Virus Preliminary Screening
2.2. Isolation of the Virus
2.3. Viral RNA Extraction and Sequencing
2.4. Homology and Amino Acid Mutation Analysis
2.5. Dataset and Data Preparation for Phylogenetic Analysis
2.6. Evolutionary and Phylogeographic Analysis
3. Results
3.1. Surveillance and AIV Subtype
3.2. HA Gene Exhibits LPAI with Variable Amino Acid Substitutions
3.3. NA Gene Is Highly Adapted to Gull
3.4. Internal Gene Sequences with Virulence-Related Mutations
3.5. Phylogenetics and Origin of SKH13N6
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelwhab, E.M.; Veits, J.; Mettenleiter, T.C. Avian Influenza Virus NS1: A Small Protein with Diverse and Versatile Functions. Virulence 2013, 4, 583–588. [Google Scholar] [CrossRef]
- Barberis, A.; Boudaoud, A.; Gorrill, A.; Loupias, J.; Ghram, A.; Lachheb, J.; Alloui, N.; Ducatez, M.F. Full-Length Genome Sequences of the First H9N2 Avian Influenza Viruses Isolated in the Northeast of Algeria. Virol. J. 2020, 17, 108. [Google Scholar] [CrossRef]
- Kosik, I.; Yewdell, J.W. Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity. Viruses 2019, 11, 346. [Google Scholar] [CrossRef]
- Castro-Sanguinetti, G.R.; Simas, P.V.M.; Apaza-Chiara, A.P.; Callupe-Leyva, J.A.; Rondon-Espinoza, J.A.; Gavidia, C.M.; More-Bayona, J.A.; Veliz, R.I.G.; Vakharia, V.N.; Icochea, M.E. Genetic Subtyping and Phylogenetic Analysis of HA and NA from Avian Influenza Virus in Wild Birds from Peru Reveals Unique Features among Circulating Strains in America. PLoS ONE 2022, 17, e0268957. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, Y.J.; Park, C.K.; Oem, J.K.; Lee, O.S.; Kang, H.M.; Choi, J.G.; Bae, Y.C. Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Wild Birds and Poultry, South Korea. Emerg. Infect. Dis. 2012, 18, 480–483. [Google Scholar] [CrossRef]
- Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J.; et al. New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathog. 2013, 9, e1003657. [Google Scholar] [CrossRef]
- Gass, J.D.; Kellogg, H.K.; Hill, N.J.; Puryear, W.B.; Nutter, F.B.; Runstadler, J.A. Epidemiology and Ecology of Influenza A Viruses among Wildlife in the Arctic. Viruses 2022, 14, 1531. [Google Scholar] [CrossRef] [PubMed]
- Na, E.J.; Kim, Y.S.; Lee, S.Y.; Kim, Y.J.; Park, J.S.; Oem, J.K. Genetic Characteristics of Avian Influenza Virus Isolated from Wild Birds in South Korea, 2019–2020. Viruses 2021, 13, 381. [Google Scholar] [CrossRef]
- Alexander, D.J. A Review of Avian Influenza in Different Bird Species. Vet. Microbiol. 2000, 74, 3–13. [Google Scholar] [CrossRef]
- Fouchier, R.A.M.; Munster, V.; Wallensten, A.; Bestebroer, T.M.; Herfst, S.; Smith, D.; Rimmelzwaan, G.F.; Olsen, B.; Osterhaus, A.D.M.E. Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls. J. Virol. 2005, 79, 2814–2822. [Google Scholar] [CrossRef]
- Mine, J.; Uchida, Y.; Sharshov, K.; Sobolev, I.; Shestopalov, A.; Saito, T. Phylogeographic Evidence for the Inter- And Intracontinental Dissemination of Avian Influenza Viruses via Migration Flyways. PLoS ONE 2018, 14, e0218506. [Google Scholar] [CrossRef]
- Wille, M.; Robertson, G.J.; Whitney, H.; Bishop, M.A.; Runstadler, J.A.; Lang, A.S. Extensive Geographic Mosaicism in Avian Influenza Viruses from Gulls in the Northern Hemisphere. PLoS ONE 2011, 6, e20664. [Google Scholar] [CrossRef]
- Tønnessen, R.; Hauge, A.G.; Hansen, E.F.; Rimstad, E.; Jonassen, C.M. Host Restrictions of Avian Influenza Viruses: In Silico Analysis of H13 and H16 Specific Signatures in the Internal Proteins. PLoS ONE 2013, 8, e63270. [Google Scholar] [CrossRef]
