Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Study Design and Data Collection
2.3. Definitions
2.4. Microbiological Diagnostics
2.5. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Comparison of SARS-CoV-2 Survivors vs. Non-Survivors Clinical Features
3.3. Factors Associated with In-Hospital Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weekly Epidemiological Update on COVID-19 22 February 2023 n.d. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-february-2023 (accessed on 18 March 2023).
- Zhang, J.-J.; Dong, X.; Liu, G.-H.; Gao, Y.-D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Bain, W.; Yang, H.; Shah, F.A.; Suber, T.; Drohan, C.; Al-Yousif, N.; DeSensi, R.S.; Bensen, N.; Schaefer, C.; Rosborough, B.R.; et al. COVID-19 versus Non-COVID-19 Acute Respiratory Distress Syndrome: Comparison of Demographics, Physiologic Parameters, Inflammatory Biomarkers, and Clinical Outcomes. Ann. Am. Thorac. Soc. 2021, 18, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Leung, V.; Raybardhan, S.; Lo, J.; Kan, T.; Leung, F.; Westwood, D.; Daneman, N.; MacFadden, D.R.; et al. Predictors and microbiology of respiratory and blood-stream bacterial infection in patients with COVID-19: Living rapid review update and meta-regression. Clin. Microbiol. Infect. 2022, 28, 491–501. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; Sapin, M.E.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial resistance in patients with COVID-19: A systematic review and meta-analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef]
- Freedberg, D.E.; Zhou, M.J.; Cohen, M.E.; Annavajhala, M.K.; Khan, S.; Moscoso, D.; Brooks, C.; Whittier, S.; Chong, D.H.; Uhlemann, A.-C.; et al. Pathogen colonization of the gastro-intestinal microbiome at intensive care unit admission and risk for subsequent death or infection. Intensive Care Med. 2018, 44, 1203–1211. [Google Scholar] [CrossRef]
- Dickstein, Y.; Edelman, R.; Dror, T.; Hussein, K.; Bar-Lavie, Y.; Paul, M. Carbapenem-resistant Enterobacteriaceae colonization and infection in critically ill patients: A retrospective matched cohort comparison with non-carriers. J. Hosp. Infect. 2016, 94, 54–59. [Google Scholar] [CrossRef]
- García-García, J.; Diez-Echave, P.; Yuste, M.E.; Chueca, N.; García, F.; Cabeza-Barrera, J.; Fernández-Varón, E.; Gálvez, J.; Colmenero, M.; Rodríguez-Cabezas, M.E.; et al. Gut Microbiota Composition Can Predict Colonization by Multidrug-Resistant Bacteria in SARS-CoV-2 Patients in Intensive Care Unit: A Pilot Study. Antibiotics 2023, 12, 498. [Google Scholar] [CrossRef]
- Iacovelli, A.; Oliva, A.; Siccardi, G.; Tramontano, A.; Pellegrino, D.; Mastroianni, C.M.; Venditti, M.; Palange, P. Risk factors and effect on mortality of superinfections in a newly established COVID-19 respiratory sub-intensive care unit at University Hospital in Rome. BMC Pulm. Med. 2023, 23, 30. