The Rapidly Changing Patterns in Bacterial Co-Infections Reveal Peaks in Limited Gram Negatives during COVID-19 and Their Sharp Drop Post-Vaccination, Implying Potential Evolution of Co-Protection during Vaccine–Virus–Bacterial Interplay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Analysis and Patients’ Demographics
2.2. Direct Multi-Gene Molecular Detection of S. aureus Lineages by the GeneXpert System
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Call to Action on Antimicrobial Resistance 2021. Available online: https://www.who.int/news/item/30-07-2021-call-to-action-on-antimicrobial-resistance-2021 (accessed on 27 February 2022).
- Rello, J.; Kalwaje Eshwara, V.; Lagunes, L.; Alves, J.; Wunderink, R.G.; Conway-Morris, A.; Rojas, J.N.; Alp, E.; Zhang, Z. A global priority list of the TOp TEn resistant Microorganisms (TOTEM) study at intensive care: A prioritization exercise based on multi-criteria decision analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 319–323. [Google Scholar] [CrossRef]
- Seale, A.C.; Gordon, N.C.; Islam, J.; Peacock, S.J.; Scott, J.A.G. AMR Surveillance in low and middle-income settings—A roadmap for participation in the Global Antimicrobial Surveillance System (GLASS). Wellcome Open Res. 2017, 2, 92. [Google Scholar] [CrossRef]
- Ricchizzi, E.; Latour, K.; Kärki, T.; Buttazzi, R.; Jans, B.; Moro, M.L.; Nakitanda, O.A.; Plachouras, D.; Monnet, D.L.; Suetens, C.; et al. Antimicrobial use in European long-term care facilities: Results from the third point prevalence survey of healthcare-associated infections and antimicrobial use, 2016 to 2017. Eurosurveillance 2018, 23, 1800394. [Google Scholar] [CrossRef] [PubMed]
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O.; et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance 2018, 23, 1800516. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States. 2019. Available online: https://stacks.cdc.gov/view/cdc/82532 (accessed on 23 February 2022).
- Ferreira-Coimbra, J.; Sarda, C.; Rello, J. Burden of Community-Acquired Pneumonia and Unmet Clinical Needs. Adv. Ther. 2020, 37, 1302. [Google Scholar] [CrossRef]
- Global Health Estimates 2016: Deaths by Cause AS by C and by R 2000 2016. GWHO 2018. GHE2016_Deaths_WBInc_2000_2016.xls. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.who.int%2Fhealthinfo%2Fglobal_burden_disease%2FGHE2016_Deaths_WBInc_2000_2016.xls&wdOrigin=BROWSELINK (accessed on 26 February 2022).
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations/the Review on Antimicrobial Resistance chaired by Jim O’Neill. | Wellcome Collection. Available online: https://wellcomecollection.org/works/thvwsuba (accessed on 24 February 2022).
- Plachouras, D.; Kärki, T.; Hansen, S.; Hopkins, S.; Lyytikäinen, O.; Moro, M.L.; Reilly, J.; Zarb, P.; Zingg, W.; Kinross, P.; et al. Antimicrobial use in European acute care hospitals: Results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017. Eurosurveillance 2018, 23, 1800393. [Google Scholar] [CrossRef]
- Naoum, P.; Athanasakis, K.; Kyriopoulos, I.; Liapikou, A.; Toumbis, M.; Kyriopoulos, J. Community acquired pneumonia: A cost-of-illness analysis in Greece. Rural Remote Health 2020, 20, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Welte, T.; Torres, A.; Nathwani, D. Clinical and Economic Burden of Community-Acquired Pneumonia among Adults in Europe. Available online: https://thorax.bmj.com/content/67/1/71.altmetrics (accessed on 25 December 2023).
- Friedrich, A.W. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien. Med. Wochenschr. 2019, 169 (Suppl. S1), 25. [Google Scholar] [CrossRef]
- Olise, C.C. Fomites: Possible Vehicle of Nosocomial Infections. Available online: http://www.alliedacademies.org/public-health-nutrition/ (accessed on 26 February 2022).