- Kim, G.S.; Kim, T.S.; Son, J.S.; Lai, V.D.; Park, J.E.; Wang, S.J.; Jheong, W.H.; Mo, I.P. The Difference of Detection Rate of Avian Influenza Virus in the Wild Bird Surveillance Using Various Methods. J. Vet. Sci. 2019, 20, e56. [Google Scholar] [CrossRef]
- Kim, H.K.; Jeong, D.G.; Yoon, S.W. Recent Outbreaks of Highly Pathogenic Avian Influenza Viruses in South Korea. Clin. Exp. Vaccine Res. 2017, 6, 95–103. [Google Scholar] [CrossRef]
- Kang, H.M.; Park, H.Y.; Lee, K.J.; Choi, J.G.; Lee, E.K.; Song, B.M.; Lee, H.S.; Lee, Y.J. Characterization of H7 Influenza a Virus in Wild and Domestic Birds in Korea. PLoS ONE 2014, 9, e91887. [Google Scholar] [CrossRef]
- Spackman, E.; Senne, D.A.; Bulaga, L.L.; Myers, T.J.; Perdue, M.L.; Garber, L.P.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of Real-Time RT-PCR for the Detection of Avian Influenza Virus. Avian Dis. 2003, 47, 1079–1082. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Rambaut, A.; Lam, T.T.; Carvalho, L.M.; Pybus, O.G. Exploring the Temporal Structure of Heterochronous Sequences Using TempEst (Formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef]
- Yang, Z. Maximum-Likelihood Models for Combined Analyses of Multiple Sequence Data. J. Mol. Evol. 1996, 42, 587–596. [Google Scholar] [CrossRef]
- Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006, 4, 699–710. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A.; Shapiro, B.; Pybus, O.G. Bayesian Coalescent Inference of Past Population Dynamics from Molecular Sequences. Mol. Biol. Evol. 2005, 22, 1185–1192. [Google Scholar] [CrossRef]
- Drummond, A.J.; Nicholls, G.K.; Rodrigo, A.G.; Solomon, W. Simultaneously From Temporally Spaced Sequence Data. Genetics 2002, 1320, 1307–1320. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Peng, W.; Bouwman, K.M.; McBride, R.; Grant, O.C.; Woods, R.J.; Verheije, M.H.; Paulson, J.C.; de Vries, R.P. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. J. Virol. 2018, 92, e02016-17. [Google Scholar] [CrossRef]
- Song, H.; Qi, J.; Xiao, H.; Bi, Y.; Zhang, W.; Xu, Y.; Wang, F.; Shi, Y.; Gao, G.F. Avian-to-Human Receptor-Binding Adaptation by Influenza A Virus Hemagglutinin H4. Cell Rep. 2017, 20, 1201–1214. [Google Scholar] [CrossRef]
- Kode, S.S.; Pawar, S.D.; Tare, D.S.; Keng, S.S.; Hurt, A.C.; Mullick, J. A Novel I117T Substitution in Neuraminidase of Highly Pathogenic Avian Influenza H5N1 Virus Conferring Reduced Susceptibility to Oseltamivir and Zanamivir. Vet. Microbiol. 2019, 235, 21–24. [Google Scholar] [CrossRef]
- Jiao, P.; Tian, G.; Li, Y.; Deng, G.; Jiang, Y.; Liu, C.; Liu, W.; Bu, Z.; Kawaoka, Y.; Chen, H. A Single-Amino-Acid Substitution in the NS1 Protein Changes the Pathogenicity of H5N1 Avian Influenza Viruses in Mice. J. Virol. 2008, 82, 1146–1154. [Google Scholar] [CrossRef]
- Tang, W.; Li, X.; Tang, L.; Wang, T.; He, G. Characterization of the Low-Pathogenic H7N7 Avian Influenza Virus in Shanghai, China. Poult. Sci. 2021, 100, 565–574. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Jiao, P.; Wang, A.; Zhao, F.; Tian, G.; Wang, X.; Yu, K.; Bu, Z.; Chen, H. The NS1 Gene Contributes to the Virulence of H5N1 Avian Influenza Viruses. J. Virol. 2006, 80, 11115–11123. [Google Scholar] [CrossRef]
- Tada, T.; Suzuki, K.; Sakurai, Y.; Kubo, M.; Okada, H.; Itoh, T.; Tsukamoto, K. NP Body Domain and PB2 Contribute to Increased Virulence of H5N1 Highly Pathogenic Avian Influenza Viruses in Chickens. J. Virol. 2011, 85, 1834–1846. [Google Scholar] [CrossRef]