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically Ill Patients with COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Bedenić, B.; Bratić, V.; Mihaljević, S.; Lukić, A.; Vidović, K.; Reiner, K.; Schöenthaler, S.; Barišić, I.; Zarfel, G.; Grisold, A. Multi-drug-Resistant Bacteria in a COVID-19 Hospital in Zagreb. Pathogens 2023, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Gavaruzzi, F.; Ceccarelli, G.; Borrazzo, C.; Oliva, A.; Alessandri, F.; Magnanimi, E.; Pugliese, F.; Venditti, M. Multidrug-resistant Acinetobacter bau-mannii infections in COVID-19 patients hospitalized in intensive care unit. Infection 2022, 50, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Karruli, A.; Boccia, F.; Gagliardi, M.; Patauner, F.; Ursi, M.P.; Sommese, P.; De Rosa, R.; Murino, P.; Ruocco, G.; Corcione, A.; et al. Multidrug-Resistant Infections and Outcome of Critically Ill Patients with Coronavirus Disease 2019: A Single Center Experience. Microb. Drug Resist. 2021, 27, 1167–1175. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Bondi, A.; Comini, S.; Zaccaria, T.; Cavallo, R.; Costa, C. Outbreak of ceftazidime-avibactam resistant KPC-producing Klebsiella pneumoniae in a COVID-19 Intensive Care Unit, Italy: Urgent need for updating diagnostic protocols of surveillance cultures. J. Hosp. Infect. 2022, 122, 214–219. [Google Scholar] [CrossRef]
- Di Pilato, V.; Principe, L.; Andriani, L.; Aiezza, N.; Coppi, M.; Ricci, S.; Giani, T.; Luzzaro, F.; Rossolini, G.M. Deciphering variable resistance to novel carbapenem-based β-lactamase inhibitor combinations in a multi-clonal outbreak caused by Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam. Clin. Microbiol. Infect. 2022, 29, 537.e1–537.e8. [Google Scholar] [CrossRef]
- Nicola, F.; Cejas, D.; González-Espinosa, F.; Relloso, S.; Herrera, F.; Bonvehí, P.; Smayevsky, J.; Figueroa-Espinosa, R.; Gutkind, G.; Radice, M. Outbreak of Klebsiella pneumoniae ST11 Resistant To Ceftazidime-Avibactam Producing KPC-31 and the Novel Variant KPC-115 during COVID-19 Pan-demic in Argentina. Microbiol. Spectr. 2022, 10, e0373322. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Comini, S.; Iannaccone, M.; Casale, R.; Allizond, V.; Barbui, A.M.; Banche, G.; Cavallo, R.; Costa, C. Activity of ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, cefiderocol and comparators against Gram-negative organisms causing bloodstream infections in Northern Italy (2019–2021): Emergence of complex resistance phenotypes. J. Chemother. 2022, 34, 302–310. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf (accessed on 15 March 2023).
- Tian, W.; Jiang, W.; Yao, J.; Nicholson, C.J.; Li, R.H.; Sigurslid, H.H.; Wooster, L.; Rotter, J.I.; Guo, X.; Malhotra, R. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1875–1883. [Google Scholar] [CrossRef]