- Larypoor, M.; Frsad, S. Evaluation of nosocomial infections in one of hospitals of Qom, 2008. Iran. J. Med. Microbiol. 2011, 5, 7–17. [Google Scholar]
- El-Saed, A.; Balkhy, H.H.; Alshamrani, M.M.; Aljohani, S.; Alsaedi, A.; al Nasser, W.; El Gammal, A.; Almohrij, S.A.; Alyousef, Z.; Almunif, S.; et al. High contribution and impact of resistant gram negative pathogens causing surgical site infections at a multi-hospital healthcare system in Saudi Arabia, 2007–2016. BMC Infect. Dis. 2020, 20, 275. [Google Scholar] [CrossRef]
- Kanafani, Z.A.; el Zakhem, A.; Zahreddine, N.; Ahmadieh, R.; Kanj, S.S. Ten-year surveillance study of ventilator-associated pneumonia at a tertiary care center in Lebanon. J. Infect. Public Health 2019, 12, 492–495. [Google Scholar] [CrossRef]
- Balkhy, H.H.; El-Saed, A.; Alshamrani, M.M.; Alsaedi, A.; al Nasser, W.; el Gammal, A.; Aljohany, S.M.; Almunif, S.; Arabi, Y.; Alqahtani, S.; et al. Ten-year resistance trends in pathogens causing healthcare-associated infections; reflection of infection control interventions at a multi-hospital healthcare system in Saudi Arabia, 2007–2016. Antimicrob. Resist. Infect. Control 2020, 9, 1–12. [Google Scholar] [CrossRef]
- Borgio, J.F.; Rasdan, A.S.; Sonbol, B.; Alhamid, G.; Almandil, N.B.; Azeez, S.A. Emerging Status of Multidrug-Resistant Bacteria and Fungi in the Arabian Peninsula. Biology 2021, 10, 1144. [Google Scholar] [CrossRef]
- Alhumaid, S.; al Mutair, A.; al Alawi, Z.; Alzahrani, A.J.; Tobaiqy, M.; Alresasi, A.M.; Bu-Shehab, I.; Al-Hadary, I.; Alhmeed, N.; Alismail, M.; et al. Antimicrobial susceptibility of gram-positive and gram-negative bacteria: A 5-year retrospective analysis at a multi-hospital healthcare system in Saudi Arabia. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 43. [Google Scholar] [CrossRef]
- Chen, X.; Liao, B.; Cheng, L.; Peng, X.; Xu, X.; Li, Y.; Hu, T.; Li, J.; Zhou, X.; Ren, B. The microbial coinfection in COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 7777–7785. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- Yang, S.; Hua, M.; Liu, X.; Du, C.; Pu, L.; Xiang, P.; Wang, L.; Liu, J. Bacterial and fungal co-infections among COVID-19 patients in intensive care unit. Microbes Infect. 2021, 23, 104806. [Google Scholar] [CrossRef]
- Moramarco, A.M.; Derosa, C.; Guida, P.; Tauro, L.; Laterza, M.; Ceci, E.; Bellanova, G.; Mastroianni, F. Co-Infections in Patients with COVID-19. Available online: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-984617?lang=en (accessed on 23 October 2022).
- Rossato, L.; Negrão, F.J.; Simionatto, S. Could the COVID-19 pandemic aggravate antimicrobial resistance? Am. J. Infect. Control 2020, 48, 1129–1130. [Google Scholar] [CrossRef] [PubMed]
- Naseef, H.A.; Mohammad, U.; Al-Shami, N.; Sahoury, Y.; Abukhalil, A.D.; Dreidi, M.; Alsahouri, I.; Farraj, M. Bacterial and fungal co-infections among ICU COVID-19 hospitalized patients in a Palestinian hospital: A retrospective cross-sectional study. F1000Research 2022, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Vijay, S.; Bansal, N.; Rao, B.K.; Veeraraghavan, B.; Rodrigues, C.; Wattal, C.; Goyal, J.P.; Tadepalli, K.; Mathur, P.; Venkateswaran, R.; et al. Secondary Infections in Hospitalized COVID-19 Patients: Indian Experience. Infect. Drug Resist. 2021, 14, 1893–1903. [Google Scholar] [CrossRef] [PubMed]
- Dutta Majumder, P. References. Available online: www.ijo.in (accessed on 25 December 2023).