- Wasilenko, J.L.; Sarmento, L.; Pantin-Jackwood, M.J. A Single Substitution in Amino Acid 184 of the NP Protein Alters the Replication and Pathogenicity of H5N1 Avian Influenza Viruses in Chickens. Arch. Virol. 2009, 154, 969–979. [Google Scholar] [CrossRef]
- Yamayoshi, S.; Yamada, S.; Fukuyama, S.; Murakami, S.; Zhao, D.; Uraki, R.; Watanabe, T.; Tomita, Y.; Macken, C.; Neumann, G.; et al. Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses. J. Virol. 2014, 88, 3127–3134. [Google Scholar] [CrossRef]
- DesRochers, B.L.; Chen, R.E.; Gounder, A.P.; Pinto, A.K.; Bricker, T.; Linton, C.N.; Rogers, C.D.; Williams, G.D.; Webby, R.J.; Boon, A.C.M. Residues in the PB2 and PA Genes Contribute to the Pathogenicity of Avian H7N3 Influenza A Virus in DBA/2 Mice. Virology 2016, 494, 89–99. [Google Scholar] [CrossRef]
- Song, J.; Xu, J.; Shi, J.; Li, Y.; Chen, H. Synergistic Effect of S224P and N383D Substitutions in the PA of H5N1 Avian Influenza Virus Contributes to Mammalian Adaptation. Sci. Rep. 2015, 5, 10510. [Google Scholar] [CrossRef]
- Rolling, T.; Koerner, I.; Zimmermann, P.; Holz, K.; Haller, O.; Staeheli, P.; Kochs, G. Adaptive Mutations Resulting in Enhanced Polymerase Activity Contribute to High Virulence of Influenza A Virus in Mice. J. Virol. 2009, 83, 6673–6680. [Google Scholar] [CrossRef]
- Fan, S.; Deng, G.; Song, J.; Tian, G.; Suo, Y.; Jiang, Y.; Guan, Y.; Bu, Z.; Kawaoka, Y.; Chen, H. Two Amino Acid Residues in the Matrix Protein M1 Contribute to the Virulence Difference of H5N1 Avian Influenza Viruses in Mice. Virology 2009, 384, 28–32. [Google Scholar] [CrossRef]
- Li, J.; Ishaq, M.; Prudence, M.; Xi, X.; Hu, T.; Liu, Q.; Guo, D. Single Mutation at the Amino Acid Position 627 of PB2 That Leads to Increased Virulence of an H5N1 Avian Influenza Virus during Adaptation in Mice Can Be Compensated by Multiple Mutations at Other Sites of PB2. Virus Res. 2009, 144, 123–129. [Google Scholar] [CrossRef]
- Gao, W.; Zu, Z.; Liu, J.; Song, J.; Wang, X.; Wang, C.; Liu, L.; Tong, Q.; Wang, M.; Sun, H.; et al. Prevailing I292V PB2 Mutation in Avian Influenza H9N2 Virus Increases Viral Polymerase Function and Attenuates IFN-β Induction in Human Cells. J. Gen. Virol. 2019, 100, 1273–1281. [Google Scholar] [CrossRef]
- Elgendy, E.M.; Arai, Y.; Kawashita, N.; Daidoji, T.; Takagi, T.; Ibrahim, M.S.; Nakaya, T.; Watanabe, Y. Identification of Polymerase Gene Mutations That Affect Viral Replication in H5N1 Influenza Viruses Isolated from Pigeons. J. Gen. Virol. 2017, 98, 6–17. [Google Scholar] [CrossRef]
- Hulse-Post, D.J.; Franks, J.; Boyd, K.; Salomon, R.; Hoffmann, E.; Yen, H.L.; Webby, R.J.; Walker, D.; Nguyen, T.D.; Webster, R.G. Molecular Changes in the Polymerase Genes (PA and PB1) Associated with High Pathogenicity of H5N1 Influenza Virus in Mallard Ducks. J. Virol. 2007, 81, 8515–8524. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Shi, J.; Deng, G.; Kong, H.; Tao, S.; Li, C.; Liu, L.; Guan, Y.; Chen, H. Glycine at Position 622 in PB1 Contributes to the Virulence of H5N1 Avian Influenza Virus in Mice. J. Virol. 2016, 90, 1872–1879. [Google Scholar] [CrossRef]
- Hiono, T.; Ohkawara, A.; Ogasawara, K.; Okamatsu, M.; Tamura, T.; Chu, D.H.; Suzuki, M.; Kuribayashi, S.; Shichinohe, S.; Takada, A.; et al. Genetic and Antigenic Characterization of H5 and H7 Influenza Viruses Isolated from Migratory Water Birds in Hokkaido, Japan and Mongolia from 2010 to 2014. Virus Genes 2015, 51, 57–68. [Google Scholar] [CrossRef]