- Shbaklo, N.; Corcione, S.; Vicentini, C.; Giordano, S.; Fiorentino, D.; Bianco, G.; Cattel, F.; Cavallo, R.; Zotti, C.M.; De Rosa, F.G. An Observational Study of MDR Hospital-Acquired Infections and Antibiotic Use during COVID-19 Pandemic: A Call for Antimicrobial Stewardship Pro-grams. Antibiotics 2022, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, R.F. The interface between COVID-19 and bacterial healthcare-associated infections. Clin. Microbiol. Infect. 2021, 27, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Kaleci, S.; Orlando, G.; Selmi, S.; Santoro, A.; Bacca, E.; Menozzi, M.; Franceschini, E.; Puzzolante, C.; Bedini, A.; et al. Risk factors for nosocomial rectal colonization with carbapenem-resistant Acinetobacter baumannii in hospital: A matched case-control study. Antimicrob. Resist. Infect. Control 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Cuntrò, M.; Manisco, A.; Guarneri, D.; Zuglian, G.; Vailati, F.; Passera, M.; Cavallini, M.; Raglio, A.; Farina, C. Blood stream infections during the first wave of COVID-19. A short microbiological retrospective picture at Papa Giovanni XXIII Hospital, Bergamo, Italy. New Microbiol. 2021, 44, 51–58. [Google Scholar]
- Pascale, R.; Bussini, L.; Gaibani, P.; Bovo, F.; Fornaro, G.; Lombardo, D.; Ambretti, S.; Pensalfine, G.; Appolloni, L.; Bartoletti, M.; et al. Carbapenem-resistant bacteria in an intensive care unit during the coronavirus disease 2019 (COVID-19) pandemic: A multicenter before-and-after cross-sectional study. Infect. Control Hosp. Epidemiol. 2022, 43, 461–466. [Google Scholar] [CrossRef]
- Ayoub Moubareck, C.; Hammoudi Halat, D. The Collateral Effects of COVID-19 Pandemic on the Status of Carbapenemase-Producing Pathogens. Front. Cell Infect. Microbiol. 2022, 12, 823626. [Google Scholar] [CrossRef]
- Tiri, B.; Sensi, E.; Marsiliani, V.; Cantarini, M.; Priante, G.; Vernelli, C.; Martella, L.A.; Costantini, M.; Mariottini, A.; Andreani, P.; et al. Antimicrobial Stewardship Program, COVID-19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? J. Clin. Med. 2020, 9, 2744. [Google Scholar] [CrossRef]
- Gaspar, G.G.; Tamasco, G.; Abichabki, N.; Scaranello, A.F.T.; Auxiliadora-Martins, M.; Pocente, R.; Andrade, L.N.; Guazzaroni, M.-E.; Silva-Rocha, R.; Bollela, V.R. Nosocomial Out-break of Extensively Drug-Resistant (Polymyxin B and Carbapenem) Klebsiella pneumoniae in a Collapsed University Hospital Due to COVID-19 Pandemic. Antibiotics 2022, 11, 814. [Google Scholar] [CrossRef]
- Mendes, G.; Ramalho, J.F.; Duarte, A.; Pedrosa, A.; Silva, A.C.; Méndez, L.; Caneiras, C. First Outbreak of NDM-1-Producing Klebsiella pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19 Pandemic. Microorganisms 2022, 10, 251. [Google Scholar] [CrossRef]
- Mędrzycka-Dąbrowska, W.; Lange, S.; Zorena, K.; Dąbrowski, S.; Ozga, D.; Tomaszek, L. Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients-A Scoping Review. J. Clin. Med. 2021, 10, 2067. [Google Scholar] [CrossRef]
- Comini, S.; Bianco, G.; Boattini, M.; Iannaccone, M.; Casale, R.; Banche, G.; Cavallo, R.; Costa, C. Evaluation of the Amplex eazyplex Super-Bug Acineto test for direct detection of multi-drug-resistant Acinetobacter baumannii bloodstream infections in high endemicity settings. J. Hosp. Infect. 2021, 117, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Cheruiyot, I.; Vikse, J.; Mutua, V.; Kipkorir, V.; Benoit, J.; Plebani, M.; Bragazzi, N.; Lippi, G. Lymphopenia and neutrophilia at admission predicts severity and mortality in patients with COVID-19: A meta-analysis. Acta Biomed. 2020, 91, e2020008. [Google Scholar] [CrossRef] [PubMed]