- Sharov, K.S. Correspondence to. 2020. Available online: www.jogh.org (accessed on 25 December 2023).
- Silva, D.L.; Lima, C.M.; Magalhães, V.C.R.; Baltazar, L.M.; Peres, N.T.A.; Caligiorne, R.B.; Moura, A.S.; Fereguetti, T.; Martins, J.C.; Rabelo, L.F.; et al. Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. J. Hosp. Infect. 2021, 113, 145–154. [Google Scholar] [CrossRef]
- Yaqoob, H.; Rizwan, M.; Greenberg, D.; Arshad, A.; Epelbaum, O.; Chandy, D. Predictors and Outcomes of Bacterial and Fungal Superinfections in Critically Ill Patients with COVID-19. Chest 2021, 160, A591. [Google Scholar] [CrossRef]
- Alnimr, A.M.; Alshahrani, M.S.; Alwarthan, S.; AlQahtani, S.Y.; Hassan, A.A.; BuMurah, N.N.; Alhajiri, S.; Bukharie, H. Bacterial and Fungal Coinfection in Critically Ill COVID-19 Cases and Predictive Role of Procalcitonin during the First Wave at an Academic Health Center. J. Epidemiol. Glob. Health 2022, 12, 188–195. [Google Scholar] [CrossRef]
- Swets, M.C.; Russell, C.D.; Harrison, E.M.; Docherty, A.B.; Lone, N.; Girvan, M.; Hardwick, H.E.; Visser, L.G.; Openshaw, P.J.; Groeneveld, G.H.; et al. SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet 2022, 399, 1463–1464. [Google Scholar] [CrossRef]
- Alshaikh, F.S.; Godman, B.; Sindi, O.N.; Andrew Seaton, R.; Kurdi, A. Prevalence of bacterial coinfection and patterns of antibiotics prescribing in patients with COVID-19: A systematic review and metaanalysis. PLoS ONE 2022, 17, e0272375. [Google Scholar] [CrossRef]
- Soni, S.; Namdeo Pudake, R.; Jain, U.; Chauhan, N. A systematic review on SARS-CoV-2-associated fungal coinfections. J. Med. Virol. 2022, 94, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Cintas, M.I.; López, D.J.; Blanco, A.C.; Rodriguez, T.M.; Segarra, J.M.; Novales, J.M.; Ferriol, M.F.R.; Maestre, M.M.; Sacristan, M.S. Coinfections among hospitalized patients with COVID-19 in the first pandemic wave. Diagn. Microbiol. Infect. Dis. 2021, 101, 115416. [Google Scholar] [CrossRef] [PubMed]
- Rafat, Z.; Ramandi, A.; Khaki, P.A.; Ansari, S.; Ghaderkhani, S.; Haidar, H.; Tajari, F.; Roostaei, D.; Ghazvini, R.D.; Hashemi, S.J.; et al. Fungal and bacterial co-infections of the respiratory tract among patients with COVID-19 hospitalized in intensive care units. Gene Rep. 2022, 27, 101588. [Google Scholar] [CrossRef]
- Sreenath, K.; Batra, P.; Vinayaraj, E.V.; Bhatia, R.; SaiKiran, K.; Singh, V.; Singh, S.; Verma, N.; Singh, U.B.; Mohan, A.; et al. Coinfections with Other Respiratory Pathogens among Patients with COVID-19. Microbiol. Spectr. 2021, 9, e00163-21. [Google Scholar] [CrossRef] [PubMed]
- Nebreda-Mayoral, T.; Miguel-Gómez, M.A.; March-Rosselló, G.A.; Puente-Fuertes, L.; Cantón-Benito, E.; Martínez-García, A.M.; Muñoz-Martín, A.B.; Orduña-Domingo, A. Bacterial/fungal infection in hospitalized patients with COVID-19 in a tertiary hospital in the Community of Castilla y León, Spain. Enfermedades Infecciosas y Microbiologia Clinica 2022, 40, 158–165. [Google Scholar] [CrossRef]