- Beerens, N.; Heutink, R.; Pritz-Verschuren, S.; Germeraad, E.A.; Bergervoet, S.A.; Harders, F.; Bossers, A.; Koch, G. Genetic Relationship between Poultry and Wild Bird Viruses during the Highly Pathogenic Avian Influenza H5N6 Epidemic in the Netherlands, 2017–2018. Transbound. Emerg. Dis. 2019, 66, 1370–1378. [Google Scholar] [CrossRef]
- Lee, E.K.; Kang, H.M.; Song, B.M.; Lee, Y.N.; Heo, G.B.; Lee, H.S.; Lee, Y.J.; Kim, J.H. Surveillance of Avian Influenza Viruses in South Korea between 2012 and 2014. Virol. J. 2017, 14, 54. [Google Scholar] [CrossRef]
- Wang, Z.J.; Kikutani, Y.; Nguyen, L.T.; Hiono, T.; Matsuno, K.; Okamatsu, M.; Krauss, S.; Webby, R.; Lee, Y.J.; Kida, H.; et al. H13 Influenza Viruses in Wild Birds Have Undergone Genetic and Antigenic Diversification in Nature. Virus Genes 2018, 54, 543–549. [Google Scholar] [CrossRef]
- Webby, R.J.; Webster, R.G. Emergence of Influenza A Viruses. Philos. Trans. R. Soc. B Biol. Sci. 2001, 356, 1817–1828. [Google Scholar] [CrossRef]
- Stevens, J.; Blixt, O.; Tumpey, T.M.; Taubenberger, J.K.; Paulson, J.C.; Wilson, I.A. Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus. Science 2006, 312, 404–410. [Google Scholar] [CrossRef]
- Yu, Z.; Ren, Z.; Zhao, Y.; Cheng, K.; Sun, W.; Zhang, X.; Wu, J.; He, H.; Xia, X.; Gao, Y. PB2 and Hemagglutinin Mutations Confer a Virulent Phenotype on an H1N2 Avian Influenza Virus in Mice. Arch. Virol. 2019, 164, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Suttie, A.; Deng, Y.M.; Greenhill, A.R.; Dussart, P.; Horwood, P.F.; Karlsson, E.A. Inventory of Molecular Markers Affecting Biological Characteristics of Avian Influenza A Viruses. Virus Genes 2019, 55, 739–768. [Google Scholar] [CrossRef]
- Gabriel, G.; Dauber, B.; Wolff, T.; Planz, O.; Klenk, H.D.; Stech, J. The Viral Polymerase Mediates Adaptation of an Avian Influenza Virus to a Mammalian Host. Proc. Natl. Acad. Sci. USA 2005, 102, 18590–18595. [Google Scholar] [CrossRef]
- Bussey, K.A.; Bousse, T.L.; Desmet, E.A.; Kim, B.; Takimoto, T. PB2 Residue 271 Plays a Key Role in Enhanced Polymerase Activity of Influenza A Viruses in Mammalian Host Cells. J. Virol. 2010, 84, 4395–4406. [Google Scholar] [CrossRef]
- Arai, Y.; Kawashita, N.; Ibrahim, M.S.; Elgendy, E.M.; Daidoji, T.; Ono, T.; Takagi, T.; Nakaya, T.; Matsumoto, K.; Watanabe, Y. PB2 Mutations Arising during H9N2 Influenza Evolution in the Middle East Confer Enhanced Replication and Growth in Mammals. PLoS Pathog. 2019, 15, e1007919. [Google Scholar] [CrossRef]
- Oh, K.H.; Mo, J.S.; Bae, Y.J.; Lee, S.B.; Lai, V.D.; Wang, S.J.; Mo, I.P. Amino Acid Substitutions in Low Pathogenic Avian Influenza Virus Strains Isolated from Wild Birds in Korea. Virus Genes 2018, 54, 397–405. [Google Scholar] [CrossRef]
- Alkie, T.N.; Lopes, S.; Hisanaga, T.; Xu, W.; Suderman, M.; Koziuk, J.; Fisher, M.; Redford, T.; Lung, O.; Joseph, T.; et al. A Threat from Both Sides: Multiple Introductions of Genetically Distinct H5 HPAI Viruses into Canada via Both East Asia-Australasia/Pacific and Atlantic Flyways. Virus Evol. 2022, 8, veac077. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Bo, H.; Zhang, Y.; Dong, L.; Zou, S.; Huang, W.; Liu, J.; Wang, D.; Shu, Y. Characteristics of Influenza H13N8 Subtype Virus Firstly Isolated from Qinghai Lake Region, China. Virol. J. 2017, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Choi, J.G.; Kim, M.C.; Kim, H.R.; Oem, J.K.; Bae, Y.C.; Paek, M.R.; Kwon, J.H.; Lee, Y.J. Isolation of a Reassortant H13N2 Virus from a Mallard Fecal Sample in South Korea. Virol. J. 2012, 9, 133. [Google Scholar] [CrossRef]