- Lagadinou, M.; Zareifopoulos, N.; Gkentzi, D.; Sampsonas, F.; Kostopoulou, E.; Marangos, M.; Solomou, E. Alterations in lymphocyte subsets and monocytes in patients diagnosed with SARS-CoV-2 pneumonia: A mini review of the literature. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5057–5062. [Google Scholar] [CrossRef] [PubMed]
- Welte, T.; Ambrose, L.J.; Sibbring, G.C.; Sheikh, S.; Müllerová, H.; Sabir, I. Current evidence for COVID-19 therapies: A systematic literature review. Eur. Respir. Rev. 2021, 30, 200384. [Google Scholar] [CrossRef]
- Ko, J.J.; Wu, C.; Mehta, N.; Wald-Dickler, N.; Yang, W.; Qiao, R. A comparison of methylprednisolone and dexamethasone in intensive care patients with COVID-19. J. Intensive Care Med. 2021, 36, 673–680. [Google Scholar] [CrossRef]
- Nasir, N.; Rehman, F.; Omair, S.F. Risk factors for bacterial infections in patients with moderate to severe COVID-19: A case-control study. J. Med. Virol. 2021, 93, 4564–4569. [Google Scholar] [CrossRef]
- Obata, R.; Maeda, T.; Rizk, D.; Kuno, T. Increased Secondary Infection in COVID-19 Patients Treated with Steroids in New York City. Jpn. J. Infect. Dis. 2021, 74, 307–315. [Google Scholar] [CrossRef]
- Pasero, D.; Cossu, A.P.; Terragni, P. Multi-Drug Resistance Bacterial Infections in Critically Ill Patients Admitted with COVID-19. Microorganisms 2021, 9, 1773. [Google Scholar] [CrossRef]
- Russell, C.D.; Fairfield, C.J.; Drake, T.M.; Turtle, L.; Seaton, R.A.; Wootton, D.G.; Sigfrid, L.; Harrison, E.M.; Docherty, A.B.; de Silva, T.I.; et al. Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: A multicentre, prospective cohort study. Lancet Microbe 2021, 2, e354–e365. [Google Scholar] [CrossRef]
- Boattini, M.; Bianco, G.; Charrier, L.; Comini, S.; Iannaccone, M.; Almeida, A.; Cavallo, R.; De Rosa, F.G.; Costa, C. Rapid diagnostics and ceftazidime/avibactam for KPC-producing Klebsiella pneumoniae bloodstream infections: Impact on mortality and role of combination therapy. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 431–439. [Google Scholar] [CrossRef]
- Bianco, G.; Comini, S.; Boattini, M.; Ricciardelli, G.; Guarrasi, L.; Cavallo, R.; Costa, C. MALDI-TOF MS-Based Approaches for Direct Identification of Gram-Negative Bacteria and BlaKPC-Carrying Plasmid Detection from Blood Cultures: A Three-Year Single-Centre Study and Proposal of a Diagnostic Algorithm. Microorganisms 2022, 11, 91. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics (n = 188) | |
Age, median [IQR] (years) | 69 [67–75] |
Male | 71% |
Community-acquired SARS-CoV-2 infection | 65% |
Chronic heart disease | 66% |
Chronic pulmonary disease | 22% |
Chronic kidney disease | 19% |
Chronic liver disease | 7% |
Neoplasia | 18% |
Solid organ transplant recipient | 5% |
Diabetes | 27% |
Obesity | 20% |
Autoimmune disease | 3% |