- Gerver, S.M.; Guy, R.; Wilson, K.; Thelwall, S.; Nsonwu, O.; Rooney, G.; Brown, C.S.; Muller-Pebody, B.; Hope, R.; Hall, V. National surveillance of bacterial and fungal coinfection and secondary infection in COVID-19 patients in England: Lessons from the first wave. Clin. Microbiol. Infect. 2021, 27, 1658–1665. [Google Scholar] [CrossRef]
- Rawson, T.M.; Wilson, R.C.; Holmes, A. Understanding the role of bacterial and fungal infection in COVID-19. Clin. Microbiol. Infect. 2021, 27, 9–11. [Google Scholar] [CrossRef]
- Bahceci, I.; Yildiz, I.E.; Duran, O.F.; Soztanaci, U.S.; Kirdi Harbawi, Z.; Senol, F.F.; Demiral, G.; Duran, Ö.F.; Soztanaci, U.S.; Senol, F. Secondary Bacterial Infection Rates among Patients with COVID-19. Cureus 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Moreno-García, E.; Puerta-Alcalde, P.; Letona, L.; Meira, F.; Dueñas, G.; Chumbita, M.; Garcia-Pouton, N.; Monzó, P.; Lopera, C.; Serra, L.; et al. Bacterial co-infection at hospital admission in patients with COVID-19. Int. J. Infect. Dis. 2022, 118, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Gu, W.; Fu, X.; Yuan, B.; Zhang, Y. Community-acquired methicillin-resistant Staphylococcus aureus provoked cytokine storm causing severe infection on BALB/c mice. Mol. Immunol. 2021, 140, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Villalva, C.; Patil, G.; Narayanan, S.; Chanda, D.; Ghimire, R.; Snider, T.; Ramachandran, A.; Channappanavar, R.; More, S. Klebsiella pneumoniae C o-infection Leads to Fatal Pneumonia in SARS-CoV-2-infected Mice. bioRxiv 2023. [Google Scholar]
- Samsudin, F.; Raghuvamsi, P.; Petruk, G.; Puthia, M.; Petrlova, J.; Macary, P.; Anand, G.S.; Bond, P.J.; Schmidtchen, A. SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an overzealous inflammatory cascade. J. Mol. Cell Biol. 2023, 14, mjac058. [Google Scholar] [CrossRef] [PubMed]
- Petruk, G.; Puthia, M.; Petrlova, J.; Samsudin, F.; Strömdahl, A.C.; Cerps, S.; Uller, L.; Kjellström, S.; Bond, P.J.; Schmidtchen, A.A. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. J. Mol. Cell Biol. 2020, 12, 916–932. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shen, L.; Wu, W.; Guan, W.; Zhou, J.; Luo, G.; Chen, Q.; Zhou, H.; Deng, Z.; Chen, Y.; et al. Co-infecting pathogens can contribute to inflammatory responses and severe symptoms in COVID-19. J. Thorac. Dis. 2022, 14, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Reche, P.A. Potential Cross-Reactive Immunity to SARS-CoV-2 from Common Human Pathogens and Vaccines. Front. Immunol. 2020, 11, 2694. [Google Scholar] [CrossRef]
- Kalligeros, M.; Karageorgos, S.A.; Shehadeh, F.; Zacharioudakis, I.M.; Mylonakis, E. Systematic Review and Meta-analysis of the Association of Acute Kidney Injury with the Concomitant Use of Vancomycin and Piperacillin-Tazobactam in Children. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, I.; Lindner, C.; Schneider, I.; Morales, M.A.; Rojas, A. Inflammation at the crossroads of Helicobacter pylori and COVID-19. Future Microbiol. 2022, 17, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Zamani, B.; Moeini Taba, S.M.; Shayestehpour, M. Systemic lupus erythematosus manifestation following COVID-19: A case report. J. Med. Case Rep. 2021, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Mekritthikrai, K.; Jaru-Ampornpan, P.; Komolmit, P.; Thanapirom, K. Autoimmune Hepatitis Triggered by COVID-19 Vaccine: The First Case From Inactivated Vaccine. ACG Case Rep. J. 2022, 9, e00811. [Google Scholar] [CrossRef]