- Verhagen, J.H.; Herfst, S.; Fouchier, R.A.M. How a Virus Travels the World. Science 2015, 347, 616–617. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, D.; Poen, M.J.; Bestebroer, T.M.; Scheuer, R.D.; Vuong, O.; Chkhaidze, M.; Machablishvili, A.; Mamuchadze, J.; Ninua, L.; Fedorova, N.B.; et al. Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. J. Virol. 2018, 92, e00433-18. [Google Scholar] [CrossRef]
- Kang, H.M.; Jeong, O.M.; Kim, M.C.; Kwon, J.S.; Paek, M.R.; Choi, J.G.; Lee, E.K.; Kim, Y.J.; Kwon, J.H.; Lee, Y.J. Surveillance of Avian Influenza Virus in Wild Bird Fecal Samples from South Korea, 2003–2008. J. Wildl. Dis. 2010, 46, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.S.; TeSlaa, J.L.; Nashold, S.W.; Halpin, R.A.; Stockwell, T.; Wentworth, D.E.; Dugan, V.; Ip, H.S. Evolution of a Reassortant North American Gull Influenza Virus Lineage: Drift, Shift and Stability. Virol. J. 2013, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Wille, M.; Robertson, G.J.; Whitney, H.; Ojkic, D.; Lang, A.S. Reassortment of American and Eurasian Genes in an Influenza A Virus Isolated from a Great Black-Backed Gull (Larus Marinus), a Species Demonstrated to Move between These Regions. Arch. Virol. 2011, 156, 107–115. [Google Scholar] [CrossRef] [PubMed]
- van Borm, S.; Rosseel, T.; Vangeluwe, D.; Vandenbussche, F.; van den Berg, T.; Lambrecht, B. Phylogeographic Analysis of Avian Influenza Viruses Isolated from Charadriiformes in Belgium Confirms Intercontinental Reassortment in Gulls. Arch. Virol. 2012, 157, 1509–1522. [Google Scholar] [CrossRef]
- Gilg, O.; van Bemmelen, R.S.A.; Lee, H.; Park, J.Y.; Kim, H.J.; Kim, D.W.; Lee, W.Y.; Sokolovskis, K.; Solovyeva, D.V. Flyways and Migratory Behaviour of the Vega Gull (Larus Vegae), a Little-Known Arctic Endemic. PLoS ONE 2023, 18, e0281827. [Google Scholar] [CrossRef]
- Tarasiuk, K.; Kycko, A.; Knitter, M.; Świętoń, E.; Wyrostek, K.; Domańska-Blicharz, K.; Bocian, Ł.; Meissner, W.; Śmietanka, K. Pathogenicity of Highly Pathogenic Avian Influenza H5N8 Subtype for Herring Gulls (Larus Argentatus): Impact of Homo- and Heterosubtypic Immunity on the Outcome of Infection. Vet. Res. 2022, 53, 108. [Google Scholar] [CrossRef]
SKH13N6 Accession ID | Gene Segment | Highest Homology Virus 1 | Accession Number | Identity (%) |
---|---|---|---|---|
OR037491.1 | PB2 | A/Chroicocephalus_ridibundus/Belgium/13464/2020 (H13N8) | EPI1942887 | 97.85 |
OR037490.1 | PB1 | A/shelduck/Ukraine/KT-9-2-11/2016 (H13N6) | MW132947.1 | 98.15 |
OR037489.1 | PA | A/glaucous-winged gull/Southcentral Alaska/15MB01693/2015 (H13N6) | CY213548.1 | 96.85 |
OR037484.1 | HA | A/common_gull/Poland/MW241/2011 (H13N6) | EPI2195562 | 95.42 |
OR037486.1 | NP | A/Armenian gull/Republic of Georgia/2/2012 (H13N2) | CY185350.1 | 97.19 |
OR037485.1 | NA | A/Glaucous-Winged Gull/Alaska/20MB02534/2020 (H13N6) | MZ015698.1 | 98.33 |
OR037487.1 | M | A/Chroicocephalus_ridibundus/Belgium/13464/2020 (H13N8) | EPI1942893 | 99.29 |
OR037488.1 | NS | A/Chroicocephalus_ridibundus/Belgium/13464/2020 (H13N8) | EPI1942894 | 98.33 |
Isolate ID | Nucleotide | Amino Acid | |||
---|---|---|---|---|---|
Accession | Identity (%) | Accession | Identity (%) | Similarity (%) | |
Gulls | |||||
A/Armenian gull/Republic of Georgia/1/2012 (H13N6) | CY185355.1 | 95.08 | AHZ39558.1 | 91.9 | 94 |
A/black headed gull/Mongolia/1766/2006 (H13N6) | GQ907302.1 | 75.1 | ACV86830.1 | 82.5 | 91 |
A/black-headed gull/Republic of Georgia/7/2011 (H13N6) | CY185489.1 | 91.9 | AHZ39225.1 | 94.5 | 97 |
A/black-headed gull/Netherlands/26/2014 (H13N6) | KX978072.1 | 73.9 | APC30994.1 | 83.2 | 90.5 |