Charlson comorbidity index, median [IQR] | 4 [2–5] |
Critically ill patient | 61% |
ICU length of stay, median [IQR] (days) | 10 [5–18] |
Total hospital length of stay, median [IQR] (days) | 29 [18–46] |
Clinical presentation | |
Unilateral pneumonia | 2% |
Bilateral pneumonia or ARDS | 98% |
Pulmonary embolism | 10% |
D-dimer (ng/mL) | 1496 [845–4396] |
LDH (UI/L) | 644 [458–814.25] |
CPK (UI/L) | 78 [37–215] |
NT-proBNP (pg/mL) | 725 [244–3222] |
Troponin T (ng/L) | 22 [11–53] |
Ferritin (ng/mL) | 1081.5 [551–1922] |
Creatinine (mg/dL) | 1.06 [0.74–1.45] |
Lymphocytes count (109/L) | 0.83 [0.5–1.2] |
Procalcitonin (ng/mL) | 0.33 [0.1–1.0] |
CRP (mg/L) | 74.5 [28–139] |
Support and management | |
Invasive mechanical ventilation or ECMO ≥ 96 h | 50% |
NIV and/or O2 therapy | 86% |
Systemic corticosteroids | 81% |
Tocilizumab | 8% |
Hydroxychloroquine | 13% |
Lopinavir/ritonavir | 11% |
Remdesivir | 7% |
Antimicrobial treatment | 96% |
Multidrug-resistant bacteria colonization and superinfection | |
KPC-Kp and/or CR-ACB rectal carriage | 30% |
KPC-Kp rectal carriage only | 18% |
CR-ACB rectal carriage only | 3% |
KPC-Kp + CR-ACB rectal carriage | 10% |
KPC-Kp and/or CR-ACB BSI and/or pneumonia | 20% |
KPC-Kp and/or CR-ACB BSI | 11% |
KPC-Kp and/or CR-ACB pneumonia | 12% |
KPC-Kp BSI or pneumonia only | 8% |
CR-ACB BSI or pneumonia only | 5% |
KPC-Kp + CR-ACB BSI or pneumonia | 6% |
Outcome | |
In-hospital death | 44% |
Alive|Dead | Mann–Whitney U Test W Statistic|p-Value or Fisher’s Exact Test Odds Ratio [95% C.I.]|p-Value | |
---|---|---|
Patient characteristics (n = 188) | ||
Age, median [IQR] (years) | 67 [55–73]|73 [65–77] | W = 2989, p < 0.01 |
Male | 70%|72% | 1.09 [0.55–2.18]|p = 0.87 |
Community-acquired SARS-CoV-2 infection | 64%|67% | 1.18 [0.61–2.67]|p = 0.64 |
Chronic heart disease | 60%|72% | 1.60 [0.83–315]|p = 0.16 |
Chronic pulmonary disease | 15%|30% | 2.39 [1.12–5.23]|p = 0.02 |
Chronic kidney disease | 15%|23% | 1.65 [0.74–3.71]|p = 0.19 |
Chronic liver disease | 6%|10% | 1.75 [0.51–6.42]|p = 0.40 |
Neoplasia | 12%|25% | 2.39 [1.05–5.60]|p = 0.03 |
Solid organ transplant recipient | 6%|8% | 0.84 [0.17–3.67]|p = 1 |
Diabetes | 23%|31% | 1.54 [0.76–3.11]|p = 0.24 |
Obesity | 18%|22% | 1.25 [0.57–2.74]|p = 0.58 |
Autoimmune disease | 4%|2% | 0.62 [0.06–4.49]|p = 0.69 |
Charlson comorbidity index, median [IQR] | 3 [2–5]|4 [3–6] | W = 3016.5, p < 0.01 |
Critically ill patient | 53%|71% | 2.14 [1.12–4.16]|p = 0.01 |
ICU length of stay, median [IQR] (days) | 2 [0–11]|9 [0–17] | W = 3342.5, p < 0.01 |
Total hospital length of stay, median [IQR] (days) | 33 [23–57]|21 [15–35] | W = 5940.5, p < 0.01 |
Clinical presentation | ||
Unilateral pneumonia | 4%|0% | 0 [0–1.90]|p = 0.13 |
Bilateral pneumonia or ARDS | 83%|95% | 4.06 [1.16–17.19]|p = 0.01 |
Pulmonary embolism | 11%|8% | 0.72 [0.23–2.09]|p = 0.62 |
D-dimer (ng/mL), median [IQR] | 1390 [774–3902]|2066 [877–5141] | W = 3856.5, p = 0.17 |
LDH (UI/L), median [IQR] | 639 [480–839]|664 [444–809] | W = 4422, p = 0.86 |