- Sachs, J.D.; Karim, S.S.A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G.C.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.; et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 2022, 400, 1224–1280. [Google Scholar] [CrossRef]
- Horita, N.; Fukumoto, T. Global case fatality rate from COVID-19 has decreased by 96.8% during 2.5 years of the pandemic. J. Med. Virol. 2023, 95, e28231. [Google Scholar] [CrossRef]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- McCraw, C.; Forbush, S.; Trivedi, K. Community-Acquired, Post-COVID-19, Methicillin-Resistant Staphylococcus aureus Pneumonia and Empyema. Cureus 2022, 14. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Said, K.B.; Alsolami, A.; Alshammari, K.F.; Moussa, S.; Alshammeri, F.; Alghozwi, M.H.; Alshammari, S.F.; Alharbi, N.F.; Khalifa, A.M.; Mahmoud, M.R.; et al. The Rapidly Changing Patterns in Bacterial Co-Infections Reveal Peaks in Limited Gram Negatives during COVID-19 and Their Sharp Drop Post-Vaccination, Implying Potential Evolution of Co-Protection during Vaccine–Virus–Bacterial Interplay. Viruses 2024, 16, 227. https://doi.org/10.3390/v16020227
Said KB, Alsolami A, Alshammari KF, Moussa S, Alshammeri F, Alghozwi MH, Alshammari SF, Alharbi NF, Khalifa AM, Mahmoud MR, et al. The Rapidly Changing Patterns in Bacterial Co-Infections Reveal Peaks in Limited Gram Negatives during COVID-19 and Their Sharp Drop Post-Vaccination, Implying Potential Evolution of Co-Protection during Vaccine–Virus–Bacterial Interplay. Viruses. 2024; 16(2):227. https://doi.org/10.3390/v16020227
Chicago/Turabian StyleSaid, Kamaleldin B., Ahmed Alsolami, Khalid F. Alshammari, Safia Moussa, Fawaz Alshammeri, Mohammed H. Alghozwi, Sulaiman F. Alshammari, Nawaf F. Alharbi, Amany M. Khalifa, Madiha R. Mahmoud, and et al. 2024. "The Rapidly Changing Patterns in Bacterial Co-Infections Reveal Peaks in Limited Gram Negatives during COVID-19 and Their Sharp Drop Post-Vaccination, Implying Potential Evolution of Co-Protection during Vaccine–Virus–Bacterial Interplay" Viruses 16, no. 2: 227. https://doi.org/10.3390/v16020227
APA StyleSaid, K. B., Alsolami, A., Alshammari, K. F., Moussa, S., Alshammeri, F., Alghozwi, M. H., Alshammari, S. F., Alharbi, N. F., Khalifa, A. M., Mahmoud, M. R., Alshammari, K., & Ghoniem, M. E. (2024). The Rapidly Changing Patterns in Bacterial Co-Infections Reveal Peaks in Limited Gram Negatives during COVID-19 and Their Sharp Drop Post-Vaccination, Implying Potential Evolution of Co-Protection during Vaccine–Virus–Bacterial Interplay. Viruses, 16(2), 227. https://doi.org/10.3390/v16020227