A/Glaucous-Winged Gull/Alaska/20MB02831/2020 (H13N6) | MZ015629.1 | 73.9 | QUE37731.1 | 83.7 | 91 |
A/Glaucous-Winged Gull/Alaska/20MB02534/2020 (H13N6) | MZ015703.1 | 74.2 | QUE37851.1 | 83.4 | 91 |
A/great black-headed gull/Atyrau/743/2004 (H13N6) | GU982281.1 | 93.9 | ADD92017.1 | 94.5 | 97.3 |
A/Laughing Gull/Delaware/294/2021 (H13N6) | OM966178.1 | 93.5 | UNA44787.1 | 94.9 | 97 |
A/Mongolian gull/Mongolia/405/2007 (H13N6) | GQ907318.1 | 94.29 | ACV86850.1 | 94.3 | 97.3 |
A/Kelp gull/Peru/M8/2019 (H13N6) | OL355043.1 | 74.5 | UEE12803.1 | 83.6 | 91 |
A/silver gull/Tasmania/06-0349-105/2006 (H13N6) | OL369948.1 | 79.7 | UEF69690.1 | 88 | 95.4 |
A/yellow-legged gull/Georgia/1/2011 (H13N6) | CY185497.1 | 95.22 | AHZ39237.1 | 94.7 | 97 |
A/yellow-legged gull/Republic of Georgia/3/2012 (H13N6) | CY185611.1 | 93.9 | AHZ39451.1 | 95.2 | 97.5 |
Anatidae | |||||
A/duck/Siberia/272PF/1998 (H13N6) | AB285094.1 | 91.69 | BAF38383.1 | 94.3 | 97 |
A/duck/Hokkaido/W189/2006 (H13N6) | LC339627.1 | 91.2 | BBB38800.1 | 94.5 | 97 |
A/hooded merganser/New Brunswick/03750/2009 (H13N6) | CY125309.1 | 76.7 | AFP21003.1 | 86.4 | 93.1 |
A/mallard/Dalian/DZ-137/2013 (H13N6) | KJ907711.1 | 89.4 | AID48136.1 | 94.2 | 97.3 |
A/shelduck/Ukraine/KT-9-2-11/2016 (H13N6) | MW132954.1 | 74.4 | QOL24253.1 | 82.7 | 90.6 |
A/whistling swan/Shimane/1343/1981 (H13N6) | LC336770.1 | 88.81 | BBB38383.1 | 88.2 | 91.9 |
Other wild birds | |||||
A/Eurasian curlew/Liaoning/ZH-186/2014 (H13N6) | KR010435.1 | 92.7 | AKD00247.1 | 94.7 | 97.5 |
A/Red Knot/Delaware/224/2021 (H13N6) | OM965834.1 | 93.4 | UNA44627.1 | 94.9 | 97.3 |
A/Red Knot/Delaware Bay/605/2020 (H13N6) | MW874987.1 | 76.9 | QTO33855.1 | 85.9 | 93.3 |
A/ruddy turnstone/New Jersey/AI01-1407/2001 (H13N6) | MH500865.1 | 76.1 | AWV92012.1 | 86.6 | 93.1 |
A/ruddy turnstone/New Jersey/UGAI14-1436/2014 (H13N6) | MH502664.1 | 77 | AWV94705.1 | 86.2 | 93.5 |
A/shorebird/Delaware/224/1997 (H13N6) | KF612952.1 | 74.1 | AGW82834.1 | 85 | 91 |
H13N6 Reference isolate | |||||
A/gull/Maryland/704/1977 (H13N6) | CY130086.1 | 87 | AGB51312.1 | 92.6 | 96.3 |
SKH13N6 Accession ID | Gene Segment | Sequence Length (aa) | Best Reference Hit | Accession ID | Identity (%) | Number of Mutations | List of Mutations |
---|---|---|---|---|---|---|---|
WHT33238.1 | PB2 | 759 | A/Mallard/Astrakhan/263/1982 (H14N5) | EPI_ISL_132864 | 97.628 | 18 | E6D, D60E, T106A, S107N, I147V, I185V, L374I, M444V, N456S, V478I, M483T, V511I, S629N, R630K, L636M, V667I, V686I, I743R |
WHT33236.1 | PB1 | 757 | A/Shearwater/Australia/2576/1979 (H15N9) | EPI_ISL_132866 | 98.151 | 14 | K54T, T57I, V113I, M171L, E172D, E178G, E180D, Q210H, N213S, N328K, K388E, E390D, K391N, I667V |
WHT33234.1 | PA | 716 | A/Duck/Guangdong/E1/2012 (H10N8) | EPI_ISL_123953 | 98.883 | 8 | L105F, R158K, M211V, R230T, I323V, I348L, N350S, E352D |
WHT33227.1 | HA | 566 | A/Gull/Maryland/704/1977 (H13N6) | EPI_ISL_132863 | 92.58 | 42 | A7T, T8I, I12M, S13N, C15Y, H17Q, S87N, A102G, R127K, T138N, T147A, N154D, T155R, N158S, I168V, V199I, D202E, I250L, F264L, R285H, R290K, I409F, L423F, T432P, W435C, L442F, A456V, K459R, R466G, D471N, D475E, L483F, L484F, Y500S, D501N, E504D, D517N, I519V, S539T, L546F, S557N, N559S |
WHT33229.1 | NP | 498 | A/Gull/Maryland/704/1977 (H13N6) | EPI_ISL_132863 | 97.189 | 14 | D18E, N23T, K77R, T85A, D101E, A129S, N375S, T396N, V406I, T433A, N450S, S451A, S482N, N483K |
WHT33228.1 | NA | 469 | A/Gull/Maryland/704/1977 (H13N6) | EPI_ISL_132863 | 92.964 | 35 | V39A, G40C, T42A, V45S, N46P, T47S, P48S, V50G, S55del, Q66del, I76V, H77Q, N78I, R83K, E94A, E112N, R144Q, A173V, I175V, I189R, V214I, K236N, V242I, A253T, E269D, E287G, T315S, I323V, N346G, N387S, G391S, I393T, T394A, I398V, R433K |