CPK (UI/L), median [IQR] | 69 [36–173]|80 [38–282] | W = 3973, p = 0.3 |
NT-proBNP (pg/mL), median [IQR] | 617 [197–1751]|996 [371–5900] | W = 3473.5, p = 0.01 |
Troponin T (ng/L), median [IQR] | 20 [9–67]|24 [14–52] | W = 3862, p = 0.18 |
Ferritin (ng/mL), median [IQR] | 953 [555–1830]|1150 [537–1953] | W = 3968, p = 0.29 |
Creatinine (mg/dL), median [IQR] | 0.93 [0.72–1.29]|1.16 [0.76–1.53] | W = 3540.5, p = 0.02 |
Lymphocytes count (109/L), median [IQR] | 1 [0.54–1.39]|0.61 [0.44–1.06] | W = 5548.5, p < 0.01 |
Procalcitonin (ng/mL), median [IQR] | 0.34 [0.1–1.0]|0.31 [0.15–0.99] | W = 4019.5, p = 0.36 |
CRP (mg/L), median [IQR] | 85 [27.7–140]|70.5 [27.8–70.5] | W = 4515.5, p = 0.67 |
Support and management | ||
Mechanical ventilation or ECMO ≥ 96 h | 37%|66% | 3.30 [1.74–6.36]|p < 0.01 |
NIV and/or O2 therapy | 80%|93% | 3.19 [1.17–10.18]|p = 0.02 |
Systemic corticosteroids | 72%|92% | 4.11 [1.64–11.82]|p < 0.01 |
Tocilizumab | 7%|10% | 1.49 [0.45–5.06]|p = 0.58 |
Hydroxychloroquine | 10%|14% | 1.31 [0.50–3.39]|p = 0.66 |
Lopinavir/ritonavir | 8%|14% | 2.04 [0.72–6.08]|p = 0.15 |
Remdesivir | 9%|6% | 0.69 [0.17–2.39]|p = 0.58 |
Antimicrobial treatment | 95%|98% | 2.02 [0.32–21.71]|p = 0.46 |
MDR bacteria colonization and superinfection | ||
KPC-Kp and/or CR-ACB rectal carriage | 28%|34% | 1.33 [0.68–2.61]|p = 0.42 |
KPC-Kp rectal carriage only | 15%|20% | 1.43 [0.63–3.27]|p = 0.44 |
CR-ACB rectal carriage only | 4%|1% | 0.31 [0.01–3.21]|p = 0.38 |
KPC-Kp + CR-ACB rectal carriage | 9%|12% | 1.46 [0.50–4.29]|p = 0.47 |
KPC-Kp and/or CR-ACB BSI and/or pneumonia | 17%|23% | 1.43 [0.65–3.15]|p = 0.35 |
KPC-Kp and/or CR-ACB BSI | 9%|13% | 1.63 [0.58–4.70]|p = 0.34 |
KPC-Kp and/or CR-ACB pneumonia | 8%|17% | 2.45 [0.90–7.13]|p = 0.06 |
KPC-Kp BSI or pneumonia only | 10%|6% | 0.61 [0.16–2.06]|p = 0.42 |
CR-ACB BSI or pneumonia only | 5%|5% | 1.01 [0.19–4.88]|p = 1 |
KPC-Kp + CR-ACB BSI or pneumonia | 3%|10% | 3.60 [0.83–21.78]|p = 0.06 |
Feature | Univariate Logistic Regression | Multivariable Logistic Regression | ||||||
---|---|---|---|---|---|---|---|---|
p-Value | Odds Ratio | 95% CI Upper | 95% CI Lower | p-Value | Odds Ratio | 95% CI Upper | 95% CI Lower | |
Age | <0.01 | 1.05 | 1.07 | 1.04 | 0.06 | 1.04 | 1.06 | 1.01 |
Male | 0.78 | 1.09 | 1.51 | 0.78 | ||||
Community-acquired SARS-CoV-2 infection | 0.60 | 1.17 | 1.60 | 0.86 | ||||
Chronic heart disease | 0.13 | 1.60 | 2.20 | 1.16 | ||||
Chronic pulmonary disease | <0.05 | 2.39 | 3.44 | 1.66 | 0.44 | 1.45 | 2.39 | 0.88 |
Chronic kidney disease | 0.18 | 1.65 | 2.40 | 1.13 | ||||
Chronic liver disease | 0.31 | 1.76 | 3.08 | 1.00 | ||||
Neoplasia | <0.05 | 2.39 | 3.53 | 1.62 | 0.20 | 2.26 | 4.31 | 1.18 |
Solid organ transplant recipient | 0.78 | 0.83 | 1.62 | 0.43 | ||||
Diabetes | 0.19 | 1.53 | 2.14 | 1.10 | ||||
Obesity | 0.53 | 1.25 | 1.81 | 0.86 | ||||
Autoimmune disease | 0.59 | 0.62 | 1.50 | 0.25 | ||||
Charlson comorbidity index | <0.05 | 1.27 | 1.36 | 1.18 | 0.01 | 1.41 | 1.59 | 1.24 |
Critically ill patient | <0.05 | 2.15 | 2.93 | 1.57 | 0.23 | 0.41 | 0.87 | 0.19 |