WHT33230.1 | M1 | 252 | A/Gull/Maryland/704/1977 (H13N6) | EPI_ISL_132863 | 99.206 | 2 | V63I, N231D |
WHT33231.1 | M2 | 97 | A/Hubei/1/2010 (H5N1) | AEO89185 | 93.814 | 6 | T11I, K13S, R18K, V28I, L55I, G58E |
WHT33232.1 | NS1 | 230 | A/herring gull/New_Jersey/780/1986 (H16N3) | EPI_ISL_132863 | 88.261 | 27 | E26D, I36L, I48S, A60S, D70G, N80T, P87S, V90I, P95T, R118K, L124I, N127D, V129T, A137I, D139N, I145V, S152N, I180V, V194I, T197N, S205I, A215T, K217E, E219K, R220Q, M222L, G224R |
WHT33233.1 | NEP | 121 | A/Gull/Maryland/704/1977(H13N6) | EPI_ISL_132863 | 94.215 | 7 | V14A, L40I, A48S, L57S, G63R, K64N, I76M |
Predicted Activity | Gene Segment | Position | Amino Acid Mutation | SKH13N6 Residue | Target | Reference |
---|---|---|---|---|---|---|
Receptor binding | ||||||
HA 1 | 193 | K193T | T | ↑ binding to human-type receptor (α2-6) | [26] | |
228 | G228S | S | ↑ binding to human-type receptor (α2-6) | [27] | ||
Drug resistance | ||||||
NA 2 | 117 | I117T | T | Oseltamivir and zanavir | [28] | |
Virulence | ||||||
NS1 | 42 | P42S | S | ↑ virulence in mice | [29,30] | |
149 | V149A | A | ↑ virulence in chickens | [31] | ||
NP | 105 | M105V | V | ↑ virulence in chickens | [32] | |
184 | A184K | K | ↑ virulence in chickens | [33] | ||
PA | 37 | S37A | A | ↑ polymerase activity in mammalian cells | [34] | |
190 | P190S | S | ↓ virulence in mice | [35] | ||
383 | N383D | D | ↑ polymerase activity in avian and human cells | [36] | ||
409 | N409S | S | ↑ polymerase activity and replication in mammalian cells | [34] | ||
550 | I550L | L | ↑ polymerase activity and virulence in mice | [37] | ||
M1 | 30 | N30D | D | ↑ virulence in mice | [38] | |
215 | T215A | A | ↑ virulence in mice | |||
PB2 | 89 | L89V | V | ↑ polymerase activity in mammalian cell line and virulence in mice | [39] | |
292 | I292V | V | ↑ pathogenicity and replication in mammalian host | [40] | ||
309 | G309D | D | ↑ polymerase activity in mammalian cell line and virulence in mice | [39] | ||
339 | T339K | K | ↑ polymerase activity in mammalian cell line and virulence in mice | |||
477 | R477G | G | ↑ polymerase activity in mammalian cell line and virulence in mice | |||
495 | I495V | V | ↑ polymerase activity in mammalian cell line and virulence in mice | |||
504 | I504V | V | ↑ polymerase activity in mice | [37] | ||
676 | A676T | T | ↑ polymerase activity in mammalian cell line and virulence in mice | [39] | ||
Virulence | PB1 | 3 | D3V | V | ↑ polymerase activity and replication in mammalian and avian cells | [41] |
436 | H436Y | Y | ↑ polymerase activity in mammalian cell line, virulence in ducks, ferrets and mice | [42] | ||
622 | D622G | G | ↑ polymerase activity and virulence in mice | [43] |
Isolate ID | Nucleotide | Amino acid | |||
---|---|---|---|---|---|
Accession | Identity (%) | Accession | Identity (%) | Similarity (%) | |
Gulls | |||||
A/Armenian gull/Republic of Georgia/1/2012 (H13N6) | CY185357.1 | 96.5 | AHZ39561.1 | 97.9 | 98.7 |
A/black headed gull/Mongolia/1766/2006 (H13N6) | GQ907304.1 | 94.96 | ACV86833.1 | 95.9 | 97.4 |
A/black-headed gull/Republic of Georgia/7/2011 (H13N6) | CY185491.1 | 97.34 | AHZ39228.1 | 97.9 | 98.7 |
A/black-headed gull/Netherlands/26/2014 (H13N6) | KX977752.1 | 95.5 | APC30543.1 | 98.1 | 98.7 |
A/Glaucous-Winged Gull/Alaska/20MB02831/2020 (H13N6) | MZ015635.1 | 96.7 | QUE37740.1 | 98.5 | 98.9 |
A/Glaucous-Winged Gull/Alaska/20MB02534/2020 (H13N6) | MZ015698.1 | 98.33 | QUE37844.1 | 98.7 | 98.9 |
A/great black-headed gull/Atyrau/743/2004 (H13N6) | GU982285.1 | 93.4 | ADD92021.1 | 96.2 | 97.4 |
A/Laughing Gull/Delaware/294/2021 (H13N6) | OM966171.1 | 77.2 | UNA44776.1 | 86.2 | 93.2 |
A/Mongolian gull/Mongolia/405/2007 (H13N6) | GQ907320.1 | 93.1 | ACV86853.1 | 95.7 | 97.9 |
A/Kelp gull/Peru/M8/2019 (H13N6) | OL355045.1 | 76.4 | UEE12805.1 | 85.3 | 92.8 |
A/silver gull/Tasmania/06-0349-105/2006 (H13N6) | OL369950.1 | 87.4 | UEF69692.1 | 90.4 | 93.6 |
A/yellow-legged gull/Georgia/1/2011 (H13N6) | CY185499.1 | 97.62 | AHZ39240.1 | 97.7 | 98.5 |
A/yellow-legged gull/Republic of Georgia/3/2012 (H13N6) | CY185611.1 | 96.5 | AHZ39454.1 | 97.4 | 98.5 |
Anatidae | |||||
A/duck/Siberia/272PF/1998 (H13N6) | AB285096.1 | 92.1 | BAF38385.1 | 94.5 | 97 |
A/duck/Hokkaido/W189/2006 (H13N6) | LC339629.1 | 91.2 | BBB38802.1 | 93.6 | 96.4 |
A/hooded merganser/New Brunswick/03750/2009 (H13N6) | CY125311.1 | 76.6 | AFP21006.1 | 86.4 | 93.2 |
A/mallard/Dalian/DZ-137/2013 (H13N6) | KJ907713.1 | 90.67 | AID48138.1 | 92.1 | 95.7 |
A/shelduck/Ukraine/KT-9-2-11/2016 (H13N6) | MW132952.1 | 94.9 | QOL24250.1 | 97.4 | 98.7 |
Other wild birds | |||||
A/Eurasian curlew/Liaoning/ZH-186/2014 (H13N6) | KR010437.1 | 97.3 | AKD00249.1 | 98.1 | 98.5 |
A/Red Knot/Delaware/224/2021 (H13N6) | OM965827.1 | 77.4 | UNA44616.1 | 86.2 | 93.2 |
A/Red Knot/Delaware Bay/605/2020 (H13N6) | MW874986.1 | 76.6 | QTO33854.1 | 86 | 93.2 |
A/ruddy turnstone/New Jersey/AI01-1407/2001 (H13N6) | MH500867.1 | 88.7 | AWV92015.1 | 92.1 | 95.7 |
A/ruddy turnstone/New Jersey/UGAI14-1436/2014 (H13N6) | MH502666.1 | 76.9 | AWV94708.1 | 85.7 | 93 |
A/shorebird/Delaware/224/1997 (H13N6) | CY015148.1 | 89 | ABI85203.1 | 92.6 | 96 |
H13N6 Reference isolate | |||||
A/gull/Maryland/704/1977 (H13N6) | CY130088.1 | 87.7 | AGB51315.1 | 92.6 | 95.3 |
Gene Segment | TMRCA (95% HPD Interval) | |||
---|---|---|---|---|
Mean | 95% Lower HPD | 95% Higher HPD | Posterior Probability | |
PB2 | 2013.4985 | 2012.3697 | 2014.6044 | 0.8874 |
PB1 | 2015.4666 | 2014.7576 | 2015.9193 | 1.0000 |
PA | 2018.6772 | 2016.9407 | 2020.1785 | 1.0000 |
HA | 2009.5347 | 2008.5285 | 2010.4524 | 1.0000 |
NP | 2015.8315 | 2013.7787 | 2017.6613 | 1.0000 |
NA | 2010.5671 | 2009.8727 | 2010.9990 | 0.9963 |
M | 2015.591 | 2012.0967 | 2018.3715 | 0.5059 |
NS | 2015.4673 | 2014.0530 | 2016.0000 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, R.A.; Cammayo-Fletcher, P.L.T.; Nguyen, B.T.; Villavicencio, A.G.M.; Lee, S.Y.; Son, Y.; Kim, J.-H.; Park, K.I.; Yoo, W.G.; Jin, Y.B.; et al. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses 2024, 16, 285. https://doi.org/10.3390/v16020285
Flores RA, Cammayo-Fletcher PLT, Nguyen BT, Villavicencio AGM, Lee SY, Son Y, Kim J-H, Park KI, Yoo WG, Jin YB, et al. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses. 2024; 16(2):285. https://doi.org/10.3390/v16020285
Chicago/Turabian StyleFlores, Rochelle A., Paula Leona T. Cammayo-Fletcher, Binh T. Nguyen, Andrea Gail M. Villavicencio, Seung Yun Lee, Yongwoo Son, Jae-Hoon Kim, Kwang Il Park, Won Gi Yoo, Yeung Bae Jin, and et al. 2024. "Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea" Viruses 16, no. 2: 285. https://doi.org/10.3390/v16020285
APA StyleFlores, R. A., Cammayo-Fletcher, P. L. T., Nguyen, B. T., Villavicencio, A. G. M., Lee, S. Y., Son, Y., Kim, J.-H., Park, K. I., Yoo, W. G., Jin, Y. B., Min, W., & Kim, W. H. (2024). Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses, 16(2), 285. https://doi.org/10.3390/v16020285