ICU length of stay | <0.05 | 1.02 | 1.03 | 1.01 | - | - | - | - |
Total hospital length of stay | <0.01 | 0.98 | 0.98 | 0.97 | - | - | - | - |
Unilateral pneumonia | 0.98 | 0 | - | 0 | ||||
Bilateral pneumonia or ARDS | <0.05 | 4.08 | 7.25 | 2.30 | 0.82 | 0.84 | 1.84 | 0.38 |
Pulmonary embolism | 0.50 | 0.71 | 1.17 | 0.43 | ||||
D-dimer | 0.40 | 1.00 | 1.00 | 1.00 | ||||
LDH | 0.55 | 1.00 | 1.00 | 0.99 | ||||
CPK | 0.06 | 1.00 | 1.00 | 1.00 | ||||
NT-proBNP | 0.44 | 1.00 | 1.00 | 1.00 | ||||
Troponin T | 0.21 | 0.99 | 0.99 | 0.99 | ||||
Ferritin | 0.40 | 1.00 | 1.00 | 0.99 | ||||
Creatinine | 0.74 | 1.02 | 1.11 | 0.94 | ||||
Lymphocytes count | <0.01 | 0.48 | 0.62 | 0.37 | 0.03 | 0.54 | 0.72 | 0.40 |
Procalcitonin | 0.59 | 1.00 | 1.02 | 0.99 | ||||
CRP | 0.76 | 0.99 | 1.00 | 0.99 | ||||
Invasive mechanical ventilation or ECMO ≥ 96 h | <0.01 | 3.32 | 4.52 | 2.44 | 0.01 | 6.34 | 12.62 | 3.18 |
NIV and/or O2 therapy | <0.05 | 3.20 | 5.23 | 1.96 | 0.19 | 2.71 | 5.83 | 1.26 |
Hydroxychloroquine | 0.53 | 1.30 | 2.02 | 0.84 | ||||
Systemic glucocorticoids | <0.01 | 4.14 | 6.50 | 2.63 | 0.01 | 4.67 | 9.05 | 2.41 |
Tocilizumab | 0.45 | 1.49 | 2.56 | 0.87 | ||||
Lopinavir/ritonavir | 0.13 | 2.04 | 3.31 | 1.26 | ||||
Remdesivir | 0.51 | 0.68 | 1.21 | 0.38 | ||||
Antimicrobial treatment | 0.40 | 2.02 | 4.73 | 0.86 | ||||
KPC-Kp and/or CR-ACB rectal carriage | 0.36 | 1.33 | 1.83 | 0.97 | ||||
KPC-Kp rectal carriage only | 0.34 | 1.43 | 2.10 | 0.97 | ||||
CR-ACB rectal carriage only | 0.29 | 0.30 | 0.95 | 0.09 | ||||
KPC-Kp + CR-ACB rectal carriage | 0.43 | 1.46 | 2.37 | 0.89 | ||||
KPC-Kp and/or CR-ACB BSI and/or pneumonia | 0.32 | 1.43 | 2.07 | 0.99 | ||||
KPC-Kp and/or CR-ACB BSI | 0.30 | 1.62 | 2.62 | 1.01 | ||||
KPC-Kp and/or CR-ACB pneumonia | 0.05 | 2.46 | 3.93 | 1.53 | ||||
KPC-Kp BSI or pneumonia only | 0.38 | 0.60 | 1.07 | 0.34 | ||||
CR-ACB BSI or pneumonia only | 0.98 | 1.01 | 2.01 | 0.50 | ||||
KPC-Kp + CR-ACB BSI or pneumonia | 0.06 | 3.62 | 7.25 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casale, R.; Bianco, G.; Bastos, P.; Comini, S.; Corcione, S.; Boattini, M.; Cavallo, R.; Rosa, F.G.D.; Costa, C. Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients. Viruses 2023, 15, 1934. https://doi.org/10.3390/v15091934
Casale R, Bianco G, Bastos P, Comini S, Corcione S, Boattini M, Cavallo R, Rosa FGD, Costa C. Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients. Viruses. 2023; 15(9):1934. https://doi.org/10.3390/v15091934
Chicago/Turabian StyleCasale, Roberto, Gabriele Bianco, Paulo Bastos, Sara Comini, Silvia Corcione, Matteo Boattini, Rossana Cavallo, Francesco Giuseppe De Rosa, and Cristina Costa. 2023. "Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients" Viruses 15, no. 9: 1934. https://doi.org/10.3390/v15091934
APA StyleCasale, R., Bianco, G., Bastos, P., Comini, S., Corcione, S., Boattini, M., Cavallo, R., Rosa, F. G. D., & Costa, C. (2023). Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients. Viruses, 15(9), 1934. https://doi.org/10.3390/v15091934